Как проверить конденсатор?
При конструировании и ремонте электронной техники часто возникает необходимость в проверке радиоэлементов, в том числе и конденсаторов.
В сети много рекомендаций о том, как проверить конденсатор омметром. Когда-то я и сам применял такую методику. О ней я ещё расскажу.
Но на данный момент могу утверждать точно, что достоверно определить исправность конденсатора можно лишь с помощью прибора, который способен измерить его электрическую ёмкость.
Перед тем, как начать проверку конденсатора необходимо определить его тип. Все они делятся на две группы:
- Неполярные. К ним относятся конденсаторы, в которых диэлектриком является слюда, керамика, бумага, стекло, воздух. Как правило, их ёмкость невелика и лежит в пределах от нескольких пикофарад до единиц микрофарад.
- Полярные. К полярным конденсаторам относятся все электролитические конденсаторы, как с жидким электролитом, так и твёрдым. Их ёмкость уже лежит в диапазоне от 0,1 до 100000 микрофарад.
Среди неисправностей конденсаторов можно выделить три основных:
- Электрический пробой. Как правило, пробой вызван превышением допустимого рабочего напряжения на обкладках конденсатора.
- Обрыв. При обрыве конденсатор электрически представляет собой два изолированных проводника не имеющих никакой ёмкости. Обычно обрыв образуется вследствие механического воздействия, тряски или вибрации. Его причиной может быть некачественная конструкция элемента, а также нарушение допустимых режимов эксплуатации.
- Повышенная утечка. Изменение сопротивления диэлектрика между обкладками. При такой неисправности ёмкость конденсатора становится заметно ниже, он не способен сохранять заряд.
Список неисправностей у электролитических конденсаторов заметно шире. В основном это касается алюминиевых электролитических конденсаторов, которые очень активно используются для фильтрации пульсирующего напряжения во всевозможных выпрямителях.
- Потеря ёмкости, повышенная утечка.
- Высокий ESR (ЭПС – эквивалентное последовательное сопротивление).
Как уже говорил, достоверно проверить исправность конденсатора можно лишь с помощью прибора, который способен измерить его ёмкость. Как правило, для этих целей применяются измерители индуктивности и ёмкости (LC-метры). Они довольно дороги.
Но, несмотря на это, можно найти доступный по цене мультиметр с функцией LC-метра. Например, в моей мастерской имеется мультитестер Victor VC9805A+.
Он имеет 5 пределов измерения и способен определить ёмкость в диапазоне от 20 нанофарад (20nF) до 200 микрофарад (200μF). С его помощью можно измерить ёмкость, как обычных неполярных конденсаторов, так и полярных электролитических.
Максимальный предел измерения ограничен значением в 200 микрофарад (мкФ), что не так уж и много, если учесть, что ёмкость электролитических конденсаторов порой доходит и до 10000 мкФ.
Измерительные щупы прибора подключаются к гнёздам измерения ёмкости (обозначается как Cx). При этом нужно соблюдать полярность их подключения.
Разъём измерения ёмкости (Сх)
На фото показан процесс измерения ёмкости конденсатора номиналом 100nF (0,1 мкФ). Для измерения выбран предел в 200 нанофарад.
Как видим, ёмкость соответствует той, что указана в маркировке на корпусе – 104,7nF. Конденсатор исправен.
А вот пример неисправного металлоплёночного конденсатора К73-17 на 100nF. Я его выявил совершенно случайно, полагал, что он полностью исправен.
Отмечу лишь то, что изначально я проверял данный конденсатор мультиметром в режиме омметра. Тогда я не обнаружил ничего подозрительного. На деле же он оказался неисправен, имел очень маленькую ёмкость, всего 737 пикофарад.
На следующем фото проверка этого же конденсатора универсальным тестером.
Именно поэтому для проверки конденсаторов стоит использовать тестер с функцией замера ёмкости. Это даст наиболее достоверный результат.
Исключением может быть электрический пробой, который легко обнаружить с помощью омметра, а порой и чисто визуально при внешнем осмотре. Вот пример.
На фото пробитый неполярный конденсатор на рабочее напряжение 1,2kV.
При значительном превышении рабочего напряжения на конденсаторе, между его обкладками происходит электрический пробой. На корпусе пробитых конденсаторов можно обнаружить потемнения, вздутия, тёмные пятна и другие внешние признаки повреждения элемента.
Корпус может быть расколотым или иметь на поверхности сколы и трещины.
Электрический пробой конденсатора в электронной схеме преобразователя может стать причиной выхода из строя компактной люминесцентной лампы. Об этом я упоминал на странице про устройство ламп КЛЛ.
Стоит отметить тот факт, что пробой у алюминиевых электролитических конденсаторов встречается довольно редко. Обратная ситуация наблюдается у танталовых конденсаторов, которые в силу своих особенностей плохо выдерживают даже незначительное превышение рабочего напряжения.
При измерении ёмкости у электролитического конденсатора стоит знать одну особенность. Так как допуск у них очень большой, порой достигающий 30%, то разброс значения ёмкости может быть весьма приличный. В таком случае не стоит считать конденсатор негодным. Кроме этого, многое зависит от того, каким прибором пользуетесь.
Вот список реальной ёмкости новых конденсаторов. Измерения проводились универсальным тестером LCR-T4:
- 2200 μF (35V) — реальная 2155μF (Jamicon);
- 470 μF (25V) — реальная 420,9μF (EPCOS);
- 220 μF (400V) — реальная 217,7μF (SAMWHA);
- 100 μF (450V) — реальная 98,79μF (Jamicon);
- 100 μF (400V) — реальная 101,1μF (SAMWHA);
- 82 μF (400V) — реальная 75,65μF (Jamicon);
- 82 μF (450V) — реальная 77,46μF (SAMWHA);
- 82 μF (450V) — реальная 77,05μF (CapXon);
- 68 μF (450V) — реальная 66,43μF (Jamicon);
- 33 μF (160V) — реальная 31,99μF (SAMWHA);
- 22 μF (250V) — реальная 22,21μF (SAMWHA);
Как видим, самым некачественным оказался конденсатор EPCOS B41828 105°C 470μF(M)25V.
Эти же конденсаторы были проверены мультиметром Victor VC9805A+. Так вот, он показал ёмкость конденсаторов меньше. Для кондёра 220μF (400V) он вообще намерил 187μF!
Неисправность электролитического конденсатора можно определить при внешнем осмотре. Если корпус его имеет разрыв насечки в верхней части корпуса – 100% его надо менять. Разрыв защитной насечки на корпусе свидетельствует о том, что на конденсатор действовало завышенное напряжение, вследствие чего и произошёл, так называемый, «взрыв».
