Движение электрона в электрическом поле
Перейти к содержимому

Движение электрона в электрическом поле

  • автор:

экзаменационные вопросы и ответы / 1 Движение электрона в электрических и магнитных полях / Движение электронов в электрическом поле

На рис. 1 показаны три основных случая движения одиночного электрона в однородном электрическом поле, созданном двумя плоскими электродами, обозначенными как анод (+) и катод (-).

Рис. 1. Варианты движения электронов в постоянном электрическом поле

В первом случае (рис.1 а) электрон влетает в поле, отрываясь от отрицательно заряженного катода. Для такого электрона поле будет ускоряющим. Оно действует на электрон с постоянной силой и заставляет его двигаться с ускорением вдоль силовых пиний поля. При этом, кинетическая энергия электрона возрастает. Если он попадает в ускоряющее попе, не имея начальной скорости, то, достигнув анода, он приобретает скорость, равную:

V = 6-10 5 л/й , м/сек, где U — напряжение между анодом и катодом.

Как видим, скорость электрона не зависит от пройденного расстояния, а определяется исключительно разностью потенциалов. Как известно, энергия не возникает из ничего. Приобретенную кинетическую энергию электрон отбирает у поля. Переместив отрицательный заряд с катода на анод, электрон снизил заряд обоих электродов и тем самым уменьшил напряженность поля между ними.

Если электрон влетает в попе со стороны анода (рис. 1.6), имея некоторую начальную скорость, то поле будет для него тормозящим. Скорость движения электрона и его кинетическая энергия в тормозящем попе уменьшаются, так как в данном случае работа совершается не силами поля, а самим электроном, который за счет своей энергии преодолевает сопротивление сип поля. Энергия, теряемая электроном, переходит к полю.

Имея достаточный запас энергии, электрон может долететь до катода, несмотря на действие тормозящих сип поля. Но если, не долетев до противоположного электрода, электрон израсходует свою кинетическую энергию, его скорость окажется равной нулю, а затем электрон будет двигаться в обратном направлении. При этом поле возвращает ему ту энергию, которую он потерял при своем замедленном движении.

Теперь рассмотрим случай, когда электрон влетает в электрическое поле, имея начальную скорость, направленную под углом к силовым пиниям поля (рис. 1 в). Помимо изменения величины скорости электрона, будет изменяться и направление его движения, так что траектория движения электрона становится криволинейной. Электрон под действием сил поля отклоняется в сторону положительного потенциала.

Обычно для упрощения считают, что ток во внешней цепи вакуумного электронного прибора возникает в момент попадания электронов на анод. В действительности ток протекает и в процессе движения электронов от катода к аноду. Чтобы это уяснить, вспомним явление электростатической индукции.

Пусть имеется электрически нейтральный проводник (рис. 2 а), к одному концу которого приближается отрицательный электрический заряд е. Тогда электроны, имеющиеся в проводнике, отталкиваясь зарядом е, сместятся в сторону удаленного конца и там образуется отрицательный заряд. На ближнем к заряду е конце получится недостаток электронов, т.е. положительный заряд.

Процесс перераспределения зарядов есть не что иное, как электрический ток, поэтому на основании нашего мысленного эксперимента можно сделать обобщающий вывод: если отрицательный электрический заряд приближается к проводнику или удаляется от него, то в этом проводнике возникает ток, по направлению совпадающий с направлением движения заряда. В электронных приборах функцию индуктирующего заряда выполняют электроны, движущиеся от катода к аноду, а возникающий при этом ток во внешней цепи называется наведенным.

В электронике СВЧ наведенные токи очень широко используются для возбуждения колебаний в резонаторах, которые являются составной частью большинства СВЧ приборов. В качестве примера рассмотрим электрическую схему на рис. 2 б. Здесь в области между анодом и катодом помещены обкладки конденсатора с отверстием в центре, так чтобы электроны могли беспрепятственно проходить сквозь него. Во внешней цепи обкладки замкнуты на катушку индуктивности, образуя колебательный контур.

