Что такое напряжение?
Напряжение — это давление от источника питания электрической цепи, которое обеспечивает движение заряженных электронов (ток) через проводящий контур, позволяя им выполнять полезную работу (например, обеспечивать свечение лампочки).
В кратком виде: напряжение = давление, оно измеряется в вольтах (В). Эта единица измерения названа в честь итальянского физика Алессандро Вольта (1745–1827 гг.), который изобрел вольтов столб, ставший предшественником современной бытовой батареи.
Ранее напряжение называлось электродвижущей силой (эдс). Поэтому в ряде уравнений, например в законе Ома, напряжение обозначается символом E.
Пример напряжения в простой цепи постоянного тока:
- В этой цепи постоянного тока переключатель замкнут (переведен во включенное положение).
- В источнике питания образуется напряжение («разность потенциалов» между двумя полюсами батареи), создавая давление, под действием которого поток электронов движется к отрицательной клемме батареи.
- Ток достигает лампочки, и лампочка начинает светиться.
- Ток возвращается в источник питания.
Различают напряжение переменного тока и постоянного тока. Отличия заключаются в следующем:
Напряжение переменного тока (на цифровом мультиметре обозначается символом ):
- распространяется равномерными синусоидальными волнами, как показано ниже:
- меняет направление с регулярными интервалами.
- обычно вырабатывается электростанциями с помощью генераторов, которые преобразуют механическую энергию, производимую вращением под действием протекающей воды, пара, ветра или тепла, в электрическую энергию.
- более распространено, чем напряжение постоянного тока. Электростанции подают напряжение переменного тока в организации и дома, где большинство устройств работает на напряжении переменного тока.
- Основные источники питания различаются в зависимости от страны. Например, в США напряжение источников равно 120 В.
- Некоторые бытовые устройства, например телевизоры и компьютеры, используют напряжение постоянного тока. Они используют выпрямители (например, массивный блок шнуре портативного компьютера), которые преобразовывают напряжение переменного тока в напряжение постоянного тока, а также переменный ток — в постоянный.
Напряжение постоянного тока (на цифровом мультиметре обозначается символами и ):
- распространяется по прямой и только в одном направлении.
- обычно вырабатывается источниками накапливаемой энергии, например батареями.
- на источниках напряжения постоянного тока есть положительная и отрицательная клеммы. Клеммы определяют полярность в цепи. По полярности можно определить, является ли данная цепь цепью постоянного или переменного тока.
- обычно используется в портативном оборудовании с питанием от батареи (фонарики, камеры).
Что такое разница потенциалов?
Напряжение и термин «разность потенциалов» зачастую взаимозаменяемы. Разность потенциалов правильнее назвать разностью потенциальной энергии между двумя точками цепи. Величина разности (выраженная в вольтах) определяет величину потенциальной энергии, доступной для перемещения электронов из одной точки в другую. От этой величины зависит, какая работа потенциально может быть совершена в цепи.
Например, бытовая щелочная батарея типа AA обеспечивает напряжение 1,5 В. Обычные бытовые розетки обеспечивают напряжение 120 В. Чем выше напряжение в цепи, тем выше способность приводить в движение большое количество электронов и выполнять работу.
Напряжение/разность потенциалов можно сравнить с водой в резервуаре. Чем крупнее резервуар и чем больше его высота (и, следовательно, возможная развиваемая скорость), тем сильнее будет способность воды оказать воздействие при открытии клапана, когда вода начинает течь, подобно электронам.
Почему нужно измерять напряжение
В большинстве случаев при проведении проверки технические специалисты знают, как должна работать цепь.
Цепи используются для передачи энергии на нагрузку: от небольших устройств и бытовой техники до промышленных двигателей. На нагрузках часто есть паспортная табличка, на которой указаны эталонные значения стандартных электрических параметров, в том числе напряжения и силы тока. Вместо паспортной таблички некоторые производители предоставляют подробную схему (техническую схему) всех контуров нагрузки. Стандартные значения могут содержаться в руководствах.
Благодаря этим значениям технический специалист понимает, какие показания следует ожидать при нормальной работе нагрузки. Показания цифрового мультиметра позволяют объективно определять отклонения от нормы. Однако и в этом случае технический специалист должен руководствоваться знаниями и опытом для определения причин, вызывающих подобные отклонения.