Как уже говорилось, пробой алюминиевых электролитических конденсаторов явление достаточно редкое. Вместо этого имеет место такой вот «взрыв» или «вздутие». Происходит это от того, что при превышении допустимого напряжения или при переполюсовке, в конденсаторе начинается бурная химическая реакция. Она приводит к нагреву и испарению электролита, пары которого давят на стенки корпуса и разрывают защитный клапан.
«Взорвавшийся» электролитический конденсатор
Такие дефекты конденсаторов появляются, например, при воздействии мощного электрического разряда на электронный прибор во время грозы или сильных скачков напряжения в электроосветительной сети 220V.
Аналогичный эффект «вздутия» алюминиевого электролитического конденсатора проявляется и при его длительной эксплуатации. Так как электролит жидкий, то он имеет свойство испаряться при нагреве и длительной эксплуатации.
Стоит отметить, что конденсатор нагревается не только снаружи, но и изнутри. Связано это с наличием эквивалентного последовательного сопротивления (ESR). При испарении электролита ёмкость конденсатора заметно снижается. Со временем он всё сильнее «вздувается». Про такой конденсатор говорят, что он высох.
При ремонте электронной аппаратуры порой бывают случаи, что в блоке питания прибора, отслужившего не один год, можно обнаружить целую грядку таких «дутышей».
Потеря ёмкости может быть причиной поломки телевизора. Такая неисправность не редкость. Об одной из них я уже рассказывал здесь.
Современные ЖК-телевизоры «конденсаторная чума» также не обходит стороной. Ознакомьтесь.
В современных условиях, когда имеет место широкое распространение импульсной техники, такой параметр, как ESR необходимо учитывать при тестировании электролитических конденсаторов. На сайте имеется таблица со значениями ESR новых конденсаторов разной ёмкости. В некоторых случаях, можно ориентироваться на неё.
Но, стоит знать, что в этой таблице приведены величины ESR преимущественно для одной серии конденсаторов (Jamicon, серия TK). Эта серия не относится к конденсаторам с низким ESR или низким импедансом (Low ESR/Low Impedance). Отличительным её свойством является широкий температурный диапазон эксплуатации, а данные о ESR в даташите на серию вообще не приводятся.
Так как большинство мультиметров не поддерживают функцию замера ESR, то при необходимости лучше приобрести специализированный тестер или универсальный тестер радиокомпонентов. Это незаменимый прибор в мастерской радиолюбителя и любого радиомеханика.
Меры предосторожности при проверке электролитических конденсаторов.
При проверке электролитического конденсатора необходимо полностью его разрядить! Особенно этого правила стоит придерживаться при проверке конденсаторов, имеющих большую ёмкость и высокое рабочее напряжение. Если этого не сделать, то можно испортить измерительный прибор высоким остаточным напряжением.
Например, часто приходиться проверять исправность конденсаторов, которые применяются в импульсных блоках питания. Их ёмкость и рабочее напряжение достаточно велики и при неполном разряде могут привести к порче мультиметра.
Поэтому перед проверкой их следует обязательно разрядить, закоротив выводы накоротко (для низковольтных конденсаторов с малой ёмкостью). Сделать это можно обычной отвёрткой.
Электролитический конденсатор ёмкостью 220 мкФ и рабочим напряжением 400 вольт
Конденсаторы с ёмкостью более 100 мкФ и рабочим напряжением от 63V желательно разряжать уже через резистор сопротивлением 5-20 килоОм и мощностью 1 – 2 Вт. Для этого выводы резистора соединяют с выводами конденсатора на несколько секунд, чтобы убрать остаточный заряд с его обкладок. Разряд конденсатора через резистор применяется для того, чтобы исключить появление мощной искры.
При проведении данной операции не стоит касаться руками выводов конденсатора и резистора, иначе можно получить неприятный удар током при разряде обкладок. Резистор лучше зажать пассатижами в изоляции и уже тогда соединить его с выводами конденсатора.
При закорачивании выводов заряженного электролитического конденсатора проскакивает искра, иногда очень мощная.
Поэтому следует позаботиться о защите лица и глаз. По возможности применять защитные очки или держатся от конденсатора при проведении таких работ подальше.
Проверка конденсаторов с помощью омметра.
Самым доступным и распространённым прибором, с помощью которого можно провести тестирование конденсатора, является цифровой мультиметр, включенный в режим омметра.
Поскольку конденсатор не пропускает постоянный ток, то сопротивление между его выводами (обкладками) должно быть очень большим и ограничиваться лишь так называемым сопротивлением утечки. В реальном конденсаторе диэлектрик, несмотря на то, что он является изолятором, всё-таки пропускает незначительный ток. Обычно, этот ток очень мал и не учитывается. Он называется током утечки.
Данный способ подходит для проверки неполярных конденсаторов. У них сопротивление утечки бесконечно большое и, если измерить сопротивление между выводами такого конденсатора цифровым мультиметром, то прибор зафиксирует бесконечно большое значение.
Обычно, если у конденсатора присутствует электрический пробой, то сопротивление между его обкладками составляет довольно малую величину – несколько единиц или десятки Ом. Пробитый конденсатор, по сути, является обычным проводником.
На практике проверить на пробой любой неполярный конденсатор можно так:
Переключаем мультиметр в режим измерения сопротивления и устанавливаем самый большой из возможных пределов. Для цифровых мультитестеров серий DT-83x, MAS83x, M83x, это будет предел 2M (2000k), то бишь, 2 мегаома.
Далее подключаем измерительные щупы к выводам проверяемого конденсатора. Если он исправен, то прибор не покажет никакого значения и на дисплее засветиться единичка. Это свидетельствует о том, что сопротивление утечки более 2 мегаом.
Этого достаточно, чтобы в большинстве случаев судить об исправности конденсатора. Если цифровой мультиметр чётко зафиксирует какое-либо сопротивление, которое меньше 2 мегаом, то, скорее всего, конденсатор имеет большую утечку.
Следует учесть, что держаться обеими руками выводов конденсатора и металлических щупов мультиметра при измерении нельзя! В таком случае прибор зафиксирует сопротивление вашего тела, а не сопротивление конденсатора. Поскольку сопротивление тела человека меньше сопротивления утечки, то ток потечёт по пути наименьшего сопротивления, то есть через ваше тело по пути рука – рука. Результат измерения будет некорректный. Об этом простом правиле стоит помнить при проверке и других радиодеталей.
Проверка полярных электролитических конденсаторов с помощью омметра несколько отличается от проверки неполярных.
Сопротивление утечки полярных конденсаторов обычно составляет не менее 100 килоОм. Для более качественных конденсаторов это значение составляет не менее 1 мегаома.
При проверке таких конденсаторов омметром следует сначала их разрядить, замкнув выводы накоротко. Если этого не сделать, то есть риск сжечь мультиметр.
Далее необходимо установить предел измерения сопротивления не ниже 100 килоОм. Для упомянутых выше конденсаторов это будет предел 200k (200000 Ом). Далее соблюдая полярность подключения щупов, измеряют сопротивление утечки.
Так как электролитический конденсатор имеют довольно большую емкость, то при проверке он начнёт заряжаться. Этот процесс занимает несколько секунд, в течение которых сопротивление на цифровом дисплее будет расти – показания на нём будут увеличиваться. Это будет продолжаться до тех пор, пока конденсатор полностью не зарядится. Если значение измеряемого сопротивления перевалило за 100 килоОм, то в большинстве случаев можно с достаточной уверенностью судить об исправности проверяемого элемента.
Одной из рядовых неисправностей электролитических конденсаторов является частичная потеря ёмкости. В таких случаях его ёмкость заметно меньше, чем указанная на корпусе. Определить такую неисправность при помощи омметра сложно. Я бы сказал, что невозможно. Для точного обнаружения такой неисправности, как потеря ёмкости потребуется измеритель ёмкости, который есть не в каждом мультиметре.
Также с помощью омметра трудно обнаружить такую неисправность конденсатора как обрыв.
Для полярных электролитических конденсаторов косвенным признаком обрыва может служить отсутствие изменения показаний на дисплее мультиметра при замере сопротивления.
Для неполярных конденсаторов малой ёмкости обнаружить обрыв практически невозможно, поскольку исправный конденсатор имеет очень высокое сопротивление. Заряд ёмкости такого конденсатора проходит очень быстро и из-за этого невозможно определить имеет ли конденсатор хоть какую-то ёмкость. На дисплее мультиметра показания меняться не будут, как это происходит при заряде ёмкого электролитического конденсатора.
Как вы уже поняли, обнаружить обрыв в неполярном конденсаторе можно лишь с помощью прибора для измерения ёмкости.
На практике обрыв в конденсаторах встречается довольно редко, в основном такое бывает при механических повреждениях. Куда чаще при ремонте аппаратуры приходиться заменять конденсаторы, имеющие электрический пробой либо частичную потерю ёмкости.
Проверка конденсатора стрелочным омметром.
Ранее, когда среди радиолюбителей были распространены стрелочные омметры, проверка конденсаторов проводилась похожим образом. При этом конденсатор заряжался от батареи омметра и сопротивление, показываемое стрелкой прибора, росло. В конечном итоге величина его достигала значения сопротивления утечки.
По скорости отклонения стрелки измерительного прибора от нуля и до конечного значения оценивали и емкость электролитического конденсатора. Чем дольше проходила зарядка (дольше отклонялась стрелка прибора), тем, соответственно, была больше ёмкость. Для конденсаторов с небольшой ёмкостью (1 – 100 мкф) стрелка измерительного прибора отклонялась достаточно быстро, что свидетельствовало о небольшой ёмкости, а вот при проверке конденсаторов с ёмкостью от 1000 мкф и более, стрелка отклонялась значительно медленнее.
Проверка конденсаторов с помощью омметра является косвенным методом. Более точную и правдивую оценку об исправности конденсатора и его параметрах позволяет получить мультиметр с возможностью измерения электрической ёмкости.
Как проверить конденсатор самым простым, дешевым мультиметром
Как проверить обычным мультиметром исправность конденсатора?
Итак, у вас есть проблема — нужно проверить исправность конденсатора, но подходящего измерительного прибора с функцией измерения емкости под рукой нет. Что же делать? Бежать в магазин и купить нужный мультиметр? Если вы будете постоянно иметь дело с измерением емкости и проверкой конденсаторов, такой шаг будет более чем оправдан, но для разовой, простой проверки подойдет и обычный, самый простой прибор.
Так что давайте узнаем, как можно проверить работоспособность конденсатора с помощью данного измерительного прибора, который вообще не имеет функции измерения емкости конденсаторов. Единственный недостаток этого способа — измерение емкости конденсатора таким способом просто невозможно.
Так что же нужно делать?
Начнем проверку. Представим, что вы уже разобрали прибор или устройство на котором нужно проверить конденсаторы, или же они и вовсе отпаяны. С последними работать будет даже проще. Но если конденсаторы нужно только проверить, лучше не выпаивать их с устройства. Особенно если сомневаетесь, что получится их выпаять и припаять на место.
- Итак, включаем мультиметр в режим измерения сопротивления. При этом выставляем самый высокий предел.
- Неважно, выпаян конденсатор или находится на плате — главное подключить щупы к выводам конденсатора. Но некоторые радиолюбители советуют отпаять хотя бы одну ножку конденсатора, чтобы устранить «паразитные помехи» прочих компонентов сети.
- Теперь наблюдаем за показаниями. На экране устройства вы увидите, что сопротивление конденсатора постепенно возрастает. Если это так — конденсатор исправен.
Как это работает?
Когда конденсатор набирает заряд его сопротивление, соответственно, растет. Если вы наблюдаете рост сопротивления, значит, конденсатор заряжается. При измерении сопротивления мультиметры подают через щупы определенное, фиксированное напряжение. Именно оно и заряжает конденсатор. Если сопротивление остается постоянным — конденсатор пробит и не набирает заряд.
Для такой вот проверки конденсатора годиться любая модель, которая может измерять сопротивление. Это может быть как универсальный цифровой прибор, так и простой, аналоговый измеритель. Но вот снимать данные простым, аналоговым инструментом интереснее.
- Аналоговый мультиметр должен быть включен в режим измерения сопротивления. Можно выбрать средний диапазон.
- Как и в случае с цифровым, дотроньтесь щупами к контактам конденсатора.
- Наблюдайте за стрелкой. Она будет до определенного момента ползти вверх, а потом падать назад. Если это происходит, значит, конденсатор заряжается и разряжается.
Как видите, все достаточно просто!
Стоит заметить, что мультиметры не смогут измерить емкость конденсатора. Хотя в большинстве случаев достаточно просто проверить работоспособность компонента.
КОНДЕНСАТОРЫ
Конденсаторы (от лат. condenso — уплотняю, сгущаю) — это радиоэлементы с сосредоточенной электрической емкостью, образуемой двумя или большим числом электродов (обкладок), разделенных диэлектриком (специальной тонкой бумагой, слюдой, керамикой и т. д.). Емкость конденсатора зависит от размеров (площади) обкладок, расстояния между ними и свойств диэлектрика.
Важным свойством конденсатора является то, что для переменного тока он представляет собой сопротивление, величина которого уменьшается с ростом частоты.
Как и резисторы, конденсаторы разделяют на конденсаторы постоянной емкости, конденсаторы переменной емкости (КПЕ), подстроечные и саморегулирующиеся. Наиболее распространены конденсаторы постоянной емкости. Их применяют в колебательных контурах, различных фильтрах, а также для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.
Конденсаторы постоянной емкости. Условное графическое обозначение конденсатора постоянной емкости—две параллельные липни — символизирует его основные части: две обкладки и диэлектрик между ними . Около обозначения конденсатора на схеме обычно указывают его номинальную емкость, а иногда и номинальное напряжение. Основная единица измерения емкости — фарад (Ф) — емкость такого уединенного проводника, потенциал которого возрастает на один вольт при увеличении заряда на один кулон. Это очень большая величина, которая на практике не применяется. В радиотехнике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ).
Согласно ГОСТ 2.702—75 номинальную емкость от 0 до 9 999 пФ указывают на схемах в пикофарадах без обозначения единицы измерения, от 10 000 пФ до 9 999 мкФ — в микрофарадах с обозначением единицы измерения буквами мк.
Номинальную емкость и допускаемое отклонение от нее, а в некоторых случаях и номинальное напряжение указывают на корпусах конденсаторов.
В зависимости от их размеров номинальную емкость и допускаемое отклонение указывают в полной или сокращенной (кодированной) форме. Полное обозначение емкости состоит из соответствующего числа и единицы измерения, причем, как и на схемах, емкость от 0 до 9 999 пФ указывают в пикофарадах (22 пФ, 3 300 пФ и т. д.), а от 0,01 до 9 999 мкФ —в микрофарадах (0,047 мкФ, 10 мкФ и т. д.). В сокращенной маркировке единицы измерения емкости обозначают буквами П (пикофарад), М (микрофарад) и Н (нанофарад; 1 нано-фарад=1000 пФ = 0,001 мкФ). При этом емкость от 0 до 100 пФ обозначают в пикофарадах, помещая букву П либо после числа (если оно целое), либо на месте запятой (4,7 пФ — 4П7; 8,2 пФ —8П2; 22 пФ — 22П; 91 пФ — 91П и т. д.). Емкость от 100 пФ (0,1 нФ) до 0,1 мкФ (100 нФ) обозначают в на нофарадах, а от 0,1 мкФ и выше — в микрофарадах. В этом случае, если емкость выражена в долях нанофарада или микрофарада, соответствующую единицу измерения помещают на месте нуля и запятой (180 пФ=0,18 нФ—Н18; 470 пФ=0,47 нФ —Н47; 0,33 мкФ —МЗЗ; 0,5 мкФ —МбО и т. д.), а если число состоит из целой части и дроби — на месте запятой (1500 пФ= 1,5 нФ — 1Н5; 6,8 мкФ — 6М8 и т. д.). Емкости конденсаторов, выраженные целым числом соответствующих единиц измерения, указывают обычным способом (0,01 мкФ —ЮН, 20 мкФ — 20М, 100 мкФ — 100М и т. д.). Для указания допускаемого отклонения емкости от номинального значения используют те же кодированные обозначения, что и для резисторов.
Потери в конденсаторах, определяемые в основном потерями в диэлектрике, возрастают при повышении температуры, влажности и частоты. Наименьшими потерями обладают конденсаторы с диэлектриком из высокочастотной керамики, со слюдяными и пленочными диэлектриками, наибольшими — конденсаторы с бумажным диэлектриком и из сегнетокерамики. Это обстоятельство необходимо учитывать при замене конденсаторов в радиоаппаратуре. Изменение емкости конденсатора под воздействием окружающей среды (в основном, ее температуры) происходит из-за изменения размеров обкладок, зазоров между ними и свойств диэлектрика. В зависимости от конструкции и примененного диэлектрика конденсаторы характеризуются различным температурным коэффициентом емкости (ТКЕ), который показывает относительное изменение емкости при изменении температуры на один градус; ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения и цвет окраски корпуса.
Для сохранения настройки колебательных контуров при работе в широком интервале температур часто используют последовательное и параллельное соединение конденсаторов, у которых ТКЕ имеют разные знаки. Благодаря этому при изменении температуры частота настройки такого термокомпенсированного контура остается практически неизменной.
Как и любые проводники, конденсаторы обладают некоторой индуктивностью. Она тем больше, чем длиннее и тоньше выводы конденсатора, чем больше размеры его обкладок и внутренних соединительных проводников.
Наибольшей индуктивностью обладают бумажные конденсаторы, у которых обкладки выполнены в виде длинных лент из фольги, свернутых вместе с диэлектриком в рулон круглой или иной формы. Если не принято специальных мер, такие конденсаторы плохо работают на частотах выше нескольких мегагерц. Поэтому на практике для обеспечения работы блокировочного конденсатора в широком диапазоне частот параллельно бумажному подключают керамический или слюдяной конденсатор небольшой емкости.
Однако существуют бумажные конденсаторы и с малой собственной индуктивностью. В них полосы фольги соединены с выводами не в одном, а во многих местах. Достигается это либо полосками фольги, вкладываемыми в рулон при намотке, либо смещением полос (обкладок) к противоположным концам рулона и пропайкой их
Для защиты от помех, которые могут проникнуть в прибор через цепи питания и наоборот, а также для различных блокировок используют так называемые проходные конденсаторы. Такой конденсатор имеет три вывода, два из .которых представляют собой сплошной токонесущий стержень, проходящий через корпус конденсатора. К этому стержню присоединена одна из обкладок конденсатора. Третьим выводом является металлический корпус, с которым соединена вторая обкладка. Корпус проходного конденсатора закрепляют непосредственно на шасси или экране, а токоподводящий провод (цепь питания) припаивают к его среднему выводу. Благодаря такой конструкции токи высокой частоты замыкаются на шасси или экран устройства, в то время как постоянные токи проходят беспрепятственно. На высоких частотах применяют керамические проходные конденсаторы, в которых роль одной из обкладок играет сам центральный проводник, а другой — слой металлизации, нанесенный на керамическую трубку.
С той же целью, что и проходные, применяют опорные конденсаторы, представляющие собой своего рода монтажные стойки, устанавливаемые на металлическом шасси. Обкладку, соединяемую с ним, выделяют в обозначении такого конденсатора тремя наклонными линиями, символизирующими «заземление»
Для работы в диапазоне звуковых частот, а также для фильтрации выпрямленных напряжений питания необходимы конденсаторы, емкость которых измеряется десятками, сотнями и даже тысячами микрофарад. Такую емкость при достаточно малых размерах имеют оксидные конденсаторы (старое название — электролитические). В них роль одной обкладки (анода) играет алюминиевый или танталовый электрод, роль диэлектрика — тонкий оксидный слой, нанесенный на него, а роль другой обкладки (катода) — специальный электролит, выводом которого часто служит металлический корпус конденсатора. В отличие от других большинство типов оксидных конденсаторов полярны, т. е. требуют для нормальной работы поляризующего напряжения. Это значит, что включать их можно только в цепи постоянного или пульсирующего напряжения и только в той полярности (катод — к минусу, анод — к плюсу), которая указана на корпусе. Невыполнение этого условия приводит к выходу конденсатора из строя, что иногда сопровождается мощнейшим взрывом.
Оксидные конденсаторы очень чувствительны к перенапряжениям, поэтому на схемах часто указывают не только их номинальную емкость, но и номинальное напряжение.
С целью уменьшения размеров в один корпус иногда заключают два конденсатора, но выводов делают только три (один — общий).
Конденсаторы переменной емкости (КПЕ). Конденсатор переменной емкости состоит из двух групп металлических пластин, одна из которых может плавно перемещаться по отношению к другой. При этом движении пластины подвижной части (ротора) обычно вводятся в зазоры между пластинами неподвижной части (статора), в результате чего площадь перекрытия одних пластин другими, а следовательно, и емкость изменяются. Диэлектриком в КПЕ чаще всего служит воздух. В малогабаритной аппаратуре, например в транзисторных карманных приемниках, широкое применение нашли КПЕ с твердым диэлектриком, в качестве которого используют пленки из износостойких высокочастотных диэлектриков (фторопласта, полиэтилена и т. п.). Параметры КПЕ с твердым диэлектриком несколько хуже, но зато они значительно дешевле в производстве и размеры их намного меньше, чем КПБ с воздушным диэлектриком.
Основными параметрами КПЕ, позволяющими оценить его возможности при работе в колебательном контуре, являются минимальная и максимальная емкость, которые, как правило, указывают на схеме рядом с символом КПЕ.
В большинстве радиоприемников и радиопередатчиков для одновременной настройки нескольких колебательных контуров применяют блоки КПЕ, состоящие из двух, трех и более секций. Роторы в таких блоках закреплены на одном общем валу, вращая который можно одновременно изменять емкость всех секций. Крайние пластины роторов часто делают разрезными (по радиусу). Это позволяет еще на заводе отрегулировать блок так, чтобы емкости всех секций были одинаковыми в любом положении ротора.
В измерительной аппаратуре, например в плечах емкостных мостов, находят применение так называемые дифференциальные (от лат. differentia — различие) конденсаторы. У них две группы статорных и одна — роторных пластин, расположенные так, что когда роторные пластины выходят из зазоров между пластинами одной группы статора, они в то же время входят между пластинами другой. При этом емкость между пластинами первого статора и пластинами ротора уменьшается, а между пластинами ротора и второго статора увеличивается. Суммарная же емкость между ротором и обоими статорами остается неизменной.
Подстроечные конденсаторы. Для установки начальной емкости колебательного контура, определяющей максимальную частоту его настройки, применяют подстроечные конденсаторы, емкость которых можно изменять от единиц пикофарад до нескольких десятков пикофарад (иногда и более). Основное требование к ним — плавность изменения емкости и надежность фиксации ротора в установленном при настройке положении. Оси подстроечных конденсаторов (обычно короткие) имеют шлиц, поэтому регулирование их емкости возможно только с применением инструмента (отвертки). В радиовещательной аппаратуре наиболее широко применяют конденсаторы с твердым диэлектриком.
Конструкция керамического подстроечного конденсатора (КПК) одного из наиболее распространена. Он состоит из керамического основания (статора) и подвижно закрепленного на нем керамического диска (ротора). Обкладки конденсатора—тонкие слои серебра — нанесены методом вжигания на статор и наружную сторону ротора. Емкость изменяют вращением ротора. В простейшей аппаратуре применяют иногда проволочные подстроечные конденсаторы. Такой элемент состоит из отрезка медной проволоки диаметром 1 . 2 и длиной 15 . 20 мм, на который плотно, виток к витку, намотан изолированный провод диаметром-0,2. 0,3 мм. Емкость изменяют отматыванием провода, а чтобы обмотка не сползла, ее пропитывают каким-либо изоляционным составом (лаком, клеем и т. п.).
Саморегулируемые конденсаторы. Используя в качестве диэлектрика специальную керамику, диэлектрическая проницаемость которой сильно зависит от напряженности электрического поля, можно получить конденсатор, емкость которого зависит от напряжения на его обкладках. Такие конденсаторы получили название варикондов (от английских слов vari (able) — переменный и cond(enser) —конденсатор). При изменении напряжения от нескольких вольт до номинального емкость вариконда изменяется в 3—6 раз.
Вариконды можно использовать в различных устройствах автоматики, в генераторах качающейся частоты, модуляторах, для электрической настройки колебательных контуров и т. д.
Условное обозначение вариконда — символ конденсатора со знаком нелинейного саморегулирования и латинской буквой U.
Аналогично построено обозначение термоконденсаторов, применяемых в электронных наручных часах. Фактор, изменяющий емкость такого конденсатора—температуру среды — обозначают символом t°.
Допускаемое отклонение емкости любого конденсатора от номинала обычно указывают в процентах, но на конденсаторах очень малых емкостей допускаемое отклонение от номинала обозначают в пикофарадах. Если на конденсаторе указано «100± 10%», это означает, что емкость его не может быть меньше 90,и больше 11О пФ. Если в маркировке допуск не указан, то у такого конденсатора допускаемое отклонение от номинала ±20%. На конденсаторах, изготовляемых только с одним, определенным допускаемым отклонением от номинала, например, оксидных (старое название — электролитические) конденсаторов серии КЭ, сегнетокерамических КДС, допуск также не указывается.
При работе конденсатора в цепи, где имеется и переменная и постоянная составляющие, общая сумма напряжения постоянного тока и амплитудного значения напряжения, переменного тока не должна превышать номинального напряжения. Если переменная составляющая напряжения мала (что имеет место во всех каскадах усиления высокой и промежуточной частот приемника), то, выбирая конденсатор, достаточно учитывать только постоянное напряжение на нем. Но в цепях оконечного каскада и выпрямителя надо учитывать также и переменную составляющую..
Следует, однако, иметь в виду, что запас по напряжению не должен слишком завышаться, так как у конденсаторов с большим номинальным напряжением обычно больше габариты, что приводит к увеличению габаритов всего устройства в целом, а также в конечном итоге к повышению стоимости устройства.
Оксидные конденсаторы (или как их ранее называли — электролитические) не рекомендуется использовать при напряжениях переменной составляющей, близких к половине рабочего напряжения конденсатора. Это объясняется особенностями устройства и режимом их работы.
При нормальной температуре фактическая емкость оксидного конденсатора может быть на 20% меньше и на 80% больше обозначенной на его корпусе. При максимальной рабочей температуре, которая для конденсатора широкого применения составляет 70 — 80°С, емкость может увеличиваться на 20 — 30% по сравнению с измеренной при нормальной температуре. У конденсаторов, предназначенных для бытовой аппаратуры, емкость при температуре — 10° С может уменьшиться в два раза но сравнению с емкостью при нормальной температуре (кондсенсаторы К50-6, К50-7). В аппаратуре для полевых, условий работы используются конденсаторы (К50-3, К50-ЗА, К50-ЗБ), у которых емкость снижается не более чем в два раза при температуре — 40 . — 60° С.
Оксидные конденсаторы полярны. Они хорошо работают в цепях постоянного и пульсирующего напряжения. Вместе с тем выпускаются и неполярные оксидные конденсаторы с алюминиевыми и танталовыми фольговыми электродами. Такие конденсаторы могут работать в цепях переменного тока.
Номинальные напряжения выпускаемых промышленностью оксидных конденсаторов находятся в пределах от 3 до 450 В, а номинальные емкости — от долей микрофарады до нескольких тысяч микрофарад, причем конденсаторы с большой емкостью, как правило, имеют меньшие номинальные напряжения.
Так как максимально допустимое напряжение включает в себя и амплитуду переменной составляющей, то для полярных оксидных конденсаторов с рабочим напряжением 100 — 450 В величина переменной составляющей не должна превышать 8% от этих напряжений. Чем больше емкость и номинальное напряжение, тем меньше допустимая амплитуда переменного тока. Если переменная составляющая имеет большую величину, оксидный конденсатор перегревается. В таких случаях оксидные конденсаторы следует заменять конденсаторами других типов, например, бумажными большой емкости.
К особенностям оксидных конденсаторов относится и то, что в фильтрах выпрямителей их можно применять лишь на частотах до 1000 Гц. При повышении частоты (выше 50 Гц) действующая емкость их будет становиться все меньше и меньше по отношению к номинальной, При более высоких частотах допустимая амплитуда переменной составляющей также уменьшается обратно пропорционально частоте. Так, при частоте 100 Гц допустимая амплитуда вдвое меньше, чем при частоте 50 Гц.
Оксидные конденсаторы имеют сравнительно низкое сопротивление изоляции. При номинальном для данного типа конденсаторов рабочем напряжении ток утечки может доходить до 0,1 мА на каждую микрофараду емкости. Утечка свыше этой нормы свидетельствует о плохом качестве конденсатора. Такой конденсатор необходимо заменить.
Оксидные конденсаторы применяют преимущественно в фильтрах блоков питания, в развязывающих фильтрах, а в транзисторной аппаратуре — в цепях связи между транзисторными каскадами и для шунтирования резисторов в цепях эмиттеров транзисторов.
Как и для других радиодеталей, требования к жесткости допускаемых отклонений емкости от номинального значения определяются для конденсаторов в зависимости от того, какую функцию они выполняют в том или другом аппарате. Так, для конденсаторов, шунтирующих резисторы в цепях катодов ламп усилителей ВЧ и ПЧ, конденсаторов фильтра и блокирующих в анодных и экранных цепях, емкости могут быть сколь угодно большие, но не меньше номинальной, указанной на схеме; для разделительных конденсаторов, применяемых в усилителях низкой частоты, отклонения от номинала могут составлять 20 — 30%. Емкость конденсаторов, применяемых в корректирующих цепях, улучшающих частотную характеристику усилителей низкой частоты, не должна отличаться более чем на ±10% от расчетной.
Тип диэлектрика, используемого в конденсаторе, играет решающую роль при определении области применения конденсатора. В колебательных контурах диапазона длинных и средних волн можно использовать практически конденсаторы самых разных типов, в том числе и со слюдяным диэлектриком, хотя такие конденсаторы не всегда обладают достаточно малыми потерями.
Во всех цепях токов высокой частоты можно применять керамические конденсаторы (при емкостях до 1000 — 5000 пФ) или безындукционные бумажные (при емкостях более 1000 — 5000 пФ).
В цепях экранирующих сеток ламп и в анодных фильтрах высокочастотных, каскадов для развязывания цепей допустимо применять безындукционные бумажные конденсаторы; при этом должна быть заземлена или соединена с проводом общего минуса наружная обкладка конденсатора (этот вывод помечается соответствующим знаком на корпусе или торце безындукционных конденсаторов). В низкочастотных каскадах все конденсаторы могут быть бумажные.
Конденсаторы переменной емкости для настройки колебательного контура приемников желательно иметь с воздушным диэлектриком. Еще в большей мере это от- носится к колебательным контурам измерительных приборов. Из подстроечных конденсаторов лучшими являются конденсаторы с воздушными и керамическими диэлектриками.
Основные неисправности конденсаторов: пробой изоляции (короткое замыкание между обкладками), большой ток утечки (плохая изоляция между обкладками), обрыв выводов, а у оксидных (электролитических) — и потеря емкости.
Проверка исправности конденсаторов. Неисправности конденсаторов, особенно большой емкости, такие, как потеря емкости, короткое замыкание и большой ток утечки, могут быть легко обнаружены с помощью мегаомметра, а также омметра или даже простейшего пробника.
Если конденсатор большой емкости исправен, то при подключении к нему пробника стрелка прибора сначала резко отклонится вправо, причем отклонение это будет тем больше, чем больше емкость конденсатора, а затем относительно медленно начнет возвращаться влево и установится над одним из делений в начале шкалы. Если же конденсатор неисправен, то есть потерял емкость или имеет утечку, то в первом случае стрелка прибора вообще не отклонится вправо, а во втором — отклонится почти на всю шкалу, а затем установится на одном из делений в конце ее в зависимости от величины сопротивления утечки. Проверяя конденсатор этим способом, следует всегда обращать внимание на то, не превышает ли напряжение питания прибора допустимого напряжения конденсатора, иначе в конденсаторе может произойти пробой изоляции уже при проверке.
Состояние изоляции у конденсаторов емкостью порядка микрофарад, а иногда и десятых долей микрофарады может быть оценено и по интенсивности искры, если конденсатор подключить сначала к источнику напряжения и зарядить, а затем замкнуть его выводы. Таким способом можно проверять конденсаторы любых типов (кроме электролитических).
В ряде случаев вызывает затруднение проверка конденсаторов малой емкости (порядка десятков и сотен пикофарад), у которых искра при разряде незначительна, а сопротивление утечки настолько велико, что конденсатор с обрывом вывода может быть легко принят за вполне исправный с высоким сопротивлением утечки.
С помощью омметра или авометра в режиме измерения сопротивлений можно в случае необходимости определить полярность оксидного конденсатора (типа К50-6 и др.). При подключении к конденсатору прибор в. зависимости от того, как подключены щупы, в одном положении покажет большее, а в другом меньшее сопротивление. Большее сопротивление соответствует тому случаю, когда плюсовой щуп прибора соединен с положительным полюсом конденсатора.
Оксидные (электролитические) конденсаторы, имеющие полярные выводы, также могут быть включены и параллельно и последователыю. Однако при последовательном их включении всегда следует принимать дополнительные меры для предотвращения пробоя изоляции. Особенно это важно, когда при отсутствии оксидных конденсаторов на нужные рабочие напряжения их заменяют конденсаторами меньше-го рабочего напряжения. Чтобы выровнять напряжения, параллельно каждому из последовательно соединенных конденсаторов подключают резисторы одинакового сопротивления (0,5 — 1,5 МОм). Потери, которые вызываются подключением таких резисторов, незначительны, и практически не отражаются на-работе выпрямителя. Общая емкость двух одинаковых по емкости конденсаторов, последовательно соединенных, равна половине емкости каждого из них.
Как проверить конденсатор
При конструировании и ремонте электронной техники часто возникает необходимость в проверке радиоэлементов, в том числе и конденсаторов. О том, как с достоверной точностью проверить исправность конденсаторов перед их использованием и пойдёт речь.
Самым доступным и распространённым прибором, с помощью которого можно проверить практически любой конденсатор, является цифровой мультиметр, включенный в режим омметра.
Наиболее важным является проверка конденсатора на пробой.
Пробой конденсатора – это неисправность, связанная с изменением сопротивления диэлектрика между обкладками конденсатора вследствие превышения допустимого рабочего напряжения на обкладках конденсатора.
При значительном превышении рабочего напряжения на конденсаторе, между его обкладками происходит электрический пробой. На корпусе пробитых конденсаторов можно обнаружить потемнения, вздутия, тёмные пятна и другие внешние признаки неисправности элемента.
Поскольку конденсатор не пропускает постоянный ток, то сопротивление между его выводами (обкладками) должно быть очень большим и ограничиваться лишь так называемым сопротивлением утечки. В реальных конденсаторах диэлектрик, несмотря на то, что он является, по сути, изолятором, пропускает незначительный ток. Этот ток для исправного конденсатора очень мал и не учитывается. Он называется током утечки.
Данный способ подходит для проверки неполярных конденсаторов. В неполярных конденсаторах, в которых диэлектриком является слюда, керамика, бумага, стекло, воздух, сопротивление утечки бесконечно большое и если измерить сопротивление между выводами такого конденсатора цифровым мультиметром, то прибор зафиксирует бесконечно большое сопротивление.
Обычно, если у конденсатора присутствует электрический пробой, то сопротивление между его обкладками составляет довольно малую величину – несколько единиц или десятки Ом. Пробитый конденсатор, по сути, является обычным проводником.
На практике проверить на пробой любой неполярный конденсатор можно так:
Переключаем цифровой мультиметр в режим измерения сопротивления и устанавливаем самый большой из возможных пределов измерения сопротивления.
Далее подключаем измерительные щупы к выводам проверяемого конденсатора. При исправном конденсаторе прибор не покажет никакого значения и на дисплее засветиться единичка. Это свидетельствует о том, что сопротивление утечки конденсатора более 2 Мегаом. Этого достаточно, чтобы в большинстве случаев судить об исправности конденсатора. Если цифровой мультиметр чётко зафиксирует какое-либо сопротивление, меньшее 2 Мегаом, то, скорее всего, конденсатор неисправен.
Следует учесть, что держаться обеими руками выводов и щупов мультиметра при измерении нельзя. Так как в таком случае прибор зафиксирует сопротивление Вашего тела, а не сопротивление утечки конденсатора. Поскольку сопротивление тела человека меньше сопротивления утечки, то ток потечёт по пути наименьшего сопротивления, то есть через ваше тело по пути рука – рука. Поэтому не стоит забывать о правилах при проведении измерения сопротивления.
Проверка полярных электролитических конденсаторов с помощью омметра несколько отличается от проверки неполярных.
Сопротивление утечки полярных конденсаторов обычно составляет не менее 100 кОм. Для более качественных полярных конденсаторов это значение не менее 1 Мегаом. При проверке таких конденсаторов омметром следует сначала разрядить конденсатор, замкнув выводы накоротко.
Далее необходимо установить предел измерения сопротивления не ниже 100 килоОм. Для упомянутых выше конденсаторов это будет предел 200k (200.000 Ом). Далее соблюдая полярность подключения щупов, измеряют сопротивление утечки конденсатора. Так как электролитические конденсаторы имеют довольно высокую емкость, то при проверке конденсатор начнёт заряжаться. Этот процесс занимает несколько секунд, в течение которых сопротивление на цифровом дисплее будет расти, и будет расти до тех пор, пока конденсатор не зарядится. Если значение измеряемого сопротивления перевалило за 100 килоОм, то в большинстве случаев можно с достаточной уверенностью судить об исправности конденсатора.
Ранее, когда среди радиолюбителей были распространены стрелочные омметры, проверка конденсаторов проводилась аналогичным образом. При этом конденсатор заряжался от батареи омметра и сопротивление, показываемое стрелочным прибором росло, в конечном итоге достигая значения сопротивления утечки.
По скорости отклонения стрелки измерительного прибора от нуля и до конечного значения оценивали емкость электролитического конденсатора. Чем дольше проходила зарядка (дольше отклонялась стрелка прибора), тем соответственно, была больше ёмкость конденсатора. Для конденсаторов с небольшой ёмкостью (1 – 100 мкф) стрелка измерительного прибора отклонялась достаточно быстро, что свидетельствовало о небольшой ёмкости конденсатора, а вот при проверке конденсаторов с большой ёмкостью (1000 мкф и более), стрелка отклонялась значительно медленнее.
Проверка конденсаторов с помощью омметра является косвенным методом. Более точную и правдивую оценку об исправности конденсатора и его параметрах позволяет получить мультиметр с возможностью измерения ёмкости конденсатора.
При проверке электролитических конденсаторов необходимо перед проведением измерения ёмкости полностью разрядить проверяемый конденсатор. Особенно этого правила стоит придерживаться при проверке полярных конденсаторов, имеющих большую ёмкость и высокое рабочее напряжение. Если этого не сделать, то можно испортить измерительный прибор.
Например, часто приходиться проверять исправность конденсаторов, которые выполняют роль фильтрующих, и применяются в импульсных блоках питания. Их ёмкость и рабочее напряжение достаточно велики и при неполном разряде могут привести к порче измерительного прибора.
Поэтому такие конденсаторы перед проверкой следует разрядить, закоротив выводы накоротко (для низковольтных конденсаторов с малой ёмкостью), либо подсоединив к выводам резистор, сопротивлением 5-10 килоОм (для высоковольтных конденсаторов). При проведении данной операции не стоит касаться руками выводов конденсатора, иначе можно получить неприятный удар током при разряде обкладок. При закорачивании выводов заряженного электролитического конденсатора проскакивает искра. Чтобы исключить появление искры, выводы высоковольтных конденсаторов и закорачивают через резистор.
Одной из существенных неисправностей электролитических конденсаторов является частичная потеря ёмкости, вызванная повышенной утечкой. В таких случаях ёмкость конденсатора заметно меньше, чем указанная на корпусе. Определить такую неисправность при помощи омметра довольно сложно. Для точного обнаружения такой неисправности, как потеря ёмкости потребуется измеритель ёмкости, который есть не в каждом мультиметре.
Также с помощью омметра трудно обнаружить такую неисправность конденсатора как обрыв. При обрыве конденсатор электрически представляет собой два изолированных проводника не имеющих никакой ёмкости.
Для полярных электролитических конденсатором косвенным признаком обрыва может служить отсутствие изменения показаний на дисплее мультиметра при замере сопротивления. Для неполярных конденсаторов малой ёмкости обнаружить обрыв практически невозможно, поскольку исправный конденсатор также имеет очень высокое сопротивление.
Обнаружить обрыв в конденсаторе возможно лишь с помощью приборов для измерения ёмкости конденсатора.
На практике обрыв в конденсаторах встречается довольно редко, в основном при механических повреждениях. Куда чаще при ремонте аппаратуры приходиться заменять конденсаторы, имеющие электрический пробой либо частичную потерю ёмкости.
Например, люминесцентные компактные лампы частенько выходят из строя по причине электрического пробоя конденсаторов в электронной схеме преобразователя.
Причиной неисправности телевизора может служить потеря ёмкости электролитического конденсатора в схеме источника питания.
Потеря ёмкости электролитическими конденсаторами легко обнаруживается при замере ёмкости таких конденсаторов с помощью мультиметров с функцией измерения ёмкости.
Неисправность конденсатора можно определить при внешнем осмотре, например, корпус электролитических конденсаторов имеет разрыв насечки в верхней части корпуса. Это свидетельствует о том, что на конденсатор действовало завышенное напряжение, вследствие чего и произошёл, так называемый «взрыв” конденсатора. Корпуса неполярных конденсаторов при значительном превышении рабочего напряжения имеют свойство раскалываться, на поверхности образуются расколы и трещины.
Такие дефекты конденсаторов появляются, например, при воздействии мощного электрического разряда на электронный прибор во время грозовых разрядов и сильных скачков напряжения электроосветительной сети.
Измерение емкости
Чтобы провести измерение емкости, мультиметр выполняет зарядку конденсатора от известного источника тока, измеряет результирующее напряжение, а затем вычисляет емкость.
Предупреждение! Исправный конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания. Прежде чем коснуться его, а также перед выполнением измерений: а) отключите питание, б) с помощью мультиметра убедитесь, что питание отключено, в) осторожно разрядите конденсатор, подключив резистор к выводам (как указано в следующем абзаце). Обязательно используйте соответствующие средства индивидуальной защиты.
Для безопасной разрядки конденсатора: После отключения питания подключите резистор на 20 000 Ом, 5 Вт к клеммам конденсатора на пять секунд. С помощью мультиметра убедитесь, что конденсатор полностью разряжен.
- С помощью цифрового мультиметра (DMM) убедитесь, что в контуры не поступает питание. Если конденсатор встроен в цепь переменного тока, настройте мультиметр на измерение напряжения переменного тока. Если конденсатор встроен в цепь постоянного тока, настройте цифровой мультиметр на измерение напряжения постоянного тока.
- Осмотрите конденсатор. При наличии утечек, трещин, вздутий или других признаков износа замените конденсатор.
- Переведите поворотный переключатель в положение измерения емкости ( ). Этот символ на переключателе часто совмещен с символом другой функции. Для начала измерения обычно требуется не только перевести переключатель в нужное положение, но и нажать функциональную кнопку. Инструкции см. в руководстве пользователя мультиметра.
- Для правильного измерения необходимо отсоединить конденсатор от цепи. Разрядите конденсатор, как описано выше в предупреждении. Примечание. У некоторых мультиметров предусмотрен режим относительных измерений (REL). При измерении малых значений емкости можно использовать режим относительных измерений для устранения емкости измерительных проводов. Чтобы перевести мультиметр в режим относительных измерений, оставьте измерительные провода разомкнутыми и нажмите кнопку REL. Таким образом вы устраните остаточную емкость измерительных проводов.
- Подсоедините измерительные провода к клеммам конденсатора. Удерживайте измерительные провода подключенными в течение нескольких секунд, чтобы мультиметр автоматически выбрал подходящий диапазон.
- Прочитайте отображаемые значения. Если значение емкости находится в пределах диапазона измерения, мультиметр показывает значение емкости конденсатора. Символ OL отображается на экране в следующих случаях: a) значение емкости выше диапазона измерения или б) конденсатор неисправен.
Общая информация об измерении емкости
Поиск и устранение неисправностей в однофазных электродвигателях является одним из наиболее распространенных способов использования функции измерения емкости.
Невозможность запуска однофазного электродвигателя с конденсатором является признаком неисправности конденсатора. Такие электродвигатели продолжают работать после включения, что усложняет поиск и устранение неисправностей. Хорошим примером такой проблемы является неисправность конденсатора для жесткого запуска на компрессорах системы ОВКВ. Двигатель компрессора может запуститься, но вскоре он перегревается, что приводит к срабатыванию выключателя.
Для проверки состояния конденсатора на однофазных электродвигателях с такими проблемами и шумами требуется мультиметр. Почти на всех конденсаторах электродвигателей указано значение емкости в микрофарадах.
Трехфазные конденсаторы для коррекции коэффициента мощности обычно защищены предохранителями. В случае отказа одного или нескольких конденсаторов эффективность системы снижается, что с большой долей вероятности приводит к увеличению расходов на коммунальные услуги и произвольному отключению оборудования. В случае перегорания предохранителя необходимо измерить емкость в микрофарадах на предположительно неисправном конденсаторе и убедиться, что полученное значение находится в пределах диапазона, указанного на конденсаторе.
Полезно знать некоторые дополнительные обстоятельства, связанные с емкостью.
- Конденсаторы имеют ограниченный срок службы и часто являются причиной неисправности.
- Неисправность конденсатора может быть связана с коротким замыканием, разрывом цепи или физическим ухудшением состояния до точки отказа.
- Короткое замыкание конденсатора может вызвать перегорание предохранителя или повреждение других компонентов.
- В случае разрыва цепи или ухудшения состояния конденсатора возможен отказ цепи или ее компонентов.
- Износ также может изменить значение емкости конденсатора и стать причиной неисправности.