Предположим, электроны вылетают с катода поочередно по одному. Тогда первый электрон, пролетающий мимо обкладок конденсатора, вызовет во внешней цепи наведенный ток и в контуре возникнут электрические колебания. Помимо постоянной составляющей электрического поля, между обкладками появится переменная составляющая. Если после этого выпустить еще один электрон, то в интересующей нас области он либо получит дополнительное ускорение, когда переменное поле будет совпадать по направлению с постоянным, либо наоборот — замедлится в случае противоположной ориентации полей.

В последнем случае электрон отдаст часть своей энергии контуру, увеличив амплитуду его колебаний. Выпуская электроны таким образом, чтобы они каждый раз попадали в тормозящее электрическое поле контура, мы можем возбудить в нем колебания любой амплитуды, которую только обеспечивает его добротность.

Если же электроны будут влетать в пространство между обкладками в тот момент, когда там ускоряющее поле, то второй электрон погасит колебания, возбужденные первым, и дальше все будет происходить в том же духе: один электрон будет совершать работу, другой — ее уничтожать. Почти как в жизни: один человек, обливаясь потом и проклиная всеобщую грамотность, очищает лифт от надписей, второй с не меньшим упорством их восстанавливает. Оба трудятся, но, работая в противофазе, национальное богатство страны не

Электрон в электрическом поле

Движение электрона в электрическом поле является одним из важнейших для электротехники физических процессов. Разберемся как это происходит в вакууме. Сначала рассмотрим пример движения электрона от катода к аноду в однородном электрическом поле.

Электрон в электрическом поле

На приведенном ниже рисунке изображена ситуация, когда электрон покидает отрицательный электрод (катод) с пренебрежимо малой начальной скоростью (стремящейся к нулю), и попадает в однородное электрическое поле, присутствующее между двумя электродами.

Электрон в электрическом поле - схема

К электродам приложено постоянное напряжение U, а электрическое поле обладает соответствующей напряженностью E. Расстояние между электродами равно d. В данном случае на электрон со стороны поля будет действовать сила F, пропорциональная заряду электрона и напряженности поля:

Сила и напряженность поля

Поскольку электрон обладает отрицательным зарядом, то эта сила будет направлена против вектора E напряженности поля. Соответственно электрон будет в данном направлении электрическим полем ускоряться.

Ускорение a, которое испытывает электрон, пропорционально величине действующей на него силы F и обратно пропорционально массе электрона m. Поскольку поле однородно, ускорение для данной картины можно выразить так:

Ускорение, которое испытывает электрон

В этой формуле отношение заряда электрона к его массе есть удельный заряд электрона — величина, являющаяся физической константой:

Удельный заряд электрона

Итак, электрон находится в ускоряющем электрическом поле, ибо направление начальной скорости v0 совпадает с направлением силы F со стороны поля, и электрон движется поэтому равноускоренно. Если никаких препятствий нет, то он пройдет путь d между электродами и попадет на анод (положительный электрод) с некой скоростью v. В момент когда электрон достигнет анода, его кинетическая энергия будет соответственно равна:

Кинетическая энергия

Поскольку на всем пути d электрон ускорялся силами электрического поля, то данную кинетическую энергию он приобрел в результате работы, которую совершила сила, действующая со стороны поля. Эта работа равна:

Работа

Тогда кинетическая энергия, которую приобрел электрон двигаясь в поле, может быть найдена следующим образом:

Кинетическая энергия, которую приобрел электрон двигаясь в поле

То есть это есть ни что иное, как работа сил поля по ускорению электрона между точками с разностью потенциалов U.

В подобных ситуациях для выражения энергии электрона удобно использовать такую единицу измерения как «электронвольт», равную энергии электрона при напряжении в 1 вольт. А поскольку заряд электрона является константой, то и 1 электронвольт — также постоянная величина:

1 электронвольт

Из предыдущей формулы можно легко определить скорость электрона в любой точке на его пути при движении в ускоряющем электрическом поле, зная лишь разность потенциалов которую он прошел ускоряясь:

Скорость электрона в любой точке на его пути при движении в ускоряющем электрическом поле

Как мы видим, скорость электрона в ускоряющем поле зависит лишь от разности потенциалов U между конечной и стартовой точками его пути.

Представим, что электрон начал движение от катода с пренебрежимо малой скоростью, а напряжение между катодом и анодом равно 400 вольт. В этом случае в момент достижения анода его скорость будет равна:

Скорость электрона

Тут же легко можно определить время, за которое электрон пройдет расстояние d между электродами. При равноускоренном движении из состояния покоя средняя скорость находится как половина конечной скорости, тогда время ускоренного полета в электрическом поле будет равно:

Средняя скорость

Теперь рассмотрим пример когда электрон движется в тормозящем однородном электрическом поле. То есть поле направлено как и прежде, но электрон начинает двигаться наоборот — от анода к катоду.

Электрон движется в тормозящем однородном электрическом поле - схема

Предположим что электрон покинул анод с какой-то начальной скоростью v и изначально стал двигаться в направлении катода. В этом случае сила F, действующая на электрон со стороны электрического поля, будет направлена против вектора электрической напряженности Е — от катода к аноду.

Она станет уменьшать начальную скорость электрона, то есть поле будет замедлять электрон. Значит электрон в данных условиях станет двигаться равномерно равнозамедленно. Ситуация описывается так: «электрон движется в тормозящем электрическом поле».

Электрон движется в тормозящем электрическом поле

От анода электрон начал двигаться с отличной от нуля кинетической энергией, которая при торможении начинает уменьшаться, поскольку энергия теперь расходуется на преодоление силы, действующей со стороны поля навстречу электрону.

Энергия электрона

Если начальная кинетическая энергия электрона, когда он покинул анод, сразу была больше энергии, которую необходимо затратить полю на ускорение электрона при движении от катода к аноду (как в первом примере), то электрон пройдет расстояние d и в итоге все же достигнет катода несмотря на торможение.

Энергия электрона

Если же начальная кинетическая энергия электрона меньше данной критической величины, то электрон не достигнет катода. В определенный момент он остановится, затем начнет равноускоренное движение обратно — к аноду. В итоге поле вернет ему энергию, которая израсходовалась в процессе торможения.

Движение электрона в поле - схема

А что если электрон влетает на скорости v0 в область действия электрического поля под прямым углом? Очевидно, сила со стороны поля в этой области направлена для электрона от катода к аноду, то есть против вектора напряженности электрического поля E.

Значит электрон теперь имеет две составляющие движения: первая — со скоростью v0 перпендикулярно полю, вторая — равноускоренно под действием силы со стороны поля, направленной к аноду.

Получается, что влетев в область действия поля, электрон движется по параболической траектории. Но вылетев за пределы области действия поля, электрон продолжит равномерное движение по инерции по прямолинейной траектории.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Движение электронов в электрическом и магнитном полях

Если два плоских, параллельно расположенных электрода поместить в вакуум и подключить к источнику электродвижущей силы, то в пространстве между электродами образуется электрическое поле, силовые линии которого будут прямолинейны, параллельны друг другу и перпендикулярны к поверхностям обоих электродов.

На рис. 1 буквой а обозначен электрод, подключенный к «+» батареи Е Б , а буквой к — электрод, подключенный к «—» батареи Е Б . Если в такое электрическое поле поместить заряд —е, не меняющий конфигурации поля, то на этот заряд будет действовать сила F, равная произведению напряженности поля Е на величину заряда —е:

Знак минус свидетельствует о том, что сила F, действующая на отрицательный заряд —е, и напряженность поля Е имеют противоположные направления. Для однородного электрического поля произведение напряженности Е на расстояние между электродами h равно приложенной разности потенциалов между электронами:

и U к и U а — потенциалы электродов к и а.

Сила F, действующая на электрон, помещенный в ускоряющее однородное электрическое поле, с учетом формулы (1) будет определяться выражением

Рис. 1. Движение электрона в однородном электрическом поле.

Работа, совершаемая полем при перемещении электрона от одного электрода к другому, соответственно будет равна

А = Fh = e(U а — U к ). (3)

Электрон приобретает кинетическую энергию и будет двигаться от электрода к к электроду а равномерно ускоренно. Скорость υ, с которой электрон достигает электрода а, может быть определена из равенства

где m — масса электрона; υ а — скорость электрона у электрода а; υ к — скорость электрона у электрода к (начальная скорость).

Если пренебречь начальной скоростью электрона, то формула (4) может быть упрощена: заменив отношение заряда электрона к его массе числовым значением и выражая потенциалы в вольтах, а скорость в м/сек, получаем

Время пролета электроном расстояния h между электродами определяется формулой

где υ ср =υ а -υ к /2 — средняя скорость электрона.