Ссылка: Digital Multimeter Principles by Glen A. Mazur, American Technical Publishers.
Типы электрических розеток и напряжение в разных странах мира
При поездках за рубеж важное значение имеет формат розетки и напряжение в сети, ведь каждому из нас потребуется заряжать свой мобильный телефон,ноутбук или планшет. Большинство блоков питания для электронных устройств, таких как ноутбуки, зарядные устройства, мобильные устройства, видеокамеры и фотоаппараты имеют универсальное питание, поэтому они способны работать при напряжении питания от 100 до 240 Вольт, и частоте 50 или 60 Гц.
В мире существуют два стандарта напряжения: европейский — 220-240В и американский 100-127В. И два стандарта частоты переменного тока: 50 Гц и 60 Гц . США, Япония и большинство стран Южной Америки используют связку 100-127В 60 Гц. Остальной мир в основном использует европейские 220-240В 50 Гц. Кроме того, в мире есть несколько стран с разными вариациями напряжения и частоты, например Филиппины, там используется напряжение 220-240В с частотой 60 Гц.
Карта-схема использования в разных странах мира напряжения и частоты тока
Стандарты электрических розеток развивались в большинстве стран независимо друг от друга, поэтому в большинстве своем вилки и розетки разных стран не совместимы между собой.
Карта-схема использования в разных странах мира электрических вилок и розеток по типам
Сводная таблица типов розеток, напряжения и частоты тока по странам
Страны и территории | Тип розетки | Напряжение В |
Частота, Гц |
Дополнительно |
---|---|---|---|---|
Австралия | I | 230 | 50 | |
Австрия | C, F | 230 | 50 | |
Азербайджан | C | 220 | 50 | |
Азорские о-ва | C, F | 220 | 50 | |
Албания | C, F | 220 | 50 | |
Алжир | C, F | 230 | 50 | |
Американское Самоа | A, B, F, I | 120 | 60 | |
Ангилья | A, B | 110 | 60 | |
Ангола | C | 220 | 50 | |
Андорра | C, F | 230 | 50 | |
Антигуа | A, B | 230 | 60 | в аэропорту 110 В |
Аомынь (Макао) | D, M, G, редко F | 220 | 50 | |
Аргентина | C, I | 220 | 50 | |
Армения | C, F | 220 | 50 | |
Аруба | A, B, F | 127 | 60 | в Лаго 115 В |
Афганистан | C, D, F | 240 | 50 | напряжение неустойчиво |
Багамские о-ва | A, B | 120 | 60 | в некоторых отдаленных регионах 50Гц |
Балеарские о-ва | C, F | 220 | 50 | |
Бангладеш | A, C, D, G, K | 220 | 50 | |
Барбадос | A, B | 115 | 50 | |
Бахрейн | G | 230 | 50 | в Авали 110 В, 60Гц |
Белоруссия | C | 220 | 50 | |
Белиз | A, B, G | 110, 220 | 60 | |
Бельгия | C, E | 230 | 50 | |
Бенин | C, E | 220 | 50 | |
Бермудские о-ва | A, B | 120 | 60 | |
Болгария | C, F | 230 | 50 | |
Боливия | A, C | 220 | 50 | в Ла-Пасе 115 В |
Босния | C, F | 220 | 50 | |
Ботсвана | D, G, M | 231 | 50 | |
Бразилия | A, B, C, I | 127, 220 | 60 | |
Бруней | G | 240 | 50 | |
Буркина-Фасо | C, E | 220 | 50 | |
Бурунди | C, E | 220 | 50 | |
Бутан | D, F, G, M | 230 | 50 | |
Вануату | I | 230 | 50 | |
Великобритания(Англия, Британия, Объединенное Королевство) | G, редко D и M | 230 | 50 | ранее 240 В; иногда дополнительно низковольтная (110-115 В) розетка в ванной, похожая на тип C |
Венесуэла | A, B | 120 | 60 | также возможно 220 в с типом G для питания кондиционеров и т. п. |
Венгрия | C, F | 230 | 50 | ранее 220 В |
Восточный Тимор | C, E, F, I | 220 | 50 | |
Вьетнам | A, C | 220 | 50 | тип A — в Южном Вьетнаме, тип C — в Северном. В дорогих отелях также применяется тип G |
Габон | C | 220 | 50 | |
Гаити | A, B | 110 | 60 | |
Гайана | A, B, D, G | 240 | 60 | |
Гамбия | G | 230 | 50 | |
Гана | D, G | 230 | 50 | |
Германия | C, F | 230 | 50 | ранее 220 В; тип C давно не устанавливается |
Гваделупа | C, D, E | 230 | 50 | |
Гватемала | A, B | 120 | 60 | |
Гвинея | C, F, K | 220 | 50 | |
Гвинея-Бисау | C | 220 | 50 | |
Гибралтар | G, K | 240 | 50 | тип K только в Европорте |
Гондурас | A, B | 110 | 60 | |
Гонконг | G, M, D | 220 | 50 | |
Гренада | G | 230 | 50 | |
Гренландия | C, K | 220 | 50 | |
Греция | C, F | 230 | 50 | ранее 220 В |
Гуам | A, B | 110 | 60 | |
Дания | C, K, E | 230 | 50 | тип E добавляется с июля 2008 г. |
Джибути | C, E | 220 | 50 | |
Доминика | D, G | 230 | 50 | |
Доминиканская Республика | A, B | 110 | 60 | |
Египет | C | 220 | 50 | |
Замбия | C, D, G | 230 | 50 | |
Западный Самоа | I | 230 | 50 | |
Зимбабве | D, G | 220 | 50 | |
Израиль | C, H, M | 230 | 50 | в типе H плоские штырьки сменены круглыми; большинство новых розеток принимает вилки как H, так и C |
Индия | C, D, M | 230 | 50 | |
Индонезия | C, F, реже G | 127, 230 | 50 | |
Иордания | B, C, D, F, G, J | 230 | 50 | |
Ирак | C, D, G | 230 | 50 | |
Иран | F, реже C | 220 | 50 | |
Ирландия | D, F, G, M | 230 | 50 | ранее 220 В; иногда дополнительно 110 В |
Исландия | C, F | 230 | 50 | |
Испания | C, F | 230 | 50 | ранее 220 В |
Италия | C, F, L | 230 | 50 | ранее 220 В |
Йемен | A, D, G | 230 | 50 | |
Кабо-Верде (о-ва Зеленого Мыса) | C, F | 220 | 50 | |
Казахстан | C, F | 220 | 50 | |
Каймановы о-ва | A, B | 120 | 60 | |
Камбоджа | A, C, G | 230 | 50 | |
Камерун | C, E | 220 | 50 | |
Канада | A, B | 120 | 60 | иногда дополнительно 240 В |
Канарские о-ва | C, E, F, L | 220 | 50 | |
Катар | D, G | 240 | 50 | |
Кения | G | 240 | 50 | |
Кипр | G | 240 | 50 | |
Киргизия | C | 220 | 50 | |
Кирибати | I | 240 | 50 | |
Китай (материковый) | A, C, I | 220 | 50 | |
КНДР | C | 220 | 50 | |
Колумбия | A, B | 120 | 60 | иногда дополнительно 240 В |
Коморские о-ва | C, E | 220 | 50 | |
Демократическая Республика Конго (Киншаса) | C, D | 220 | 50 | |
Республика Конго (Браззавиль) | C, E | 230 | 50 | |
Корея (Южная) | A, B, C, F | 220,110 | 60 | типы A и B используются при напряжении 110 В (пережиток японской колонии) в старых сооружениях |
Коста-Рика | A, B | 120 | 60 | |
Кот-д’Ивуар (Берег Слоновой Кости) | C, E | 230 | 50 | |
Куба | A, B | 110 | 60 | |
Кувейт | C, G | 240 | 50 | |
Лаос | A, B, C, E, F | 230 | 50 | |
Латвия | C, F | 220 | 50 | |
Лесото | M | 220 | 50 | |
Либерия | A, B, C, E, F | 120, 240 | 50 | раньше 60 Гц, в частных электрических сетях возможно сохранение частоты 60 Гц, типы A и B используются при напряжении 110-120 В |
Ливан | A, B, C, D, G | 110, 200 | 50 | |
Ливия | D, L | 127 | 50 | в отдельных городах 230 В |
Литва | C, F | 230 | 50 | ранее 220 В |
Лихтенштейн | C, J | 230 | 50 | |
Люксембург | C, F | 230 | 50 | ранее 220 В |
Маврикий | C, G | 230 | 50 | |
Мавритания | C | 220 | 50 | |
Мадагаскар | C, D, E, J, K | 127, 220 | 50 | |
Мадейра | C, F | 220 | 50 | |
Македония | C, F | 220 | 50 | |
Малави | G | 230 | 50 | |
Малайзия | G, редко M, C | 240 | 50 | тип M используют для подключения кондиционеров, сушилок и пр. C — дя аудио-видеотехники |
Мали | C, E | 220 | 50 | |
Мальдивы | A, D, G, J, K, L | 230 | 50 | |
Мальта | G | 230 | 50 | |
Марокко | C, E | 127, 220 | 50 | продолжается переход на 220 В |
Мартиника | C, D, E | 220 | 50 | |
Мексика | A, B | 120 | 60 | |
Микронезия (Федеративные Штаты Микронезии, Яп, Чуук, Понпеи и Косрае) | A, B | 120 | 60 | |
Мозамбик | C, F, M | 220 | 50 | тип M используют у границы с ЮАР, в т. ч. в столицце, Мапуту |
Монако | C, D, E, F | 127, 220 | 50 | |
Молдавия | C, F | 220-230 | 50 | |
Монголия | C, E | 230 | 50 | |
Монсеррат | A, B | 230 | 60 | |
Мьянма (Бирма) | C, D, F, G | 230 | 50 | тип G используется только в дорогих отелях |
Намибия | D, M | 220 | 50 | |
Науру | I | 240 | 50 | |
Непал | C, D, M | 230 | 50 | |
Нигер | A, B, C, D, E, F | 220 | 50 | |
Нигерия | D, G | 240 | 50 | |
Нидерландские Антильские о-ва | A, B, F | 127, 220 | 50 | |
Нидерланды(Голландия) | C, F | 230 | 50 | ранее 220 В |
Никарагуа | A, B | 120 | 60 | |
Новая Зеландия | I | 230 | 50 | |
Новая Каледония | E | 220 | 50 | |
Норвегия | C, F | 230 | 50 | |
Нормандские острова | C, G | 230 | 50 | |
ОАЭ | C, D, G | 220 | 50 | |
Окинава | A, B | 100 | 60 | на военных объектах 120 В |
Оман | C, G | 240 | 50 | |
О. Мэн | C, G | 240 | 50 | |
О-ва Кука | I | 240 | 50 | |
Пакистан | C, D, M, редко G | 230 | 50 | тип M используется длф подключения кондиционеров и пр. |
Панама | A, B | 110 | 60 | |
Папуа-Новая Гвинея | I | 240 | 50 | |
Парагвай | C | 220 | 50 | |
Перу | A, B, C | 220 | 60 | в Таларе также 110 В, в Арекипе 50Гц |
Польша | C, E | 230 | 50 | |
Португалия | C, F | 220 | 50 | |
Пуэрто-Рико | A, B | 120 | 60 | |
Реюньон | E | 220 | 50 | |
Россия | C, F | 220 | 50 | На всей территории бывшего СССР, а также в нек. странах Восточной Европы распространены советские розетки по ГОСТ — подобны типу C, но диаметр штырьков вилки снижен с 4,8 до 4 мм; в результате «евровилка» может не влезть в гнезда «советской» розетки, а контакт «советской» вилки с «евророзеткой» может быть очень ненадежным; промышленный стандарт питания — трехфазная сеть 380 В, 50 Гц |
Руанда | C, J | 230 | 50 | |
Румыния | C, F | 230 | 50 | ранее 220 В, местами сохранились розетки советского стандарта (ГОСТ), см. примечание к России |
Сальвадор | A, B | 115 | 60 | |
Сан-Томе и Принсипи | C, F | 220 | 50 | |
Санта-Лючия | G | 240 | 50 | |
Сейшельские о-ва | G | 240 | 50 | |
Саудовская Аравия | A, B, F, G | 127, 220 | 60 | |
Сектор Газа | C, H, M | 230 | 50 | |
Сенегал | C, D, E, K | 230 | 50 | |
Сент-Винсент и Гренадины | A, C, E, G, I, K | 230 | 50 | |
Сербия | C, F | 220 | 50 | |
Сингапур | G, M, A, C | 230 | 50 | типы A и C используются для подключения аудио-видеотехники, тип M — для кондиционеров, сушилок и т. д.; в отелях широко распространены различные адаптеры |
Сирия | C, E, L | 220 | 50 | |
Словакия | C, E | 230 | 50 | |
Словения | C, F | 230 | 50 | |
Сомали | C | 220 | 50 | |
Судан | C, D | 230 | 50 | |
Суринам | C, F | 127 | 60 | |
США | A, B | 120 | 60 | |
Сьерра-Леоне | D, G | 230 | 50 | |
Таджикистан | C, I | 220 | 50 | |
Таиланд | A, B, C | 220 | 50 | |
Тайвань | A, B | 110, 220 | 60 | 220 В используется для питания кондиционеров и т. п. |
Танзания | D, G | 230 | 50 | |
Того | C | 220 | 50 | в Ломе 127 В |
Тонга | I | 240 | 50 | |
Тринидад и Тобаго | A, B | 115 | 60 | |
Тунис | C, E | 230 | 50 | |
Туркменистан (Туркмения) | B, F | 220 | 50 | |
Турция | C, F | 230 | 50 | |
Уганда | G | 240 | 50 | |
Узбекистан | C, F | 220 | 50 | |
Украина | C, F | 220 | 50 | |
Уругвай | C, F, I, L | 230 | 50 | ранее 220 В |
Фарерские о-ва | C, K | 220 | 50 | |
Фиджи | I | 240 | 50 | |
Филиппины | A, редко B | 220 | 60 | в некторорых регионах, например, в Багио 110 В |
Финляндия | C, F | 230 | 50 | |
Фолклендские о-ва | G | 240 | 50 | |
Франция | C, E | 230 | 50 | ранее 220 В; тип C запрещен к установке более 10 лет |
Французская Гвиана | C, D, E | 220 | 50 | |
Французская Полинезия(Таити) | A, B, E | 110, 220 | 60 , 50 | |
Хорватия | C, F | 230 | 50 | |
Центральноафриканская Республика | C, E | 220 | 50 | |
Чад | D, E, F | 220 | 50 | |
Черногория | C, F | 220 | 50 | |
Чехия | C, E | 230 | 50 | |
Чили | C, L | 220 | 50 | |
Швейцария | C, J | 230 | 50 | |
Швеция | C, F | 230 | 50 | |
Шри-Ланка (Цейлон) | D, M, G | 230 | 50 | в новых домах и дорогих отелях чаще тип G |
Эквадор | A, B | 120 | 60 | |
Экваториальная Гвинея | C, E | 220 | 50 | |
Эритрея | C | 230 | 50 | |
Эстония | C, F | 230 | 50 | |
Эфиопия | C, E, F, L | 220 | 50 | |
ЮАР | M | 220 | 50 | в некоторых городах 250 В |
Ямайка | A, B | 110 | 50 | |
Япония | A, B | 100 | 50 , 60 | 50 Гц в Восточной Японии (Токио, Саппоро, Йокогама, Сэндай), 60 Гц — в Западной (Окинава, Осака, Киото, Кобэ, Нагоя, Хиросима) |
Электрическое напряжение. Определение, виды, единицы измерения
Под электрическим напряжением понимают работу, совершаемую электрическим полем для перемещения заряда напряженностью в 1 Кл (кулон) из одной точки проводника в другую.
Как возникает напряжение?
Все вещества состоят из атомов, представляющих собой положительно заряженное ядро, вокруг которого с большой скоростью кружатся более мелкие отрицательные электроны. В общем случае атомы нейтральны, так как количество электронов совпадает с числом протонов в ядре.
Однако если некоторое количество электронов отнять из атомов, то они будут стремиться притянуть такое же их количество, формируя вокруг себя плюсовое поле. Если же добавить электронов, то возникнет их избыток, и отрицательное поле. Формируются потенциалы – положительный и отрицательный.
При их взаимодействии возникнет взаимное притяжение.
Абрамян Евгений Павлович
Доцент кафедры электротехники СПбГПУ
Чем больше будет величина различия – разность потенциалов – тем сильнее электроны из материала с их избыточным содержанием будут перетягиваться к материалу с их недостатком. Тем сильнее будет электрическое поле и его напряжение.
Если соединить потенциалы с различными зарядами проводников, то возникнет электрический ток – направленное движение носителей заряда, стремящееся устранить разницу потенциалов. Для перемещения по проводнику зарядов силы электрического поля совершают работу, которая и характеризуется понятием электрического напряжения.
В чем измеряется
Единицей напряжения называют вольт (В). Один Вольт выражается в разности потенциалов двух точек электрического поля, силы которого совершают работу в 1 Дж для перемещения заряда в 1 Кл из первой точки во вторую. Измеряют напряжение специальным прибором – вольтметром.
Орлов Анатолий Владимирович
Начальник службы РЗиА Новгородских электрических сетей
Таким образом, значение 220 В подразумевает, что электрическое поле данной сети способно совершить работу (потратить энергию) в 220 Дж для «протаскивания» зарядов через цепь и нагрузку.
От чего зависит напряжение?
Напряжение участка цепи зависит от:
Виды напряжения
Постоянное напряжение
Напряжение в электрической сети постоянно, когда с одной ее стороны всегда положительный потенциал, а с другой – отрицательный. Электрический ток в этом случае имеет одно направление и является постоянным.
Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах.
При подключении нагрузки в цепь постоянного тока важно не перепутать контакты, иначе устройство может выйти из строя. Классическим примером источника постоянного напряжения являются батарейки. Применяют сети постоянного тока, когда не требуется передавать энергию на большие расстояния: во всех видах транспорта – от мотоциклов до космических аппаратов, в военной технике, электроэнергетике и телекоммуникациях, при аварийном электрообеспечении, в промышленности (электролиз, выплавка в дуговых электропечах и т.д.).
Переменное напряжение
Если периодически менять полярность потенциалов, либо перемещать их в пространстве, то и электрический ток устремится в обратном направлении. Количество таких изменений направления за определенное время показывает характеристика, называемая частотой. Например, стандартные 50 герц означают, что полярность напряжения в сети меняется за секунду 50 раз.
Напряжение в электрических сетях переменного тока является временной функцией.
Чаще всего используется закон синусоидальных колебаний.
Так получается за счет того, что переменный ток возникает в катушке асинхронных двигателей за счет вращения вокруг нее электромагнита. Если развернуть вращение по времени, то получается синусоида.
Переменный ток применяют при необходимости передавать энергию на значительные расстояния. В этих случаях эффективно использование трехфазных сетей: потери электроэнергии в проводах минимальны, простая электрогенерация (благодаря трехфазным электродвигателям без коллектора), выгодно экономически.
Трехфазный ток получают в трехфазных электродвигателях.
В них имеются сразу три катушки проводов, расположенных равномерно по кругу – через 120 градусов. Поэтому и синусоиды трехфазного тока отстают друг от друга на этот угол. Геомертическое представление трехфазного напряжения и тока выглядит в виде векторной диаграммы.
Абрамян Евгений Павлович
Доцент кафедры электротехники СПбГПУ
Трехфазная электросеть состоит из четырех проводов – трех фазных и одного нулевого. напряжение между проводами нулевым и фазным равно 220 В и называется фазным. Между фазными напряжение также существует, называется линейным и равно 380 В (разность потенциалов между двумя фазными проводами). В зависимости от вида подключения в трехфазной сети можно получить или фазное напряжение, или линейное.
Ток и напряжение. Виды и правила. Работа и характеристики
Ток и напряжение являются количественными параметрами, применяемыми в электрических схемах. Чаще всего эти величины меняются с течением времени, иначе не было бы смысла в действии электрической схемы.
Напряжение
Условно напряжение обозначается буквой «U». Работа, затраченная на перемещение единицы заряда из точки, имеющей малый потенциал в точку с большим потенциалом, является напряжением между этими двумя точками. Другими словами, это энергия, освобождаемая после перехода единицы заряда от высокого потенциала к малому.
Напряжение еще могут называть разностью потенциалов, а также электродвижущей силой. Этот параметр измеряется в вольтах. Чтобы переместить 1 кулон заряда между двумя точками, которые имеют напряжение 1 вольт, нужно выполнить работу в 1 джоуль. Кулонами измеряются электрические заряды. 1 кулон равен заряду 6х10 18 электронов.
Напряжение разделяется на несколько видов, в зависимости от видов тока:
- Постоянное напряжение. Оно присутствует в электростатических цепях и цепях постоянного тока.
- Переменное напряжение. Этот вид напряжения имеется в цепях с синусоидальными и переменными токами. В случае синусоидального тока рассматриваются такие характеристики напряжения, как:
— амплитуда колебаний напряжения – это максимальное его отклонение от оси абсцисс;
— мгновенное напряжение, которое выражается в определенный момент времени;
— действующее напряжение, определяется по выполняемой активной работе 1-го полупериода;
— средневыпрямленное напряжение, определяемое по модулю величины выпрямленного напряжения за один гармонический период.
При передаче электроэнергии по воздушным линиям устройство опор и их размеры зависят от величины применяемого напряжения. Величина напряжения между фазами называется линейным напряжением, а напряжение между землей и каждой из фаз – фазным напряжением. Такое правило применимо для всех типов воздушных линий. В России в электрических бытовых сетях, стандартным является трехфазное напряжение с линейным напряжением 380 вольт, и фазным значением напряжения 220 вольт.
Электрический ток
Ток в электрической цепи является скоростью движения электронов в определенной точке, измеряется в амперах, и обозначается на схемах буквой «I». Также используются и производные единицы ампера с соответствующими приставками милли-, микро-, нано и т.д. Ток размером в 1 ампер образуется передвижением единицы заряда в 1 кулон за 1 секунду.
Условно считается, что ток в электрической цепи течет по направлению от положительного потенциала к отрицательному. Однако, из курса физики известно, что электрон движется в противоположном направлении.
Необходимо знать, что напряжение измеряется между 2-мя точками на схеме, а ток течет через одну конкретную точку схемы, либо через ее элемент. Поэтому, если кто-то употребляет выражение «напряжение в сопротивлении», то это неверно и неграмотно. Но часто идет речь о напряжении в определенной точке схемы. При этом имеется ввиду напряжение между землей и этой точкой.
Напряжение образуется от воздействия на электрические заряды в генераторах, батареях, солнечных элементах и других устройствах. Ток возникает путем приложения напряжения к двум точкам на схеме.
Чтобы понять, что такое ток и напряжение, правильнее будет воспользоваться осциллографом. На нем можно увидеть ток и напряжение, которые меняют свои значения во времени. На практике элементы электрической цепи соединены проводниками. В определенных точках элементы цепи имеют свое значение напряжения.
Ток и напряжение подчиняются правилам:
- Сумма токов, входящих в точку, равняется сумме токов, выходящих из точки (правило сохранения заряда). Такое правило является законом Кирхгофа для тока. Точка входа и выхода тока в этом случае называется узлом. Следствием из этого закона является следующее утверждение: в последовательной электрической цепи группы элементов величина тока для всех точек одинакова.
- В параллельной схеме элементов напряжение на всех элементах одинаково. Иначе говоря, сумма падений напряжений в замкнутом контуре равна нулю. Этот закон Кирхгофа применяется для напряжений.
- Работа, выполненная в единицу времени схемой (мощность), выражается следующим образом: Р = U*I. Мощность измеряется в ваттах. Работа величиной 1 джоуль, выполненная за 1 секунду, равна 1 ватту. Мощность распространяется в виде теплоты, расходуется на совершение механической работы (в электродвигателях), преобразуется в излучение различного вида, накапливается в емкостях или батареях. При проектировании сложных электрических систем, одной из проблем является тепловая нагрузка системы.
Характеристика электрического тока
Обязательным условием существования тока в электрической цепи является замкнутый контур. Если контур цепи разрывается, то ток прекращается.
По такому принципу действуют все защиты и выключатели в электротехнике. Они разрывают электрическую цепь подвижными механическими контактами, и этим прекращают течение тока, выключая устройство.
В энергетической промышленности электрический ток возникает внутри проводников тока, которые выполнены в виде шин, кабелей, проводов и других частей, проводящих ток.
Также существуют другие способы создания внутреннего тока в:
- Жидкостях и газах за счет передвижения заряженных ионов.
- Вакууме, газе и воздухе с помощью термоэлектронной эмиссии.
- Полупроводниках, вследствие движения носителей заряда.
Условия возникновения электрического тока:
- Нагревание проводников (не сверхпроводников).
- Приложение к носителям заряда разности потенциалов.
- Химическая реакция с выделением новых веществ.
- Воздействие магнитного поля на проводник.
Формы сигнала тока:
- Прямая линия.
- Переменная синусоида гармоники.
- Меандром, похожий на синусоиду, но имеющий острые углы (иногда углы могут сглаживаться).
- Пульсирующая форма одного направления, с амплитудой, колеблющейся от нуля до наибольшей величины по определенному закону.
Виды работы электрического тока:
- Световое излучение, создающееся приборами освещения.
- Создание тепла с помощью нагревательных элементов.
- Механическая работа (вращение электродвигателей, действие других электрических устройств).
- Создание электромагнитного излучения.
Отрицательные явления, вызываемые электрическим током:
- Перегрев контактов и токоведущих частей.
- Возникновение вихревых токов в сердечниках электрических устройств.
- Электромагнитные излучения во внешнюю среду.
Создатели электрических устройств и различных схем при проектировании должны учитывать вышеперечисленные свойства электрического тока в своих разработках. Например, вредное влияние вихревых токов в электродвигателях, трансформаторах и генераторах снижается путем шихтовки сердечников, применяемых для пропускания магнитных потоков. Шихтовка сердечника – это его изготовление не из цельного куска металла, а из набора отдельных тонких пластин специальной электротехнической стали.
Но, с другой стороны, вихревые токи используют для работы микроволновых печей, духовок, действующих по принципу магнитной индукции. Поэтому, можно сказать, что вихревые токи оказывают не только вред, но и пользу.
Переменный ток с сигналом в форме синусоиды может различаться частотой колебаний за единицу времени. В нашей стране промышленная частота тока электрических устройств стандартная, и равна 50 герцам. В некоторых странах используется частота тока 60 герц.
Для различных целей в электротехнике и радиотехнике используют другие значения частоты:
- Низкочастотные сигналы с меньшей величиной частоты тока.
- Высокочастотные сигналы, которые намного выше частоты тока промышленного использования.
Считается, что электрический ток возникает при движении электронов внутри проводника, поэтому он называется током проводимости. Но существует и другой вид электрического тока, который получил название конвекционного. Он возникает при движении заряженных макротел, например, капель дождя.
Электрический ток в металлах
Движение электронов при воздействии на них постоянной силы сравнивают с парашютистом, который снижается на землю. В этих двух случаях происходит равномерное движение. На парашютиста действует сила тяжести, а противостоит ей сила сопротивления воздуха. На движение электронов действует сила электрического поля, а сопротивляются этому движению ионы решеток кристаллов. Средняя скорость электронов достигает постоянного значения, так же как и скорость парашютиста.
В металлическом проводнике скорость движения одного электрона равна 0,1 мм в секунду, а скорость электрического тока около 300 тысяч км в секунду. Это объясняется тем, что электрический ток течет только там, где к заряженным частицам приложено напряжение. Поэтому достигается большая скорость протекания тока.
При перемещении электронов в кристаллической решетке существует следующая закономерность. Электроны сталкиваются не со всеми встречными ионами, а только с каждым десятым из них. Это объясняется законами квантовой механики, которые можно упрощенно объяснить следующим образом.
Движению электронов мешают большие ионы, которые оказывают сопротивление. Это особенно заметно при нагревании металлов, когда тяжелые ионы «качаются», увеличиваются в размерах и уменьшают электропроводность решеток кристаллов проводника. Поэтому при нагревании металлов всегда увеличивается их сопротивление. При снижении температуры повышается электрическая проводимость. При снижении температуры металла до абсолютного нуля можно добиться эффекта сверхпроводимости.
Похожие темы:
- Фаза и ноль. Работа и измерения. Особенности
- Закон Ома. Для цепей и тока. Формулы и применение
- Ток короткого замыкания. Виды и работа. Применение и особенности
- Мощность электрического тока. Виды и работа. Особенности
- Пусковой ток. Типы и работа. Применение и особенности
- Качество электроэнергии. Показатели и характеристики. Факторы
- Законы Ампера и Лоренца. Работа и применение. Особенности
- Ионные токи. Виды и применение. Особенности
- Электродвижущая сила (ЭДС). Виды и применение. Особенности
- Ток высокой частоты (ТВЧ). Свойства и применение. Особенности