Введение в цифровую схемотехнику — тест 7
 (2) когда на вход схемы поступают короткие и длинные импульсы, на выходе схемы должны формироваться два сигнала, один из которых соответствует приходу короткого входного импульса, а другой — приходу длинного входного импульса 
 (3) при приходе входного сигнала заданной частоты выходной сигнал должен быть равен единице, а при отсутствии входного сигнала — нулю 
Упражнение 12: Номер 1
Каково устройство схемы кодировщика манчестерского кода?
 (1) элемент И и три триггера 
 (2) элемент 2И и три триггера 
 (3) элемент Исключающее ИЛИ и три триггера 
Номер 2
Какое действие выполняет один из триггеров кодировщика манчестерского кода?
 (1) работает в счетном режиме, деля частоту тактового сигнала в два раза 
 (2) синхронизирует входной сигнал с тактовым сигналом утроенной частоты 
 (3) синхронизирует выходной сигнал с тактовым сигналом утроенной частоты 
Номер 3
Какую функцию выполняют триггеры кодировщика манчестерского кода?
Что такое триггер, для чего он нужен, их классификация и принцип работы
Триггер – элемент цифровой техники, бистабильное устройство, которое переключается в одно из состояний и может находиться в нем бесконечно долго даже при снятии внешних сигналов. Он строится из логических элементов первого уровня (И-НЕ, ИЛИ-НЕ и т.д.) и относится к логическим устройствам второго уровня.
На практике триггеры выпускаются в виде микросхем в отдельном корпусе или входят в качестве элементов в состав больших интегральных схем (БИС) или программируемых логических матриц (ПЛМ).
Классификация и типы синхронизации триггеров
Триггеры делятся на два больших класса:
- асинхронные;
- синхронные (тактируемые).
Принципиальное различие между ними в том, что у первой категории устройств уровень выходного сигнала меняется одновременно с изменением сигнала на входе (входах). У синхронных триггеров изменение состояния происходит только при наличии сихронизирующего (тактового, стробирующего) сигнала на предусмотренном для этого входе. Для этого предусмотрен специальный вывод, обозначаемый буквой С (clock). По виду стробирования синхронные элементы делятся на два класса:
- динамические;
- статические.
У первого типа уровень выхода меняется в зависимости от конфигурации входных сигналов в момент появления фронта (переднего края) или спада тактового импульса (зависит от конкретного вида триггера). Между появлением синхронизирующих фронтов (спадов) на входы можно подавать любые сигналы, состояние триггера не изменится. У второго варианта признаком тактирования является не изменение уровня, а наличие единицы или нуля на входе Clock. Также существуют сложные триггерные устройства, классифицируемые по:
- числу устойчивых состояний (3 и более, в отличие от 2 у основных элементов);
- числу уровней (также более 3);
- другим характеристикам.
Читайте также: Как изготовить электронную печатную плату в домашних условиях?
Сложные элементы имеет ограниченное применение в специфических устройствах.
Типы триггеров и принцип их работы
Существует несколько основных типов триггеров. Перед тем, как разобраться в различиях, следует отметить общее свойство: при подаче питания выход любого устройства устанавливается в произвольное состояние. Если это критично для общей работы схемы, надо предусматривать цепи предустановки. В простейшем случае это RC-цепочка, которая формирует сигнал установки начального состояния.
RS-триггеры
Самый распространенный тип асинхронного бистабильного устройства – RS-триггер. Он относится к триггерам с раздельной установкой состояния 0 и 1. Для этого имеется два входа:
- S — set (установка);
- R — reset (сброс).
Имеется прямой выход Q, также может быть инверсный выход Q1. Логический уровень на нём всегда противоположен уровню на Q – это бывает удобно при разработке схем.
При подаче положительного уровня на вход S на выходе Q установится логическая единица (если есть инверсный выход, он перейдет на уровень 0). После этого на входе установки сигнал может меняться как угодно – на выходной уровень это не повлияет. До тех пор, пока единица не появится на входе R. Это установит триггер в состояние 0 (1 на инверсном выводе). Теперь изменение сигнала на входе сброса никак не повлияет на дальнейшее состояние элемента.
Важно! Вариант, когда на обоих входах присутствует логическая единица, является запретным. Триггер установится в произвольное состояние. При разработке схем такой ситуации надо избегать.
RS-триггер можно построить на основе широко распространенных двухвходовых элементов И-НЕ. Такой способ реализуем как на обычных микросхемах, так и внутри программируемых матриц.
Один или оба входа могут быть инверсными. Это означает, что по этим выводам триггер управляется появлением не высокого, а низкого уровня.
Если построить RS-триггер на двухвходовых элементах И-НЕ, то оба входа будут инверсными – управляться подачей логического нуля.
Существует стробируемый вариант RS-триггера. У него имеется дополнительный вход С. Переключение происходит при выполнении двух условий:
- присутствие высокого уровня на входе Set или Reset;
- наличие тактового сигнала.
Такой элемент применяют в случаях, когда переключение надо задержать, например, на время окончания переходных процессов.
D-триггеры
D-триггер («прозрачный триггер», «защелка», latch) относится к категории синхронных устройств, тактируемых по входу С. Также имеется вход для данных D (Data). По функциональным возможностям устройство относится к триггерам с приёмом информации по одному входу.
Пока на входе для синхронизации присутствует логическая единица, сигнал на выходе Q повторяет сигнал на входе данных (режим прозрачности). Как только уровень строба перейдет в состояние 0, на выходе Q уровень останется тем же, что был в момент перепада (защелкнется). Так можно зафиксировать входной уровень на входе в любой момент времени. Также существуют D-триггеры с тактированием по фронту. Они защёлкивают сигнал по положительному перепаду строба.
На практике в одной микросхеме могут объединять два типа бистабильных устройств. Например, D и RS-триггер. В этом случае входы Set/Reset являются приоритетными. Если на них присутствует логический ноль, то элемент ведёт себя как обычный D-триггер. При появлении хотя бы на одном входе высокого уровня, выход устанавливается в 0 или 1 независимо от сигналов на входах С и D.
Прозрачность D-триггера не всегда является полезным свойством. Чтобы её избежать, применяются двойные элементы (flip-flop, «хлопающий» триггер), они обозначаются литерами TT. Первым триггером служит обычная защёлка, пропускающая входной сигнал на выход. Второй триггер служит элементом памяти. Тактируются оба устройства одним стробом.
T-триггеры
T-триггер относится к классу счётных бистабильных элементов. Логика его работы проста – он изменяет своё состояние каждый раз, когда на его вход приходит очередная логическая единица. Если на вход подать импульсный сигнал, выходная частота будет в два раза выше входной. На инверсном выходе сигнал будет противофазен прямому.
Так работает асинхронный Т-триггер. Также существует синхронный вариант. При подаче импульсного сигнала на тактирующий вход и при наличии логической единицы на выводе T, элемент ведёт себя так же, как и асинхронный – делит входную частоту пополам. Если на выводе Т логический ноль, то выход Q устанавливается в низкий уровень независимо от наличия стробов.
JK-триггеры
Этот бистабильный элемент относится к категории универсальных. Он может управляться раздельно по входам. Логика работы JK-триггера похожа на работу RS-элемента. Для установки выхода в единицу используется вход J (Job). Появление высокого уровня на выводе K (Keep) сбрасывает выход в ноль. Принципиальным отличием от RS-триггера является то, что одновременное появление единиц на двух управляющих входах не является запретным. В этом случае выход элемента меняет свое состояние на противоположное.
Если выходы Job и Keep соединить, то JK-триггер превращается в асинхронный счётный Т-триггер. Когда на объединённый вход подаётся меандр, на выходе будет в два раза меньшая частота. Как и у RS-элемента, существует тактируемый вариант JK-триггера. На практике применяются, в основном, именно стробируемые элементы такого типа.
Практическое использование
Свойство триггеров сохранять записанную информацию даже при снятии внешних сигналов позволяет применять их в качестве ячеек памяти ёмкостью в 1 бит. Из единичных элементов можно построить матрицу для запоминания двоичных состояний – по такому принципу строятся статические оперативные запоминающие устройства (SRAM). Особенностью такой памяти является простая схемотехника, не требующая дополнительных контроллеров. Поэтому такие SRAM применяются в контроллерах и ПЛМ. Но невысокая плотность записи препятствует использованию таких матриц в ПК и других мощных вычислительных системах.
Выше упоминалось использование триггеров в качестве делителей частоты. Бистабильные элементы можно соединять в цепочки и получать различные коэффициенты деления. Та же цепочка может быть использована в качестве счетчика импульсов. Для этого надо считывать с промежуточных элементов состояние выходов в каждый момент времени – получится двоичный код, соответствующий количеству пришедших на вход первого элемента импульсов.
В зависимости от типа примененных триггеров, счетчики могут быть синхронными и асинхронными. По такому же принципу строятся преобразователи последовательного кода в параллельный, но здесь используются только стробируемые элементы. Также на триггерах строятся цифровые линии задержки и другие элементы двоичной техники.
RS-триггеры используются в качестве фиксаторов уровня (подавителей дребезга контактов). Если в качестве источников логического уровня применяются механические коммутаторы (кнопки, переключатели), то при нажатии эффект дребезга сформирует множество сигналов место одного. RS-триггер с этим успешно борется.
Область применения бистабильных устройств широка. Круг решаемых с их помощью задач во многом зависит от фантазии конструктора, особенно в сфере нетиповых решений.
Похожие статьи:
Режимы работы, описание характеристик и назначение выводов микросхемы NE555
Что такое компаратор напряжения и для чего он нужен
Датчики уровня: типы, характеристики, рекомендации по выбору
Обзор современных протоколов промышленной автоматизации — Modbus, Profinet, EtherCAT и др.
Пневмоавтоматика — применение сжатого воздуха в системах автоматического управления
Что такое операционный усилитель?
Виды триггеров и особенности их работы
Электроника предполагает точное выполнение заданной программы с учетом текущего состояния всей логической схемы. За часть работы электронной цепи отвечают триггеры. Статья опишет — основные типы триггеров, их устройство и принцип работы, а так же расскажет зачем такие устройства используются в электронных схемах. Отдельно будет описан симметричный триггер.
Определение
Что такое триггер? Триггером называют электронное устройство, обладающее способностью довольно долгое время находиться в 1-ом из 2-х стабильных состояний, а так же чередовать их из-за воздействия какого-то внешнего сигнала. Триггер — это по сути простая электроника, от которой зависит работоспособность более сложных систем
Он способен хранить двоичную информацию (ноль или один) после того, как перестанут действовать входные импульсы. Основное назначение устройства, это переключение из одного состояния в другое. Хранит триггер в своей памяти 1 бит информации, которые и определяют его текущее состояние: логический «0» или логическая «1».
Какие входы есть у триггера? Любой триггер может иметь несколько входов, которые бывают:
- Информационными. Они отвечают за общее состояние устройства в момент работы всей цепи.
- Управляющими. Отвечают за установку триггера в предварительное положение и за его дальнейшую синхронизацию.
Работа устройства строится на 2 элементах «И-НЕ», 2 «ИЛИ-НЕ» и других, некоторые разновидности триггеров работают на логических элементах КМОП, ТТЛ, ЭСЛ. Принцип работы любого триггера зависит от количества входов/выходов, а также от типа самого устройства.
В электронике используются устройства на транзисторах или микросхемах. Транзисторные модели применяются при сложных интегральных схемах старого типа. Логическая микросхема обладает меньшими габаритами, хранит информацию без перегрева и перегрузок. Поэтому их используют в более миниатюрных и сложных цепях современной электроники.
Разновидности
Для того чтобы разобраться как работает триггер, необходимо понять к какому классу и типу он относится. Существуют 2 основных класса этих устройств:
- Синхронные с двумя основными классами: статическими и динамическими.
- Асинхронные.
Обе разновидности имеют схожий принцип работы. Отличие заключается только в процессе перехода сигнала из одного состояния в другое. Асинхронные делают это напрямую, а синхронные работают исходя из этого сигнала.
Асинхронные
Асинхронные RS-триггер имеет 2 основных входа «R» и «S». Также предусматриваются выходы «Q» и «Q−». Устройство RS триггера позволяет выполнять следующую последовательность:
- Вход «S» является установочным. На него подается высокое напряжение, вследствие чего логический выход «Q» устанавливается как «1».
- Вход «R» отвечает за сброс положения. Высокое напряжение в виде логической «1» на этом входе предполагает установку 0 на выходе «Q», а на выходе «Q–» – «1».
Асинхронный RS-триггер условно работает следующим образом:
- При подаче напряжения на вход «S» устройство включается и хранит такое состояние даже при потере положительного сигнала.
- При подаче сигнала на вход «R» устройство отключается, при этом сохраняя логический 0 на выходах.
Схема RS-триггера асинхронного типа самая простая. Она работает без синхронизации с дополнительным входом. Используется RS компонент в простых элементах или как дополнение для более сложных триггеров.
Далее будет представлена УГО, таблица истинности и общая схема такого триггера.
Синхронные
Немного более сложное устройство. Работают с дополнительной синхронизацией сигналов. Эти RS-триггеры также имеют входы «R» и «S», а также выходы «Q» и «Q–». Отличие заключается в наличие синхронизирующего входа «С». Этот контакт нужен для синхронизации входящих сигналов. Называют этот вход «clock» или тактовый. Триггер имеет следующий принцип работы:
- Первоначально сигнал поступает к контакту входа «С» и проходит синхронизацию.
- С контакта «С» сигнал поступает на вход «S» в виде логической 1 или высокого напряжения.
- На «Q» устанавливается логическая 1, а сам цепь при этом включается.
Синхронизация используется для снижения части помех. Часто RS-триггеры этого типа используют для цепей с параллельным подключением, значительно снижая помехи от элементов с высокой магнитной индуктивностью.
Графическое обозначение, таблица истинности и диаграмма устойчивых состояний устройства представлена ниже.
Асинхронные и синхронные модели далеко не единственные, которые использует схемотехника для построения логических моделей работы. Далее будут представлены разновидности триггеров с иным принципом работы.
D-триггер
Эти виды простых триггеров так же используют для хранения информации о своем текущем состоянии один бит памяти. Используют его в простых электронных схемах вычислительных устройств и автоматики. Данная модель также относится к синхронному типу и имеет вход «С». Главное отличие заключается в замене 2 входов «R-S» на один контакт «D». Применение всего одного входа и наличие синхронизации позволяет значительно упростить работу устройства. Для работы D-триггера используется следующая схема:
- На контакт «С» поступает сигнал логической 1 или высокое напряжение.
- Сигнал проходит синхронизацию.
- Поступает на контакт входа D.
- Если выход «Q» находился в состоянии логической 1, то он включается.
- Если на выходе «Q» находился логический 0 или этот контакт находился в состоянии сброса, логическая 1 передается на выход «Q−».
Иными словами, состояние триггера на выходе зависит от его предыдущего положения. Если предыдущее положение было в состоянии высокого напряжения, то на этот выход поступит логическая 1. Если положение было в состоянии сброса, то логический 0.
Практически все D-триггеры являются динамическими. При динамическом управлении состоянием триггера используется понятие фронта. Фронтом называют переход от 1 к 0. Подразумевается 2 вида фронта:
- Передний. При этом положении осуществляется переход от 0-1.
- Задним фронтом является переход сигнала от 1 к 0.
Существуют разновидности D устройств с дополнительным входом V. Название этого входа расшифровывается как проверочный. Работает такой элемент с неким замедлением. Оно необходимо для предварительной синхронизации сигнала, с его последующим подтверждением. При этом не играет особой роли, сколько памяти занято в устройстве. Обычные и DV-триггеры предназначены для работы в сложных устройствах с множеством ячеек. Например, в электронных счетчиках эти устройства отвечают его за актуальное значение. При его смене состояние триггера изменяет свой фронт.
Далее приведена таблица истинности и УГО фронтов.
Т-триггер
Триггеры типа T на логических элементах включают в себя многие возможности ранее описанных устройств. Есть модели асинхронного и синхронного типа, динамические и с дополнительным подтверждающим входом.
Асинхронные
При получении положительного сигнала на вход, на выходе получается напряжение в 2 раза выше входного. Такой эффект возможен только при импульсном сигнале, поступающем на T вход. При этом частота поступления по временной шкале не имеет препятствий, а значит сигнал доходит гораздо быстрее. Асинхронные T устройства в состоянии логической 1 на выходе имеют противофазу инверсного выхода.
Синхронные
Эти T-триггеры подобны асинхронным. Исключение состоит в наличие тактового сигнала на входе. Также существует противофаза на инверсном выходе и появление удвоенного напряжения.
Устройство T элементов можно легко отнести к делителям импульсных сигналов. Эти элементы работают только при наличии переднего фронта. Иными словами, осуществляется переход от 0 к 1. Но разница заключается в учете временного интервала между импульсами.
Триггеры типа T часто используются в логических вычислительных процессах. Осуществляется это за счет функции увеличения или снижения напряжения:
- При увеличении частоты на выходе с логической 1, осуществляется запись положительного числа.
- При уменьшении частоты на инверсном выходе при логическом 0, осуществляется запись отрицательного числа.
При учете, сколько памяти необходимо для перехода и деления сигнала, элемент может быть дополнен входом подтверждения. Программирование с использованием T-триггера допускает использование устройства в различных электронных счетчиках без встроенной памяти. Далее дана диаграмма работы устройства.
JK-триггер
Является самым универсальным электронным элементом. В этих устройствах присутствуют:
- Входы «J» и«K» в качестве информационных. При этом «J» — обычный вход «S», а «K» — вход «R».
- «С» — вход динамический.
- «R» и «S» статические.
JK устройство работает по принципу перехода из одного состояния в другое, но с учетом единицы времени. Также существует разность при подаче сигнала на вход синхронизации. Иными словами, если на оба входа JK подать логическую 1, то на его выходах появится прямо противоположное значение. Но при этом устройство не воспримет наличие двух 1 единиц как ошибку.
В зависимости от назначения, в данном триггере может использоваться так называемый фронт (передний или задний). В этом случае устройство считается синхронным, а его состояние определяется актуальным положением логических чисел. При расчете рабочего состояния элемента также учитывается возможность одновременного использования устройства в качестве T или D триггера. В этом случае учитывается параметр временного интервала поступления сигнала, какое напряжение будет получено при выходе и устойчивость состояния элемента. Информатика часто использует этот элемент в качестве универсального устройства контроля состояния устойчивой работы простых логических функций. Далее дана диаграмма работы устройства.
Симметричный
Симметричный триггер относится к особому виду элементов. Он создается на транзисторах и является усилителем постоянного тока двухкаскадного типа. Работает устройство за счет использования транзисторов с полностью идентичными параметрами.
Принцип работы следующий:
- При подаче напряжения на устройство, транзистор VT1 считается открытым. Напряжение его коллектора равняется 0.
- В этот момент транзистор VT2 закрыт. Его коллектор имеет положительное напряжение.
- Для осуществления перехода из одного состояния в другое используется импульс напряжение. Этот импульс создается конденсатором.
- При появлении импульса транзисторы меняют свое состояние.
При смене положения транзисторов создается перепад напряжения, и оно значительно снижается.
В схемах симметричных триггеров основным элементом является система запуска. Она может отличаться по способу управления и месту, с которого поступил пусковой импульс.
- Раздельное управление. Предполагает подачу напряжения на определенный вход триггера. При таком управлении элемент считается RS-триггером.
- Общее или счетное управление. Напряжение подается на общий входной контакт. При таком подключении, устройство схоже по параметрам с Т-триггером.
Место поступления импульса может быть от коллектора или базы транзистора. При таких схемах подключения существует вероятность появления ложного или вторичного сигнала. Он отсекается путем подключения диода.
Основным недостатком симметричных элементов является полная зависимость от времени поступления импульсного сигнала и его длительности. Если длительность недостаточная, импульс не успеет открыть транзистор, а значит не произойдет закрытие второго транзистора.
Такие устройства используются в устройствах учета импульсов, генераторах частоты, переключателях радиоэлектронных цепей.
Заключение
С триггерами в жизни мы сталкиваемся довольно часто, ведь они широко используются в различных сферах. В данной статье было приведено описание и области использования различных разновидностей данного устройства. При ремонте электронного оборудования важно знать: для чего нужен этот элемент, где он используется и по какому принципу работают такие устройства.
7.Элементы памяти
Триггеры и регистры являются простейшими представителями цифровых микросхем, имеющих внутреннюю память. Если выходные сигналы логических элементов и комбинационных микросхем однозначно определяются их текущими входными сигналами, то выходные сигналы микросхем с внутренней памятью зависят также еще и от того, какие входные сигналы и в какой последовательности поступали на них в прошлом, то есть они помнят предысторию поведения схемы. Именно поэтому их применение позволяет строить гораздо более сложные и интеллектуальные цифровые устройства, чем в случае простейших микросхем без памяти. Микросхемы с внутренней памятью называются еще последовательными или последовательностными, в отличие от комбинационных микросхем.
Триггеры и регистры сохраняют свою память только до тех пор, пока на них подается напряжение питания. Иначе говоря, их память относится к типу оперативной (в отличие от постоянной памяти и перепрограммируемой постоянной памяти, которым отключение питания не мешает сохранять информацию). После выключения питания и его последующего включения триггеры и регистры переходят в случайное состояние, то есть их выходные сигналы могут устанавливаться как в уровень логической единицы, так и в уровень логического нуля. Это необходимо учитывать при проектировании схем.
Большим преимуществом триггеров и регистров перед другими типами микросхем с памятью является их максимально высокое быстродействие (то есть минимальные времена задержек срабатывания и максимально высокая допустимая рабочая частота). Именно поэтому триггеры и регистры иногда называют также сверхоперативной памятью. Однако недостаток триггеров и регистров в том, что объем их внутренней памяти очень мал, они могут хранить только отдельные сигналы, биты (триггеры) или отдельные коды, байты, слова (регистры).
Триггер можно рассматривать как одноразрядную, а регистр — как многоразрядную ячейку памяти, которая состоит из нескольких триггеров, соединенных параллельно (обычный, параллельный регистр) или последовательно (сдвиговый регистр или, что то же самое, регистр сдвига).
Принцип работы и разновидности триггеров
В основе любого триггера (англ. — «тrigger» или «flip-flop») лежит схема из двух логических элементов, которые охвачены положительными обратными связями (то есть сигналы с выходов подаются на входы). В результате подобного включения схема может находиться в одном из двух устойчивых состояний, причем находиться сколь угодно долго, пока на нее подано напряжение питания.
Рис. 7.1. Схема триггерной ячейки
Пример такой схемы (так называемой триггерной ячейки) на двух двухвходовых элементах И-НЕ представлен на рис. 7.1. У схемы есть два инверсных входа: –R — сброс (от английского Reset), и –S — установка (от английского Set), а также два выхода: прямой выход Q и инверсный выход –Q.
Для правильной работы схемы отрицательные импульсы должны поступать на ее входы не одновременно. Приход импульса на вход -R переводит выход -Q в состояние единицы, а так как сигнал -S при этом единичный, выход Q становится нулевым. Этот же сигнал Q поступает по цепи обратной связи на вход нижнего элемента. Поэтому даже после окончания импульса на входе -R состояние схемы не изменяется (на Q остается нуль, на -Q остается единица). Точно так же при приходе импульса на вход -S выход Q в единицу, а выход -Q — в нуль. Оба эти устойчивых состояния триггерной ячейки могут сохраняться сколь угодно долго, пока не придет очередной входной импульс, — иными словами, схема обладает памятью.
Если оба входных импульса придут строго одновременно, то в момент действия этих импульсов на обоих выходах будут единичные сигналы, а после окончания входных импульсов выходы случайным образом попадут в одно из двух устойчивых состояний. Точно так же случайным образом будет выбрано одно из двух устойчивых состояний триггерной ячейки при включении питания. Временная диаграмма работы триггерной ячейки показана на рисунке.
Таблица 7.1. Таблица истинности триггерной ячейки
В стандартные серии цифровых микросхем входит несколько типов микросхем триггеров, различающихся методами управления, а также входными и выходными сигналами. На схемах триггеры обозначаются буквой Т. В отечественных сериях микросхем триггеры имеют наименование ТВ, ТМ и ТР в зависимости от типа триггера. Наиболее распространены три типа ( рис. 7.2):
RS-триггер (обозначается ТР) — самый простой триггер, но редко используемый (а).
JK-триггер (обозначается ТВ) имеет самое сложное управление, также используется довольно редко (б).
D-триггер (обозначается ТМ) — наиболее распространенный тип триггера (в).
Примером RS-триггера является микросхема ТР2, в одном корпусе которой находятся четыре RS-триггера. Два триггера имеют по одному входу –R и –S, а два других триггера — по одному входу –R и по два входа –S1 и –S2, объединенных по функции И. Все триггеры имеют только по одному прямому выходу. RS-триггер практически ничем не отличается по своим функциям от триггерной ячейки, рассмотренной ранее (см. рис. 7.1). Отрицательный импульс на входе –R перебрасывает выход в нуль, а отрицательный импульс на входе –S (или на любом из входов –S1 и –S2) перебрасывает выход в единицу. Одновременные сигналы на входах –R и –S переводят выход в единицу, а после окончания импульсов триггер попадает случайным образом в одно из своих устойчивых состояний. Таблица истинности триггера ТР2 с двумя входами установки –S1 и –S2 представлена в табл. 7.2.
Рис. 7.2. Триггеры трех основных типов
Таблица 7.2. Таблица истинности RS-триггера ТР2
JK-триггер значительно сложнее по своей структуре, чем RS-триггер. Он относится к так называемым тактируемым триггерам, то есть он срабатывает по фронту тактового сигнала. Примером может служить показанная на рис. 7.2 микросхема ТВ9, имеющая в одном корпусе два JK-триггера со входами сброса и установки -R и -S. Входы -R и -S работают точно так же, как и в RS-триггере, то есть отрицательный импульс на входе -R устанавливает прямой выход в нуль, а инверсный — в единицу, а отрицательный импульс на входе -S устанавливает прямой выход в единицу, а инверсный — в нуль.
Однако состояние триггера может быть изменено не только этими сигналами, но и сигналами на двух информационных входах J и K и синхросигналом С. Переключение триггера в этом случае происходит по отрицательному фронту сигнала С (по переходу из единицы в нуль) в зависимости от состояний сигналов J и K. При единице на входе J и нуле на входе К по фронту сигнала С прямой выход устанавливается в единицу (обратный — в нуль). При нуле на входе J и единице на входе К по фронту сигнала С прямой выход устанавливается в нуль (обратный — в единицу). При единичных уровнях на обоих входах J и K по фронту сигнала С триггер меняет состояние своих выходов на противоположные (это называется счетным режимом).
Таблица 7.3. Таблица истинности JK-триггера ТВ9
Меняется на противоположное
Рис. 7.3. Временная диаграмма работы JK-триггера ТВ9
Таблица истинности триггера ТВ9 представлена в табл. 7.3, а временная диаграмма работы — на рис. 7.3.
Наконец, самый распространенный D-триггер занимает, можно сказать, промежуточное положение между RS-триггером и JK-триггером. Помимо общих для всех триггеров входов установки и сброса –S и –R, он имеет один информационный вход D (вход данных) и один тактовый вход C. Примером может служить показанная на рис. 7.2 микросхема ТМ2, содержащая в одном корпусе два D-триггера с прямыми и инверсными выходами.
Таблица 7.4. Таблица истинности D-триггера ТМ2
Рис. 7.4. Временная диаграмма работы D-триггера ТМ2
Тактируется триггер (то есть меняет свое состояние) по положительному фронту сигнала С (по его переходу из нуля в единицу) в зависимости от состояния входа данных D. Если на входе D единичный сигнал, то по фронту сигнала С прямой выход триггера устанавливается в единицу (инверсный — в нуль). Если же на входе D — нулевой сигнал, то по фронту сигнала С прямой выход триггера устанавливается в нуль (инверсный — в единицу).
Таблица истинности триггера ТМ2 представлена в табл. 7.4, а временная диаграмма работы — на рис. 7.7.
Остановимся на работе D-триггера чуть подробнее, так как он наиболее часто используется. При этом многие замечания, высказанные здесь относительно D-триггера, будут верны и для других типов триггеров.
Прежде всего отметим, что все приведенные временные диаграммы относятся к первому уровню представления, к уровню логической модели. Конечно же, в реальности все триггеры имеют временные задержки установки выходных сигналов, а также предъявляют определенные временные требования к входным сигналам, при нарушении которых любой триггер будет работать неустойчиво или же не будет работать вообще. Это учитывается на втором уровне представления (в модели с временными задержками).
Например, как уже отмечалось, входные сигналы -R и -S не должны приходить одновременно, иначе состояние триггера будет неопределенным. Длительность сигналов -R и -S также не должна быть слишком малой, иначе триггер может на них не среагировать. Сигнал –R должен начинаться с определенной задержкой после окончания сигнала –S, и наоборот. В первом приближении можно считать, что минимально допустимые временные интервалы между входными сигналами должны равняться 1–2 задержкам логического элемента соответствующей серии.
Точно так же не должна быть слишком малой длительность тактового сигнала C (как положительного, так и отрицательного импульса), иначе триггер может переключаться неустойчиво. Это требование универсально для всех микросхем, срабатывающих по фронту входного сигнала. Принципиально важна и величина временного сдвига (задержки) между установлением сигнала D и рабочим (положительным) фронтом сигнала C. Этот сдвиг тоже не должен быть слишком малым. Не должен быть чрезмерно малым и сдвиг между окончанием сигналов –R и –S и рабочим фронтом сигнала С. Повышенные требования предъявляются также к длительности фронта тактового сигнала С, которая не должна быть слишком большой. Это требование также универсально для всех микросхем, срабатывающих по фронту входного сигнала.
Одним словом, чем сложнее микросхема, тем важнее для нее становятся ограничения второго уровня представления, тем выше требования к разработчику по учету временных задержек и длительностей сигналов. Правда, требования эти не слишком разнообразны и не слишком жестки, поэтому, раз и навсегда усвоив их, можно проектировать любые схемы без грубых ошибок. Самое главное, что надо запомнить, состоит в следующем: цифровые схемы не любят слишком коротких входных сигналов и слишком малых задержек между входными сигналами, функционально связанными между собой. Ориентир здесь очень простой — величина задержки логического элемента данной серии. Поэтому для более быстрых серий ограничения будут менее жесткими, а для более медленных серий — более жесткими.
Несколько слов о величинах задержек микросхем триггеров.
Несмотря на свою достаточно сложную внутреннюю структуру, микросхемы триггеров являются одними из самых быстрых. Задержка срабатывания триггера обычно не превышает 1,5–2 задержки логического элемента. (причем задержки по входам –R и –S чуть меньше, чем по тактовому входу С.) В некоторых сериях JK-триггеры несколько быстрее, чем D-триггеры, в других — наоборот. Важный параметр триггера — максимальная частота тактового сигнала С. Для ее приблизительной оценки можно придерживаться следующего простого правила: период тактового сигнала С не должен быть меньше величины задержки переключения триггера по входу С.
Регистры (англ. register) представляют собой, по сути, несколько D-триггеров (обычно от 4 до 16), соединенных между собой тем или иным способом. Поэтому принципиальной разницы между ними и отдельными D-триггерами не существует. Правда, триггеры, входящие в состав регистров, не имеют такого количества разнообразных управляющих входов, как одиночные триггеры.
На схемах регистры обозначаются буквами RG. В отечественных сериях микросхем регистрам соответствуют буквы ИР. Все регистры делятся на две большие группы (рис. 8.1):
Регистры сдвига (или сдвиговые регистры).
Существуют регистры и других типов, но они применяются гораздо реже, чем параллельные и сдвиговые, так как имеют узкоспециальное назначение.
В параллельных регистрах (а) каждый из триггеров имеет свой независимый информационный вход (D) и свой независимый информационный выход. Тактовые входы (С) всех триггеров соединены между собой. В результате параллельный регистр представляет собой многоразрядный, многовходовый триггер.
Рис. 8.1. Структура параллельного регистра (а)и сдвигового регистра (б)
В сдвиговых регистрах (б) все триггеры соединены в последовательную цепочку (выход каждого предыдущего триггера соединен со входом D следующего триггера). Тактовые входы всех триггеров (С) объединены между собой. В результате такой триггер может рассматриваться как линия задержки, входной сигнал которой последовательно перезаписывается из триггера в триггер по фронту тактового сигнала С. Информационные входы и выходы триггеров могут быть выведены наружу, а могут и не выводиться — в зависимости от функции, выполняемой регистром.
Параллельные регистры, в свою очередь, делятся на две группы:
Регистры, срабатывающие по фронту управляющего сигнала С (или тактируемые регистры).
Регистры, срабатывающие по уровню управляющего сигнала С (или стробируемые регистры).
Чаще всего в цифровых схемах используются регистры, управляемые фронтом (то есть тактируемые), однако и стробируемые регистры имеют свой круг задач, в которых их ничто не может заменить.
Регистры, срабатывающие по фронту
Принцип действия регистров, срабатывающих по фронту тактового сигнала, ничем не отличается от принципа действия D-триггера. По положительному фронту тактового сигнала С каждый из выходов регистра устанавливается в тот уровень, который был в этот момент на соответствующем данному выходу входе D, и сохраняется таковым до прихода следующего положительного фронта сигнала С. То есть если триггер запоминает один сигнал (один двоичный разряд, один бит), то регистр запоминает сразу несколько (4, 6, 8, 16) сигналов (несколько разрядов, битов). Память регистра сохраняется до момента выключения питания схемы.
Рис. 8.2. Параллельные регистры стандартных серий, срабатывающие по фронту
В стандартные серии входит несколько типов параллельных регистров, срабатывающих по фронту (рис. 8.2). Различаются они количеством разрядов, наличием или отсутствием инверсных выходов, наличием или отсутствием входа сброса (–R) или разрешения записи (–WE), а также типом выходных каскадов (2С или 3С) и, соответственно, наличием или отсутствием входа разрешения –EZ. Иногда на схемах тактовый вход С обозначается WR — сигнал записи в регистр.
Большинство регистров имеют восемь разрядов, то есть запоминают один байт информации. Регистр ТМ8 в справочниках обычно называется счетверенным D-триггером (он и в наименовании несет буквы ТМ), хотя он вполне может рассматриваться и как регистр, так как тактовый вход С и вход сброса –R у всех четырех триггеров объединены между собой.
Таблицы истинности регистров очень просты и не отличаются принципиально от таблицы истинности D-триггеров. Отличие от триггеров появляется только в случае наличия у регистра дополнительных управляющих входов разрешения записи –WE и разрешения выхода –EZ. В качестве примеров в табл. 8.1 приведена таблица истинности регистра ИР27, а в табл. 8.2 — регистра ИР37. По переходу тактового сигнала С из 0 в 1 (положительный фронт) оба регистра записывают в себя входную информацию.
Таблица 8.1. Таблица истинности регистра ИР27