Если электрон будет двигаться в направлении, совпадающем с направлением вектора напряженности электрического поля Е, то направление перемещения окажется противоположным силе, действующей на электрон, и он будет расходовать ранее приобретенную кинетическую энергию. Таким образом, двигаться навстречу действия поля электрон сможет лишь при условии, если он обладает некоторой начальной скоростью, т. е. некоторым запасом кинетической энергии.

При этом движение электрона будет равномерно замедленным (тормозящее электрическое поле) и, когда запас кинетической энергии электрона полностью израсходуется (т. е. кинетическая энергия полностью перейдет в потенциальную), электрон остановится и начнет равномерно ускоренно перемещаться в направлении действия силы F ( рис. 2 ).

Рис. 2. Движение электрона в однородном электрическом поле с начальной скоростью.

Практически однородное электрическое поле в электровакуумных приборах встречается крайне редко. В неоднородном поле напряженность изменяется от точки к точке как по величине, так и по направлению. Поэтому и сила, действующая на электрон, тоже меняется как по величине, так и по направлению.

В электровакуумных приборах, наряду с электрическим полем, для воздействия на движение электронов используется также магнитное поле. Если электрон находится в состоянии покоя или если он движется параллельно силовой линии магнитного поля, то на него никакая сила не действует. Поэтому при определении взаимодействия движущегося электрона и магнитного поля следует учитывать только составляющую скорости, перпендикулярную силовым линиям магнитного поля.

Сила F, действующая на электрон, всегда перпендикулярна вектору напряженности магнитного поля тору скорости электрона ( рис. 3 ).

Рис. 3. Движение электрона в магнитном поле.

Направление силы F можно определять по «правилу буравчика»: если ручку буравчика вращать в направлении от вектора Н к вектору скорости электрона υ по кратчайшему угловому направлению, то поступательное движение буравчика совпадает с направлением силы F. Так как действие силы F всегда перпендикулярно направлению движения электрона, то эта сила не может совершать работы и влияет лишь на направление его движения. Кинетическая энергия электрона остается прежней, он движется с постоянной скоростью. Величина силы F определяется по формуле

где е — заряд электрона; Н — напряженность магнитного поля; υ п — составляющая скорости электрона, перпендикулярная полю Н. Сила F сообщает электрону значительное центростремительное ускорение, изменяя при этом траекторию его движения. Радиус кривизны траектории электрона определяют по формуле

где Н — в эрстедах; υ п — в вольтах; r — в сантиметрах.

Изменяя напряженность магнитного поля, можно менять радиус траектории электрона. Если электрон имеет также и составляющую скорости вдоль силовых линий магнитного поля, то траектория электрона будет винтовой с постоянным шагом.

Часто электрон движется в пространстве, в котором одновременно имеются электрическое и магнитное поля. При этом, в зависимости от величины и направления начальной скорости электрона, а также от напряженности электрического и магнитного полей, траектория электрона будет иметь различную форму.

В качестве примера рассмотрим движение электрона без начальной скорости во взаимно перпендикулярных однородных электрическом и магнитном полях ( рис. 4 ).

На электрон, помещенный в точку А, действует электрическое поле, и он начинает двигаться против направления вектора напряженности электрического поля.

Рис. 4. Движение электрона во взаимно перпендикулярных электрическом и магнитном полях.

Как только у электрона проявляется какая-то скорость, возникает поперечная отклоняющая сила F, и чем больше будет скорость электрона с, которую он приобретает за счет взаимодействия с электрическим полем, тем больше становится сила F. В точке В движение электрона происходит перпендикулярно силовым линиям электрического поля. В этой точке электрон обладает наибольшей скоростью, а следовательно, и максимальной кинетической энергией.

Дальнейшее движение электрона происходит под действием магнитного и ставшего для него тормозящим электрического поля. В точке С вся кинетическая энергия, запасенная электроном ранее, будет израсходована на преодоление тормозящего электрического поля. Потенциал точки С равен потенциалу точки А. Электрон, описав циклоидную траекторию, возвращается на прежний потенциальный уровень.

ДВИЖЕНИЕ ЭЛЕКТРОНОВ В ОДНОРОДНОМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ

Взаимодействие движущихся электронов с электрическим полем является основным процессом во всех электронных приборах. Будем полагать, что электроны движутся в вакууме, т. е. без столкновений с другими частицами. Такое движение совершается в электронных лампах. В газоразрядных и полу проводниковых приборах движение сложнее, так как происходит столкновение электронов с ионами и другими частицами вещества. Необходимо прежде всего рассмотреть движение электрона в однородном и постоянном во времени электрическом поле.

Законы движения одного электрона в однородном электрическом поле с известным приближением можно применить к движению его в электронном потоке, если пренебречь взаимным отталкиванием электронов.

Электрическое поле в большинстве случаев неоднородно и весьма сложно по своей структуре. Изучение движения электронов в неоднородных электрических полях представляет большие трудности и относится к области электроники, называемой электронной оптикой. Если неоднородность поля незначительна, то можно приближенно считать, что электроны движутся по законам, выведенным для однородного поля. Эти законы позволяют рассмотреть с качественной стороны движение электронов и в полях со значительной неоднородностью.

Напомним, что электрон является частицей материи с отрицательным электрическим зарядом, абсолютное значение которого е = 1,6•10∧-19 Кл. Масса неподвижного электрона m = =9,1•10∧-28 г. С возрастанием скорости масса электрона увеличивается. Теоретически при скорости с = 3•10∧8 м/с она должна стать бесконечно большой. В обычных электровакуумных приборах скорость электронов не превышает 0,1 с и можно считать массу электрона постоянной.

Движение электрона в ускоряющем поле.

На рисунке изображено в виде силовых линий (линий напряженности) однородное электрическое поле между двумя электродами, например катодом и анодом диода.

Если разность потенциалов между электродами U, а расстояние между ними d, то напряженность поля:

Для однородного поля величина Е является постоянной.

Пусть из электрода, имеющего более низкий потенциал, например из катода К, вылетает электрон с кинетической энергией Wo и начальной скоростью Vo направленной вдоль силовых линий поля. Поле ускоряет движение электрона. Иначе говоря, электрон притягивается к электроду с более высоким потенциалом. В данном случае поле называют ускоряющим.

Напряженность поля численно равна силе, действующей на единичный положительный заряд. Поэтому сила, действующая на электрон:

Знак «минус» поставлен потому, что сила F направлена в сторону, противоположную вектору Е. Иногда этот знак не ставят.

Под действием постоянной силы F электрон получает ускорение а = F/m. Двигаясь прямолинейно, электрон приобретает наибольшую скорость V и кинетическую энергию W в конце своего пути, т. е. при ударе оп электрод, к которому он летит. Таким образом, ускоряющем поле кинетическая энергия электрона увеличивается за счет работы поля по перемещению электрона. В соответствии с законом сохранении энергии увеличение кинетической энергии электрона W — Wo равно работе поля, которая определяется произведением перемещаемого заряда е на пройденную им разность потенциалов U:

Если начальная скорость электрон равна нулю, то:

т.е. кинетическая энергия электрона равна работе поля.

Формула с некоторым приближением может применяться и в том случае, когда начальная скорость много меньше конечной скорости V, так как при этом:

Если условно принять заряд электрона за единицу количества электричества, то при U = 1 В энергия электрона принимается за единицу энергии, которую назвали электрон-вольтом (эВ). В большинстве случаев удобно выражать энергию электронов в электрон-вольтах, а не в джоулях.

Определяем скорость электрона:

Подставляя сюда значения е и m, можно получить удобное выражение для скорости в метрах или километрах в секунду:

Таким образом, скорость электрона в ускоряющем поле зависит от пройденной разности потенциалов.

Начальную энергию электрона удобно выражать в электрон-вольтах, имея в виду равенство:

т. е. считая, что эта энергия создана ускоряющим полем с разностью потенциалов .

Скорости электронов даже при небольшой разности потенциалов значительны. При U = 1 В скорость равна 600 км/с, а при U = 100 В — уже 6000 км/с.

Найдем время t пролета электрона между электродами, определив его с помощью средней скорости:

Средняя скорость равноускоренного движения равна полусумме начальной и конечной скоростей:

Подставляя сюда значения конечной скорости, получим время пролета в секундах:

здесь расстояние d выражено в метрах, а если выразить его в миллиметрах, то:

Например, время пролета электрона при d = 3 мм и U =100В:

Вследствие неоднородности поля расчет времени пролета электрона в электронных приборах более сложен. Практически это время равно 10^-10 с. Можно такое малое время пролета во многих случаях не учитывать. Но все же, из-за того что электроны имеют массу, они не могут мгновенно изменять свою скорость и мгновенно пролетать расстояние между электродами. На ультра- и сверхвысоких частотах (сотни и тысячи мегагерц) время пролета электрона становится соизмеримым с периодом колебаний. Например, при f = 1000 МГц период Т = 10^-9 с. Прибор перестанет быть безынерционным или малоинерционным. Иначе говоря, проявляется инерция электронов, которая практически не влияет на работу при низких и высоких частотах. На этих частотах период колебаний Т много больше времени пролета электрона переменные напряжения на электродах за время пролета не успевают заметно измениться, т. е, можно считать, что пролет электрона совершается при постоянных напряжениях электродов.

Режим работы при постоянных напряжениях электродов называют статическим режимом. Когда напряжение хотя бы одного электрода изменяется так быстро, что законы статического режима применять нельзя, режим называют динамическим. Если же напряжения изменяются с невысокой частотой, так, что явления можно рассматривать приближенно с помощью законов статического режима, то режим называют квазистатическим. Выражения для энергии, скорости и времени полета остаются в силе для любого участка пути электрона. В этом случае величины W,V,t,d,U относятся только к данному участку. Если на разных участках напряженность поля различна, то на отдельных участках электрон будет лететь с разным ускорением, а конечная скорость электрона определяется только конечной разностью потенциалов и начальной его скоростью. Из закона сохранения энергии вытекает, что конечная разность потенциалов U равна алгебраической сумме разностей потенциалов отдельных участков. Поэтому полное приращение кинетической энергии равно произведению eU.

Движение электрона в тормозящем поле.

Пусть начальная скорость электрона Vo противоположна по направлению силе F, действующей на электрон со стороны поля (см. рис.), т.е. электрон вылетает с некоторой начальной скоростью из электрода с более высоким потенциалом. Так как сила F направлена навстречу скорости Vo, то электрон тормозится и движется равнозамедленно. Поле в этом случае называют тормозящим. Энергия электронов в тормозящем поле уменьшается, так как работа совершается не полем, а самим электроном, который преодолевает сопротивление сил поля. Таким образом, в тормозящем поле электрон отдает энергию полю.

Если начальная энергия электрона равна eUo и он проходит в тормозящем поле разность потенциалов U, то его энергия уменьшается на eU. Когда eUp > eU, электрон пройдет все расстояние между электродами и ударит в электрод с более низким потенциалом. Если же eUo < eU, то, пройдя разность потенциалов Uo, электрон потеряет всю свою энергию, скорость его станет равна нулю и он начнет ускоренно двигаться обратно. Таким образом, электрон совершает движение, подобное полету тела, брошенного вертикально вверх.

Движение электрона в однородном поперечном поле.

Если электрон вылетает с начальной скоростью Vo под прямым углом к направлению силовых линий поля (см. рис.) то поле действует на электрон с силой F, направленной в сторону более высокого потенциала. При отсутствии силы F электрон совершал бы равномерное прямолинейное движение по инерции со скоростью Vo. А под действием силы F электрон должен равноускоренно двигаться в направлении, перпендикулярном Vo. Результирующее движение происходит по параболе, причем электрон отклоняется в сторону положительного электрода. Если электрон выйдет за пределы поля, как показано на рисунке, то дальше он будет двигаться по инерции прямолинейно и равномерно. Это подобно движению тела, брошенного с некоторой начальной скоростью в горизонтальном направлении. Под действием силы тяжести такое тело при отсутствии воздуха двигалось бы по параболической траектории.

Электрическое поле всегда изменяет в ту или другую сторону энергию скорость электрона. Таким образом, между электроном и электрическим полем всегда имеется энергетическое взаимодействие, т. е. обмен энергией. Скорость электрона при ударе об электрод определяется только начальной скоростью и пройденной разностью потенциалов между конечными точками пути.

Источник — Жеребцов И.П. Основы электроники (1993)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *