Определение парамагнетиков: характеристики, примеры
Парамагнетиками называют вещества, способные намагничиваться под действием внешнего магнитного поля в его направлении и обладающие положительной магнитной восприимчивостью, которая значительно меньше единицы.
Определение «Парамагнетизм» было введено в 1848 году Майклом Фарадеем. Ученый выполнил разделение всех веществ на несколько классов, включая парамагнетики.
Парамагнетики относят к слабомагнитным веществам. Они характеризуются собственными магнитными моментами. Если на парамагнетик действует внешнее магнитное поле, магнитные моменты ориентируются по его направлению и создают результирующее поле, превосходящее внешнее. Таким образом, вещества входят в магнитное поле. В случае, когда внешнее магнитное поле отсутствует, и парамагнетик не намагничен, благодаря тепловому движению наблюдается произвольная ориентация собственных магнитных моментов атомов вещества.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Основные свойства
Выделение парамагнетиков в отдельную категорию произошло благодаря их особенным физико-химическим характеристикам. Основными свойствами веществ являются:
- положительная магнитная восприимчивость, которая значительно меньше единицы;
- самопроизвольная намагниченность, изменяемая при воздействии сторонних факторов, наблюдается, когда температура среды не слишком высока;
- гистерезис характерен для данного типа веществ;
- притяжение магнитом в условиях мощного магнитного поля.
Отличие от ферромагнетиков, диамагнетиков
Все парамагнетики обладают собственными магнитными моментами. Данное свойство отличает их от диамагнетиков. Под воздействием высоких температур магнитные моменты начинают вращательные движения в произвольных направлениях. Если парамагнетик окружает среда с низкой температурой, магнитные моменты атомов останавливаются, что служит причиной образования структуры этих моментов в кристалле. Наиболее простым вариантом такого положения является ситуация, когда моменты выстраиваются параллельно, относительно друг друга, и ориентированы в одном направлении. Это является примером ферромагнитной структуры.
Если парамагнетик определенного типа способен под воздействием низкой температуры создавать магнитные структуры, то такое вещество называется ферромагнетиком. Поэтому ферромагнетики можно определить, как те же парамагнетики, но с моментами атомов, направленных в одну сторону.
Виды парамагнетиков
Парамагнетики широко распространены. Вещества, обладающие соответствующими свойствами, могут несколько отличаться по характеру поведения в магнитном поле. Выделяют следующие виды парамагнетиков:
- нормальные;
- парамагнитные металлы;
- антиферромагнетики.
Парамагнитные металлы отличаются от других парамагнетических веществ отсутствием взаимосвязи между магнитной восприимчивостью моментов атома и температурным режимом. Такие вещества относятся к слабомагнитным.
Изменение парамагнетиков во внешнем магнитном поле
Наличие парамагнитного резонанса характерно для парамагнетических веществ. Опытным путем можно наблюдать при помещении парамагнетика во внешнее магнитное поле создание дополнительного магнитного поля, вектор индукции в котором перпендикулярен вектору постоянного поля. Если дополнительное поле взаимодействует с магнитным моментом атома вещества, это приводит к образованию момента сил. Парамагнитный резонанс определяется силой магнитного поля. Если оно слабое, то напряженность поля будет пропорциональна намагниченности парамагнетических веществ.
Примеры веществ парамагнетиков
Ферромагнитные и антиферромагнитные вещества могут преобразоваться в парамагнетические материалы. При этом температура должна быть больше, чем температура Кюри или Нееля, при которой наблюдается фазовый переход в парамагнитное состояние. Примеры парамагнетиков:
- алюминий;
- платина;
- щелочные и щелочно-земельные металлы и их сплавы;
- кислород;
- оксид азота;
- оксид марганца;
- хлорное железо.
Где применяются в повседневной жизни
Парамагнетики представляют собой постоянные магниты. Вещества такого типа характеризуются широкими сферами применения в технике и быту. Магниты нередко используются для изготовления разнообразных электрических приборов и оборудования.
Классификация магнетиков: диамагнетики, парамагнетики и ферромагнетики
Все вещества в зависимости от выраженности магнитных свойств делятся на сильномагнитные и слабомагнитные. Магнетики можно разделить по видам механизма, вызывающего намагничивание.
Что такое диамагнетики
Диамагнетики являются слабомагнитными веществами: они не магнитятся, если на них не действует магнитное поле.
Иными словами, вещество намагничивается: дополнительное поле усиливается за счет совпадения с внешним. При этом угол между векторами остается неизменным.
Смена ориентации магнитных моментов по распределению Больцмана связана со столкновениями и взаимодействием атомов между собой. В отличие от диамагнетиков, магнитная восприимчивость парамагнетиков меняется в зависимости от температуры в соответствии с законом Кюри или законом Кюри-Вейсса.
В формуле дельтой обозначена постоянная, которая может быть и больше 0 , и меньше.
Величина магнитной восприимчивости парамагнетика больше 0 , но незначительно. Выделяют следующие виды парамагнетиков:
- нормальные;
- парамагнитные металлы;
- антиферромагнетики.
Второй тип парамагнетиков не обнаруживает связи магнитной восприимчивости с температурой. Такие металлы являются слабомагнитными при χ ≈ 10 — 6 .
Парамагнетические вещества характеризуются наличием парамагнитного резонанса. Возьмем внешнее магнитное поле с помещенным в него парамагнетиком. Как мы уже писали выше, в нем создается дополнительное магнитное поле с вектором индукции, направленным перпендикулярно вектору постоянного поля. При взаимодействии дополнительного поля с магнитным моментом атома создается так называемый момент сил M → .
Данный момент стремится к смене угла между p m → и B → .
Данные вещества могут иметь так называемую остаточную намагниченность. Выразить зависимость восприимчивости ферромагнетиков от напряженности внешнего магнитного поля можно с помощью функции. Она представлена на схеме ниже:
Намагниченность ферромагнетика имеет пределы насыщения. Это указывает нам на природу возникновения намагниченности в таких веществах: она образуется путем смены ориентации магнитных моментов вещества. Для ферромагнетиков также характерно такое явление, как гистерезис.
В магнитном отношении все ферромагнетики делят на мягкие и жесткие. Первые из них имеют высокую магнитную проницаемость и способны легко намагничиваться и размагничиваться. Они имеют широкое применение в электротехнических приборах, основанных на работе переменных полей (например, трансформаторов). Жесткие ферромагнетики имеют сравнительно небольшую проницаемость и намагничиваются трудно. Их используют при производстве постоянных магнитов.
Пример 2
Условие: выведите формулу восприимчивости парамагнетика при условии, что механизм его намагничивания точно такой же, как механизм электризации полярных диэлектриков. Среднее значение магнитного момента молекул в проекции на ось Z обозначается формулой ρ m z = ρ m L ( β ) .
Здесь L ( β ) = c t h ( β ) — 1 β означает функцию Ланжевена при β = ρ m B k T .
Решение
Взяв высокие температуры и небольшие поля, получим следующее:
ρ m B ≪ k T , → β ≪ 1 .
Значит, если β ≪ 1 c t h β = 1 β + β 3 — β 3 45 + . . . , можно ограничить функцию линейным членом и получить, что:
ρ m B ≪ k T , → β ≪ 1 .
Возьмем нужную формулу и подставим в нее полученное значение:
ρ m z = ρ m ρ m B 3 k T = ρ m 2 B 3 k T .
Зная, как связаны между собой напряженность магнитного поля и его индукция, а также приравняв магнитную проницаемость парамагнетика к 1 , получим следующее:
ρ m z = ρ m 2 μ 0 H 3 k T .
В итоге формула намагниченности будет выглядеть так:
J = n ρ m z = ρ m 2 μ 0 H 3 k T n .
Поскольку модуль намагниченности связан с модулем вектора ( J = χ H ), мы можем записать результат:
χ = ρ m 2 м 0 n 3 k T .
Ответ: χ = ρ m 2 м 0 n 3 k T .
чем отличается ферромагнетик от парамагнетика?
В общем-то это одно и то же. Примерно как лед и вода или как алмаз и уголь. Это фазовые состояния.
Ферромагнетик это парамагнетик в ферромагнитном состоянии. Ферромагнетизм это одно из фазовых состояний парамагнетика при низких температурах. Не все парамагнетики при низких температурах становятся ферромагнетиками. У парамагнетиков есть много других фазовых состояний при низких температурах.
У парамагнетика (в отличие от диамагнетика) атомы имеют свои собственные магнитные моменты. Эти магнитные моменты атомов при высокой температуре хаотически вращаются каждый по своему. А при низких температурах магнитные моменты атомов парамагнетика перестают хаотически вращаться и в кристалле возникает какая-нибудь структура этих магнитных моментов. Самая простая структура, это когда все магнитные моменты всех атомов парамагнетика выстраиваются параллельно друг другу и направлены в одну сторону. Такая структура магнитных моментов атомов парамагнетика называется ферромагнитной. А те парамагнетики, которые способны при низкой температуре образовывать такие магнитные структуры называются ферромагнетиками. Поэтому ферромагнетик это тот же самый парамагнетик, но у которого все магнитные моменты атомов направлены в одну сторону.
Кроме ферромагнитной структуры при низкой температуре парамагнетики могут перейти в другие магнитные структуры (антиферромагнитные, спиральные, хаотические и др. )
P.S. А вот наличие спонтанной намагниченности не является отличительным признаком ферромагнетиков. Кроме ферромагнетиков спонтанной намагниченностью обладают еще и другие структуры парамагнетиков, например, ферриты, скошенные антиферромагнетики (гематит) и др. У них нет ферромагнитной структуры, а спонтанная намагниченность есть. То есть отличительный признак ферромагнетика это именно магнитная структура магнитных моментов атомов.
Остальные ответы
Ферромагнетики обладают спонтанной намагниченностью в отсутствие внешнего поля, парамагнетики — нет
Классификация магнетиков: диамагнетики, парамагнетики и ферромагнетики
По свои магнитным свойствам все вещества делятся на слабомагнитные и сильномагнитные. Кром того магнетики классифицируют в зависимости от механизма намагничивания.
Диамагнетики
Диамагнетики относят к слабомагнитным веществам. В отсутствии магнитного поля они не намагничены. В таких веществах при их внесении во внешнее магнитное поле в молекулах и атомах изменяется движение электронов так, что образуется ориентированный круговой ток. Ток характеризуют магнитным моментом ($p_m$):
где $S$ — площадь витка с током.
Создаваемая этим круговым током, дополнительная к внешнему полю, магнитная индукция направлена против внешнего поля. Величина дополнительного поля может быть найдена как:
Диамагнетизмом обладает любое вещество.
Магнитная проницаемость диамагнетиков очень незначительно отличается от единицы. Для твердых тел и жидкостей диамагнитная восприимчивость имеет порядок приблизительно $^,\ $для газов она существенно меньше. Магнитная восприимчивость диамагнетиков не зависит от температуры, что было открыто экспериментально П. Кюри.
Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты
Диамагнетики делятся на «классические», «аномальные» и сверхпроводники. Классические диамагнетики имеют магнитную восприимчивость $\varkappa
В несильных магнитных полях намагниченность диамагнетиках пропорциональна напряженности магнитного поля ($\overrightarrow$):
где $\varkappa $ — магнитная восприимчивость среды (магнетика). На рис.1 представлена зависимость намагниченности «классического» диамагнетика от напряженности магнитного поля в слабых полях.
Парамагнетики
Парамагнетики, также относят к слабомагнитным веществам. Молекулы парамагнетиков имеют постоянный магнитный момент ($\overrightarrow$). Энергия магнитного момента во внешнем магнитном поле вычисляется по формуле:
Минимальное значение энергии достигается тогда, когда направление $\overrightarrow$ совпадает с $\overrightarrow$. При внесении парамагнетика во внешнее магнитное поле в соответствии с распределением Больцмана появляется преимущественная ориентация магнитных моментов его молекул в направлении поля. Появляется намагничивание вещества. Индукция дополнительного поля совпадает с внешним полем и соответственно усиливает ее. Угол между направлением $\overrightarrow$ и $\overrightarrow$ не изменяется. Переориентирование магнитных моментов в соответствии с распределением Больцмана происходит за счет столкновений и взаимодействия атомов друг с другом. Парамагнитная восприимчивость ($\varkappa $) зависит от температуры по закону Кюри:
«Классификация магнетиков: диамагнетики, парамагнетики и ферромагнетики»
Помощь эксперта по теме работы
Решение задач от ИИ за 2 минуты
Помощь с рефератом от нейросети
или закону Кюри — Вейсса:
где C и C’ — постоянные Кюри, $\triangle $ — постоянная, которая бывает больше и меньше нуля.
Магнитная восприимчивость ($\varkappa $) парамагнетика больше нуля, но, как и у диамагнетика весьма мала.
Парамагнетики делят на нормальные парамагнетики, парамагнитные металлы, антиферромагнетики.
У парамагнитных металлов магнитная восприимчивость не зависит от температуры. Эти металлы слабомагнитны $\varkappa \approx ^.$
У парамагнетиков существует такое явление ка парамагнитный резонанс. Допустим, что в парамагнетике, который находится во внешнем магнитном поле, создают дополнительное периодическое магнитное поле, вектор индукции этого поля перпендикулярен вектору индукции постоянного поля. В результате взаимодействия магнитного момента атома с дополнительным полем создается момент сил ($\overrightarrow$), который стремится изменить угол между $\overrightarrow$ и $\overrightarrow.$ Если частота переменного магнитного поля и частота прецессии движения атома совпадают, то созданный переменным магнитным полем момент сил либо все время увеличивает угол между $\overrightarrow$ и $\overrightarrow$, либо уменьшает. Это явление и называют парамагнитным резонансом.
В несильных магнитных полях намагниченность в парамагнетиках пропорциональна напряженности поля, и выражается формулой (3) (рис.2).
Ферромагнетики
Ферромагнетики относят к сильномагнитным веществам. Магнетики, магнитная проницаемость которых достигает больших значений и зависит от внешнего магнитного поля и предшествующей истории называют ферромагнетиками. Ферромагнетики могут иметь остаточную намагниченность.
Магнитная восприимчивость ферромагнетиков является функцией от напряженности внешнего магнитного поля. Зависимость J(H) представлена на рис. 3. Намагниченность имеет предел насыщения ($J_$).
Существование предела насыщения намагниченности указывает, что намагниченность ферромагнетиков вызвана переориентировкой некоторых элементарных магнитных моментов. У ферромагнетиков наблюдается явление гистерезиса (рис.4).
Ферромагнетики в свою очередь делят на:
- Мягкие в магнитном отношении. Вещества с большой магнитной проницаемостью, легко намагничивающиеся и размагничивающиеся. Их используют в электротехнике, там, где работают с переменными полями, например в трансформаторах.
- Жесткие в магнитном отношении. Вещества с относительно небольшой магнитной проницаемостью, трудно намагничивающиеся и размагничивающиеся. Эти вещества используют при создании постоянных магнитов.
Задание: Зависимость намагниченности для ферромагнетика показана на рис. 3. J(H). Изобразите кривую зависимости B(H). Существует ли насыщение для магнитной индукции, почему?
Так как вектор магнитной индукции связан с вектором намагниченности соотношением:
то кривая B(H) не достигает насыщения. График зависимости индукции магнитного поля от напряженности внешнего магнитного поля можно представить, как изображено на рис. 5. Такая кривая называется кривой намагничивания.
Ответ: Насыщения для кривой индукции нет.
Задание: Получите формулу парамагнитной восприимчивости $(\varkappa)$, зная, что механизм намагничивания парамагнетика аналогичен механизму электризации полярных диэлектриков. Для среднего значения магнитного момента молекулы в проекции на ось Z можно записать формулу:
\[\left\langle p_\right\rangle =p_mL\left(\beta \right)\left(2.1\right),\]
где $L\left(\beta \right)=cth\left(\beta \right)-\frac$ — функция Ланжевена при $\beta =\frac.$
При высоких температурах и небольших полях, мы получим, что:
\[p_mB\ll kT,\ \to \beta \ll 1\ \left(2.2\right).\]
Следовательно, при $\beta \ll 1$ $cth\left(\beta \right)=\frac+\frac-\frac<^3>+\dots $ , ограничение функции линейным членом по $\beta $ получим:
Подставим в (2.1) результат (2.3), получим:
Используя связь между напряженностью магнитного поля и магнитной индукцией ($\overrightarrow=\mu <\mu >_0\overrightarrow$), приняв во внимание, что магнитная проницаемость парамагнетиков мало отличается от единицы, можем записать:
\[\left\langle p_\right\rangle =\frac^2<\mu >_0H>\left(2.5\right).\]
Тогда намагниченность будет иметь вид:
\[J=n\left\langle p_\right\rangle =\frac^2<\mu >_0H>n\ \left(2.6\right).\]
Зная, что связь модуль намагниченности с модулем вектора напряженности имеет вид:
\[J=\varkappa H\ \left(2.7\right).\]
Имеем для парамагнитной восприимчивости: