Период и частота переменного тока
Под этим термином «переменный электрический ток» следовало бы понимать ток, изменяющийся во времени любым образом, соответственно введенному в математику понятию «переменная величина».
Однако в электротехнику термин «переменный электрический ток» вошел в значении электрического тока, вменяющегося по направлению (в противовес электрическому току постоянного направления), а следовательно, и по величине, так как физически нельзя представлять себе изменения электрического тока по направлению без соответствующих изменений по величине.
Движение электронов в проводе сначала в одну сторону, а затем в другую называют одним колебанием переменного тока. За первым колебанием следует второе, затем третье и т. д. При колебаниях тока в проводе вокруг него происходит соответствующее колебание магнитного поля.
Время одного колебания называют периодом и обозначают буквой Т. Период выражают в секундах или в единицах, составляющих доли секунды.
К ним относятся: тысячная доля секунды — миллисекунда (мс), равная 10 -3 с, миллионная доля секунды — микросекунда (мкс), равная 10 -6 с, и миллиардная доля секунды — наносекунда (нс), равная 10 -9 с.
Важной величиной, характеризующей переменный ток, является частота. Она представляет собой число колебаний или число периодов в секунду и обозначается буквой f или F.
Единицей частоты служит герц, названный в честь немецкого ученого Г. Герца и обозначаемый сокращенно буквами Гц (или Hz). Если в одну секунду происходит одно полное колебание, то частота равна одному герцу.
Когда в течение секунды совершается десять колебаний, то частота составляет 10 Гц. Частота и период являются обратными величинами:
При частоте 10 Гц период равен 0,1 с. А если период равен 0,01 с, то частота составляет 100 Гц.
Частота — важнейшая характеристика переменного тока. Электрические машины и аппараты переменного тока могут нормально работать только на той частоте, на которую они рассчитаны.
Параллельная работа электрических генераторов и станций на общую сеть возможна только на одной и той же частоте. Поэтому во всех странах частота переменного тока, производимого электростанциями, стандартизуется законом.
В электрической сети переменного тока частота равна 50 Гц. Ток пятьдесят раз в секунду идет в одну сторону и пятьдесят раз в обратную. Сто раз в секунду он достигает амплитудного значения и сто раз становится равным нулю, т. е. сто раз меняет свое направление при переходе через нулевое значение.
Лампы, включенные в сеть, сто раз в секунду притухают и столько же раз вспыхивают ярче, но глаз этого не замечает, благодаря зрительной инерции, т. е. способности сохранять полученные впечатления около 0,1 с.
При расчетах с переменными токами пользуются также угловой частотой, она равна 2пиf или 6,28f. Ее следует выражать не в герцах, а в радианах в секунду.
При принятой частоте промышленного тока 50 гц максимально возможное число оборотов генератора — 50 об/сек (р = 1). На такое число оборотов строятся турбогенераторы, т. е. генераторы, приводимые паровыми турбинами.
Число оборотов гидротурбин и приводимых ими гидрогенераторов зависит от природных условий (прежде всего от напора) и колеблется в широких пределах, снижаясь иногда до 0,35 — 0,50 об/сек.
Число оборотов оказывает большое влияние на экономические показатели машины — габаритные размеры и вес. Гидрогенераторы с несколькими оборотами в секунду имеют наружный диаметр в 3 — 5 раз больший и вес во много раз больший, чем турбогенераторы той же мощности с n = 50 об/сек.
В современных генераторах переменного тока вращается их магнитная система, а проводники, в которых индуктируется э.д.с, размещаются в неподвижной части машины.
Переменные токи принято разделять по частоте. Токи с частотой меньше 10000 Гц называют токами низкой частоты (токами НЧ).
У этих токов частота соответствует частоте различных звуков человеческого голоса или музыкальных инструментов, и поэтому они иначе называются токами звуковой частоты (за исключением токов с частотой ниже 20 Гц, которые не соответствуют звуковым частотам). В радиотехнике токи НЧ имеют большое применение, особенно в радиотелефонной передаче.
Однако главную роль в радиосвязи выполняют переменные токи с частотой более 10000 Гц, называемые токами высокой частоты, или радиочастоты (токи ВЧ).
Для измерения частоты этих токов применяют единицы: килогерц (кГц), равный тысяче герц, мегагерц (МГц), равный миллиону герц, и гигагерц (ГГц), равный миллиарду герц. Иначе килогерц, мегагерц и гигагерц обозначают kHz, MHz, GHz. Токи частотой в сотни мегагерц и выше называют токами сверхвысокой или ультравысокой частоты (СВЧ и УВЧ).
Радиостанции работают с помощью переменных токов ВЧ, имеющих частоту от сотен килогерц и выше. В современной радиотехнике для специальных целей применяются токи с частотой в миллиарды герц и имеются приборы, позволяющие точно измерять такие сверхвысокие частоты.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Частота электрического тока – определение, физический смысл
Переменный ток имеет ряд важных характеристик, влияющих на его физические свойства. Одним из таких параметров является частота переменного тока. Если говорить с точки зрения физики, то частота – это некая величина, обратная периоду колебания тока. Если проще – то это количество полных циклов изменения ЭДС, произошедших за одну секунду.
Известно, что переменный ток заставляет электроны двигаться в проводнике сначала в одну сторону, потом – в обратную. Полный путь «туда-обратно» они совершают за некий промежуток времени, называемый периодом переменного тока. частота же является количеством таких колебаний за 1 секунду.
Васильев Дмитрий Петрович
Профессор электротехники СПбГПУ
Задать вопрос
В качестве единицы измерения частоты во всем мире принят 1 Гц (в честь немецкого ученого Г.Герца), который соответствует 1 периоду колебания за 1 секунду.
В республиках бывшего СССР стандартной считается частота тока в 50 Гц.
Это значит, что синусоида тока движется в течение 1 секунды 50 раз в одном направлении, и 50 – в обратном, 100 раз проходя чрез нулевое значение. Получается, что обычная лама накаливания, включенная в сеть с такой частотой, будет затухать и вспыхивать примерно 100 раз за секунду, однако мы этого не замечаем в силу особенностей своего зрения.
Для измерения частоты переменного тока применяют приборы, называемые частотомерами. Частотомеры используют несколько основных способов измерения, а именно:
Методы измерения частоты электрического тока
Метод дискретного счета;
Метод перезаряда конденсатора;
Резонансный метод измерения частот.
Метод сравнения частот; в качестве:
Метод дискретного счета основывается на подсчете импульсов необходимой частоты за конкретный промежуток времени. Его наиболее часто используют цифровые частотомеры, и именно благодаря этому простому методу можно получить довольно точные данные.
Более подробно о частоте переменного тока Вы можете узнать из видео:
Метод перезаряда конденсатора тоже не несет в себе сложных вычислений. В этом случае среднее значение силы тока перезаряда пропорционально соотносится с частотой, и измеряется при помощи магнитоэлектрического амперметра. Шкала прибора, в таком случае, градуируется в Герцах.
Погрешность подобных частотомеров находится в пределах 2%, и поэтому такие измерения вполне пригодны для бытового использования.
Резонансный способ измерения базируется на электрическом резонансе, возникающем в контуре с подстраиваемыми элементами. Частота, которую необходимо измерить, определяется по специальной шкале самого механизма подстройки.
Абрамян Евгений Павлович
Доцент кафедры электротехники СПбГПУ
Задать вопрос
Такой метод дает очень низкую погрешность, однако применяется только для частот больше 50 кГц.
Метод сравнения частот применяется в осциллографах, и основан на смешении эталонной частоты с измеряемой. При этом возникают биения определенной частоты. Когда же частота этих биений достигает нуля, то измеряемая частота становится равной эталонной. Далее, по полученной на экране фигуре с применением формул можно рассчитать искомую частоту электрического тока.
Ещё одно интересное видео о частоте переменного тока:
Понравилась статья? Поделиться с друзьями:
Вам также может быть интересно
Электротехника 0
При построении систем радиосвязи важнейшую роль играют энергетические расчеты радиолиний, или, как говорят, анализ
Электротехника 0
С энергетической точки зрения электромагнитная волна может рассматриваться как процесс переноса энергии от источника
Электротехника 0
Так, полностью характеризующий этот процесс, вектор напряженности электрического поля в общем случае описывается тремя
Электротехника 0
Что такое холостой ход (ХХ) трансформатора? Величина потерь силового трансформатора состоит из так называемых
Электротехника 0
Наличие гармонических колебаний в электросети – это результат искажения Наличие гармонических колебаний в электросети – это
Электротехника 0
Что такое напряжение в 1 вольт? Напряжение электрического тока – это величина, характеризующая разность
Электротехника 0
Формулировка «единица силы тока» была впервые употреблена французским математиком и физиком А. Ампером при
Электротехника 0
Первое упоминание об электричестве встречается в опытах древнегреческого философа Фалеса. Именно он первым обнаружил,
Электротехника 0
Свет – один из элементов, использующихся для создания некого своеобразия в любом помещении. Его
Электротехника 0
На электростанциях и подстанциях 35-220 кВ и более для питания электроэнергией вспомогательных приборов, агрегатов
Электротехника 2
Одним из основных параметров периодических и пульсирующих токов выступает частота, определяющая количество периодических колебаний
Электротехника 0
Частота электрического тока выступает одним из параметров качества электроэнергии и основной характеристикой режима энергосистемы.
Электротехника 0
Закон Джоуля – Ленца – закон физики, определяющий количественную меру теплового действия электрического тока.
Электротехника 0
Как образуется электрический ток? Электрический ток появляется в веществе при условии наличия свободных (несвязанных)
Электротехника 0
Под электрическим напряжением понимают работу, совершаемую электрическим полем для перемещения заряда напряженностью в 1
Электротехника 1
Своё название щелочные аккумуляторы получили от вида электролита, необходимого для их работы. Основными разновидностями
Электротехника 0
Электрический частотный фильтр необходим в цепи для пропуска лишь желаемого диапазона частот, сигналов в
Электротехника 1
Определение Амперметр подключается последовательно, с тем участком электроцепи, где предполагается измерять ток. Так как
Как определить частоту переменного тока
В силу различных преимуществ большинство энергетических систем — от общегосударственных до бытовых, функционируют на переменном токе. Однако мало кто считается с тем, что кроме параметров напряжения и тока системы, важную роль играет также частота тока. Например, в функционале популярных мультитестеров измерение частоты переменного тока отсутствует. Между тем значения этой величины, которые выходят за требуемые пределы, грозят тяжёлыми последствиями. Мгновенно происходит разбалансированность системы энергоснабжения с неминуемыми катастрофическими последствиями для целых регионов.
Графическое отображение переменного тока
Что такое частота
Производство электроэнергии в подавляющем большинстве ситуаций называют контролируемым. Эту работу проделывают генераторы, преобразующие механическую энергию ротора турбины в электрическую. Как показано на схеме, на поверхности ротора имеется обмотка из медной проволоки, поэтому он представляет собой непрерывно вращающийся электромагнит.
Схематическое изображение генератора
Во время вращения ротора, созданное вокруг него магнитное поле, наводит электрический ток. Его направление периодически изменяется на противоположное, поскольку месторасположение полюсов электромагнита чередуется после каждого оборота ротора. Соответственно, ток тоже меняет своё направление два раза за цикл вращения.
Следствием и мерой скорости этих изменений является частота, которая измеряется количеством изменений месторасположения полюсов в секунду. Единица частоты получила наименование герц и обозначается двумя буквами — Гц. Таким образом, можно сказать, что генератор, который снабжён парой магнитных полюсов, вращающихся с угловой скоростью 3000 мин -1 , будет производить ток частотой 50 Гц.
Мощность переменного тока изменяется по синусоидальному закону с чередованием положительных и отрицательных полюсов. При переходе каждого цикла из положительной области в отрицательную происходит соответствующее перемещение электронов. В конечном счете, эти циклы создают электрический нагрев или рассеивание мощности. Независимо от направления движения тока (т. е., положительного или отрицательного), если силы тока (напряжения) достаточно для удовлетворения требований электрического устройства, оно будет работать.
Синусоида переменного тока
Таким образом, количество полных циклов за секунду, когда переменный ток переходит от положительного полюса к отрицательному, называется частотой, а сам временной отрезок называется периодом. С точки зрения электрического тока частотой принято считать количество повторений синусоиды, а другими словами — это полное колебание, состоящее из положительной и отрицательной составляющих. Следовательно, частота и период связаны между собой обратно пропорциональной зависимостью:
Определение частоты
Частота и период переменного тока варьируются в зависимости от страны, причём не обязательно привязываются к местному стандарту напряжения. Например, в США, Канаде и других странах со стандартным линейным напряжением 110…120 В эталоном частоты является 60 Гц. В большинстве стран, где значения переменного напряжения равняются 220…240 В (в том числе и в нашей стране), за стандартную частоту принято 50 Гц, однако Южная Корея, Филиппины и многие страны Карибского бассейна используют 220…240 В с частотой 60 Гц. А есть ещё и Япония, где напряжение в сети достигает 100 В, но стандартная частота переменного тока в разных районах составляет 50 и 60 Гц.
Большинство электронных устройств могут работать, потребляя переменный ток, если его частота 50 или 60 Гц. Но, для электроприборов, использующих довольно мощные приводы, рассчитанные на конкретную частоту (холодильники, морозильники, стиральные и сушильные машины), разница в 10 Гц уже значительна. В первую очередь это касается устройств, включающихся периодически. Их электромоторам приходится вращаться то быстрее, то медленнее, что отрицательно сказывается на их долговечности. В таких случаях необходимо использовать преобразователи частоты или трансформаторы напряжения.
Внешний вид преобразователя частоты
Как определяется
Существует два способа установить, чему равна частота и амплитуда переменного тока — применять специальные приборы либо воспользоваться результатами расчётов.
Измерение частоты
Для измерения частоты переменного тока используется принцип механического резонанса. Он является достаточно простым, хотя и не очень точным. Основывается на том факте, что для каждого физического объекта, обладающего упругими свойствами, существует определенное значение частоты, при которой он начинает вибрировать.
Примером подобного устройства является камертон. Если по нему ударить, он будет довольно продолжительное время вибрировать со звуком, зависящим от его длины. Чем длиннее камертон, тем ниже будет резонансная частота и наоборот.
Если представить себе ряд камертонов с постепенно увеличивающимися размерами, установленными на общем основании, то это основание станет вибрировать с частотой измеряемого напряжения или тока. Для этого устройство следует снабдить электромагнитом.
Измерения частоты тока выполняются с помощью набора «камертонов», в качестве которых используются полоски листового металла. Это устройство называется частотомером вибрирующего геркона.
Схема вибрационного частотомера
Используя частотомер, можно наглядно увидеть, как концы всех полосок встряхиваются в зависимости от того, как меняется величина переменного напряжения, приложенного к катушке. Тот из лепестков, который будет ближе всего к резонансной частоте переменного тока, станет вибрировать наиболее интенсивно.
Особой точностью вибрационные частотомеры не отличаются, зато характеризуются простотой своего изготовления. Их применяют в небольших электроремонтных мастерских, а также в быту с целью калибровки частоты вращения двигателя.
Хотя подобный прибор будет иметь малую точность, этого нельзя сказать о самом принципе измерения. Заменив механический резонатор на электрический, можно получить частотомер на основе катушки индуктивности и параллельно включённого конденсатора. Вместе они образуют колебательный контур.
Один или оба компонента этого контура могут быть регулируемыми. В цепь включается измерительный блок, который показывает максимальную амплитуду напряжения на конденсаторе и катушке. Ручки регулировки предварительно откалибровываются, чтобы иметь возможность выставлять резонансную частоту для любого варианта настройки. Частота считывается после настройки устройства на максимальное показание шкалы измерителя.
Схема электрического частотомера
Фактически частотомер реализует схему настраиваемого фильтра, после чего отсчёт показаний происходит как в мостовой схеме (она вначале балансируется для условного нулевого состояния, после чего выполняется отсчёт). До тех пор, пока катушка и/или конденсатор смогут перехватывать достаточное поле магнитного или электрического рассеивания от тестируемой цепи, устройство будет сохранять свою работоспособность.
Метод не требует прямого подключения к цепи, поэтому часто применяется в бытовых условиях. Наиболее точные результаты дают электронные частотомеры.
Внешний вид электронного частотомера
Расчёт частоты тока
Для расчёта требуется знать период или временной отрезок, в течение которого значение переменного тока повторяется и образует одну полную волну. Между периодом и частотой переменного тока имеется зависимость, которую отражает следующая формула:
Определение частоты электротока
Если известно значение циклической частоты ɷ и амплитуда А, то по схожей зависимости можно вычислить силу тока I:
Определение силы электротока
Определение угловой частоты выполняется с помощью такого уравнения:
Формула угловой скорости
Заключение
Учитывая тенденцию к постепенному уменьшению производства электроэнергии с использованием традиционных видов топлива, всё чаще возникают вопросы оптимального управления частотными параметрами систем энергетики. Идеальным выходом их положения считают такой, при котором данные функции будут реализованы вследствие применения более стабильных и доступных форм генерации. К ним стоит отнести атомную энергетику, использование энергии солнца и ветра.
Основные параметры переменного тока
В этом посте мы рассмотрим параметры переменного тока. К примеру, привычная для всех бытовая розетка являет собой источник переменного тока и переменной ЭДС. Изменение ЭДС и изменение тока линейной нагрузки, подключенной к такому источнику, происходит по синусоидальному закону. При этом переменные ЭДС, переменные напряжения и токи, можно характеризовать основными четырьмя параметрами:
Период, частота, амплитуда и действующее значение.
Также существуют и вспомогательные параметры: угловая частота, фаза и мгновенное значение.
Рассмотрим эти параметры отдельно и во взаимосвязи.
Период Т
Периодом переменного тока является промежуток времени, за который с током или напряжением происходит один полный цикл изменений.
Так как источником переменного тока служит генератор, то период зависит от скорости вращения его ротора, и чем выше скорость вращения витка или ротора генератора, тем меньше период генерируемой переменной ЭДС, и, соответственно, переменный ток нагрузки.
Единицы измерения периода — секунды, миллисекунды, микросекунды, наносекунды. На рисунке 1 показано как напряжение U с течением времени изменяется, имея при этом постоянный характерный период Т.
Частота f
Частотой называют величину обратную периоду, и численно равную количеству периодов изменения тока или ЭДС за 1 секунду. Иначе говоря f = 1/Т. Частота измеряется в герцах (Гц). С уменьшением периода возрастает частота изменения ЭДС или тока.
В настоящее время в нашей стране стандартом частоты переменного тока в электросетях выступает значение в 50 Гц, то есть за 1 секунду происходит 50 колебаний сетевого напряжения.
На рисунке 2 можно заметить, что за одну секунду происходит 50 полных колебаний, каждое из которых длится 0,02 секунды.
Угловая частота ω
За один период фаза синусоидальной ЭДС или синусоидального тока изменяется на 2пи радиан или на 360°, поэтому угловая частота переменного синусоидального тока, согласно формуле на, равна: ω=2π/T=2πƒ. График ω изображен на рисунке 3.
Фаза φ
«Фазой» называют состояние переменного тока в определенный момент времени.
На рисунке 4 показано: совпадение напряжения U1 и тока I1 по фазе, напряжения U1 и U2 в противофазе, а также сдвиг по фазе между током I1 и напряжением U2. Сдвиг по фазе φ измеряется в радианах, долях периода, в градусах. Так, сдвиг по фазе между током I1 и напряжением U2 равен φ = π радиан, как и между напряжением U1 и напряжением U2.
Амплитуда Uм и Iм
Когда речь идёт о величине синусоидального переменного тока или синусоидальной переменной ЭДС, самое высокое значение ЭДС или тока носит название «амплитуда» или амплитудное (максимальное) значение.
Под амплитудой понимают наибольшее отклонение колеблющейся величины от некоторого значения, условно принятого за нулевое.
Если речь о генераторе переменного тока, то ЭДС на его выводах дважды за период достигает амплитудного значения, первое из которых +Eм, второе -Eм, соответственно во время положительного и отрицательного полупериодов. Таким же образом ведет себя и ток I, и обозначается соответственно Iм (рисунок 5).
Мгновенное значение u и i
Значение ЭДС или тока в определенный (текущий) момент времени называется мгновенным значением, они обозначаются маленькими буквами u и i (рисунок 6). Но, так как эти значения постоянно изменяются, то судить о переменных токах и ЭДС по ним нецелесообразно.
Действующие значения I, E и U
Способность переменного тока к совершению полезной работы удобно оценивать по действующим значениям ЭДС и токов.
Действующим значением тока называют значение такого постоянного тока, который при прохождении по проводнику в течение одного периода рассматриваемого переменного тока, производит ту же механическую работу или то же количество теплоты, что и данный переменный ток.
Действующие значения напряжений, ЭДС и токов обозначают заглавными буквами I, E и U (рисунок 7). Для синусоидального переменного тока и для синусоидального переменного напряжения действующие значения равны:
U=√2 * Um≈1,414*Um
Действующее значение тока и напряжения более удобно в практическом использовании для описания электрических сетей. Так, значение в 220-240 вольт — это действующее значение напряжения в современных бытовых розетках, а амплитуда намного больше — от 311 В до 339 В.
То же справедливо и по отношению к току, когда говорят, что по бытовому нагревательному прибору проходит ток в 8 ампер, это подразумевает действующее значение, тогда как амплитуда имеет значение 11,3 ампер.
Механическая работа и электрическая энергия в электроустановках пропорциональны действующим значениям напряжений и токов. Большинство измерительных приборов отражает именно действующие значения напряжений и токов.