Катушка с током представляет собой
Перейти к содержимому

Катушка с током представляет собой

  • автор:

Магнитное поле катушки с током

Движущийся электрический заряд создает в окружающем пространстве магнитное поле. Поток электронов, проходящих по проводнику создают магнитное поле вокруг проводника. Если металлический провод намотать кольцами на какой-нибудь стержень, то получится катушка. Оказывается магнитное поле, создаваемое такой катушкой, обладает интересными и, самое главное, полезными свойствами.

Почему возникает магнитное поле

Магнитные свойства некоторых веществ, позволяющие притягивать металлические предметы, были известны с давних времен. Но к пониманию сути этого явления удалось приблизиться только в начале XIX века. По аналогии с электрическими зарядами, были попытки объяснить магнитные эффекты с помощью неких магнитных зарядов (диполей). В 1820 г. датский физик Ханс Эрстед обнаружил, что магнитная стрелка отклоняется при пропускании электрического тока через проводник, находящийся около нее.

Тогда же французский исследователь Андре Ампер установил, что два проводника, расположенные параллельно друг другу, вызывают взаимное притяжение при пропускании через них электрического тока в одном направлении и отталкивание, если токи направлены в разные стороны.

На основании этих наблюдений Ампер пришел к выводу, что взаимодействие тока со стрелкой, притяжение (и отталкивание) проводов и постоянных магнитов между собой можно объяснить, если предположить, что магнитное поле создается движущимися электрическими зарядами. Дополнительно Ампер выдвинул смелую гипотезу, согласно которой внутри вещества существуют незатухающие молекулярные токи, которые и являются причиной возникновения постоянного магнитного поля. Тогда все магнитные явления можно объяснить взаимодействием движущихся электрических зарядов, и никаких особенных магнитных зарядов не существует.

Математическую модель (теорию), с помощью которой стало возможным рассчитывать величину магнитного поля и силу взаимодействия, разработал английский физик Джеймс Максвелл. Из уравнений Максвелла, объединивших электрические и магнитные явления, следовало, что:

  • Магнитное поле возникает только в результате движения электрических зарядов;
  • Постоянное магнитное поле существует у природных магнитных тел, но и в этом случае причиной возникновения поля является непрерывное движение молекулярных токов (вихрей) в массе вещества;
  • Магнитное поле можно создать еще с помощью переменного электрического поля, но это тема будет рассмотрена в следующих наших статьях.

Магнитное поле катушки с током

Металлический провод, намотанный кольцами на любой цилиндрический стержень (деревянный, пластмассовый и т.п.) — это и есть электромагнитная катушка. Провод должен быть изолированным, то есть покрыт каким-либо изолятором (лаком или пластиковой оплеткой) во избежание замыкания соседних витков. В результате протекания тока магнитные поля всех витков складываются и получается, что суммарное магнитное поле катушки с током идентично (полностью похоже) магнитному полю постоянного магнита.

Магнитное поле катушки и постоянного магнита

Внутри катушки магнитное поле будет однородное, как в постоянном магните. Снаружи магнитные линии поля катушки с током можно обнаружить с помощью мелких металлических опилок. Линии магнитного поля замкнуты. По аналогии с магнитной стрелкой компаса, катушка с током имеет два полюса — южный и северный. Силовые линии выходят из северного полюса и заканчиваются в южном.

Для катушек с током существуют дополнительные, отдельные названия, которые используют в зависимости от области применения:

  • Катушка индуктивности, или просто — индуктивность. Термин используется в радиотехнике;
  • Дроссель (drossel — регулятор, ограничитель). Используется в электротехнике;
  • Соленоид. Это составное слово происходит от двух греческих слов: solen — канал, труба и eidos — подобный). Так называют специальные катушки с сердечниками из специальных магнитных сплавов (ферромагнетиков), которые используют в качестве электромеханических механизмов. Например, в автомобильных стартерах втягивающее реле — это соленоид.

Энергия магнитного поля

В катушке с током запасается энергия от источника электропитания (батареи, аккумулятора), которая тем больше, чем больше ток I и величина L, которая называется индуктивностью. Энергия магнитного поля катушки с током W вычисляется с помощью формулы:

Эта формула напоминает формулу для кинетической энергии тела. Индуктивность аналогична массе тела, а сила тока аналогична скорости тела. Магнитная энергия пропорциональна квадрату силы тока, как кинетическая энергия пропорциональна квадрату скорости.

Для расчета величины индуктивности катушки существует следующая формула:

$$ L = μ *\over l_к> $$N — число витков катушки;

S — площадь поперечного сечения катушки;

lк — длина катушки;

μ — магнитная проницаемость материала сердечника — справочная величина. Сердечник представляет собой металлический стержень, помещенный внутрь катушки. Он позволяет значительно увеличивать величину магнитного поля.

Что мы узнали?

Итак, мы узнали, что магнитное поле возникает только в результате движения электрических зарядов. Магнитное поле катушки с током похоже на магнитное поле постоянного магнита. Энергию магнитного поля катушки можно рассчитать, зная силу тока I и индуктивность L.

Магнитное поле катушки с током. Электромагниты и их применение

На этом уроке мы рассмотрим магнитное поле, возникающее в катушке с током. Также мы познакомимся с таким прибором, как электромагнит и подумаем, в каких целях этот прибор можно применять.

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет.

Получите невероятные возможности

1. Откройте доступ ко всем видеоурокам комплекта.

2. Раздавайте видеоуроки в личные кабинеты ученикам.

3. Смотрите статистику просмотра видеоуроков учениками.
Получить доступ

Конспект урока «Магнитное поле катушки с током. Электромагниты и их применение»

Катушка представляет собой проволоку, намотанную на неметаллический каркас.

Как правило, катушка обладает большим числом витков, при этом витки расположены вплотную друг к другу. Таким образом, проходя через проволоку, ток будет идти по спирали. Если такую катушку подвесить на гибких проводах, то она будет вести себя, как магнитная стрелка. Значит, у катушки с током тоже есть магнитные полюса.

Как мы помним из предыдущего урока, магнитные линии направлены от южного полюса к северному. Тогда, получается, что катушка с током будет фактически являться магнитом. То есть, при прохождении тока через витки, внутри катушки образуется однородное магнитное поле.

Обратите внимание, насколько это явление похоже на возникновение магнитного поля вокруг проводника.

Мы видим полностью симметричную картину: в одном случае, вокруг прямого тока образуются круговые магнитные линии, а в другом — вокруг прямых магнитных линий идут витки электрического тока. Это ещё раз доказывает то, что электрические и магнитные явления неделимы.

Итак, катушка с током, фактически имеет свойства полосового магнита. Совсем недавно мы говорили, что магниты обладают полями разной силы. Так вот, было многократно подтверждено опытами, что катушка с бо́льшим числом витков имеет более сильное магнитное поле.

И, конечно, сила магнитного поля зависит от силы тока в проводнике.

Если мы будем изменять силу тока в катушке, то убедимся, что её магнитное действие усиливается с увеличением силы тока. И наоборот: магнитное действие катушки ослабевает при уменьшении силы тока. Но, кроме описанных нами двух способов усилить магнитное поле катушки, есть ещё один способ. Этот способ впервые придумал Доминик Франсуа Жан Араго, поместив внутрь катушки металлический стержень.

Он сделал это следующим образом: Араго взял полую стеклянную трубку и намотал на неё проводник, а затем внутрь трубки втолкнул железный стержень.

Араго заметил, что даже при постоянной силе тока и числе витков, магнитное поле катушки значительно увеличивается, если внутри трубки находится железный стержень. Впоследствии, железный стержень начали называть сердечником, а катушку с сердечником — электромагнитом. Назначение электромагнита понятно из названия: с помощью электрического тока создаётся мощный магнит.

Электромагниты широко используются людьми. Это довольно удобно, потому что регулировать мощность магнита очень легко. Его можно изготавливать разных размеров, с разным числом витков и пропускать через них различный ток. Мы не будем сейчас изучать, как рассчитывается сила электромагнита. Просто приведём несколько примеров их применения. Вы все знаете, что существуют магнитные замки. Они сделаны на основе электромагнита: чтобы открыть дверь, нужно ввести код.

При вводе кода, по электромагниту временно перестаёт течь ток, и дверь спокойно можно открыть. Когда по электромагниту течет ток, он с такой силой притягивает к себе дверь, что человек не в состоянии её открыть. При вводе кода, отключается ток, и магнитное поле пропадает. Поэтому, человек легко может открыть дверь.

Или, например, когда нужно поднять тяжелый металлический груз, использовать электромагнит очень удобно.

Широкое применение электромагниты нашли в сортировке. Особенно, это удобно, когда нужно отсортировать какие-то мелкие предметы. На установке, представленной на рисунке, вы видите крутящийся барабан, который является электромагнитом.

С его помощью, например, легко отделить металлический мусор от неметаллического, чтобы потом отправить отсортированный мусор на переработку.

Можно ещё долго перечислять области, в которых используются электромагниты, но для объяснения этого использования, нам нужно поднакопить знания.

Магнитное поле катушки с током. Электромагниты и их применение

В прошлом уроке мы рассмотрели магнитное поле прямого проводника с током. А что будет, если этот проводник будет иметь другую форму?

Наиболее интересен этот вопрос становится, если мы говорим про катушку.

Катушка — это проводник, намотанный на неметаллический (чаще всего деревянный) каркас.

Обычно катушка обладает большим количеством витков, расположенных вплотную друг к другу (рисунок 1). Получается, что проходя по этим проводам, ток идет по спирали.

В данном уроке вы узнаете, какое магнитное поле возникает при прохождении тока через катушку, какими интересными свойствами оно обладает и какое имеет применение.

Катушка с током как магнитная стрелка

Возьмем катушку и подвесим ее на тонких и гибких проводниках. Когда мы включим ток, катушка примет определенное положение (рисунок 2).

Дело в том, что один конец катушки будет направлен точно на север, а другой — на юг. Получается, что катушка при прохождении тока через нее ведет себя как магнитная стрелка. У нее так же есть два полюса: северный и южный.

Магнитное поле катушки

Если по катушке идет ток, то вокруг нее возникает магнитное поле. Его можно увидеть, проведя опыт с железными опилками, подобный тому, что мы проводили для прямого проводника с током в прошлом уроке.

На рисунке 3 представлено схематическое изображение магнитных линий для катушки с током.

Как вы видите, магнитные линии представляют собой замкнутые кривые. Принято считать, что они направлены от северного полюса катушки к южному.

Правило правой руки для катушки с током

Вы знаете, что направление тока и направление магнитных линий связаны между собой. Используя правило право руки для прямого проводника с током, мы можем найти направление тока, если нам известно направление магнитных линий. Или, наоборот, при известном направлении тока в проводнике мы можем определить направление магнитных линий.

Для катушки с током это правило тоже действует, но принимает немного другой вид (рисунок 4).

Правило правой руки для катушки с током:
если взять катушку в правую руку так, чтобы четыре пальца смотрели в сторону протекания тока, то отставленный большой палец укажет на северный полюс катушки и совпадет с направлением магнитных линий.

Изменение магнитного действия катушки

Так как катушки с током имеют два полюса, их часто применяют в технике как магниты. Почему же тогда просто не взять обычный магнит?

Дело в том, что магнитное действие катушки можно изменять (усиливать или ослаблять). Сейчас мы рассмотрим, какими способами это можно сделать.

Проведем простой опыт (рисунок 5). Насыпем мелкие железные опилки и включим ток. Катушка начнет притягивать их.

А теперь, не изменяя силу тока, возьмем катушку с большим числом витков, чем прежняя. Вы увидите, что количество притянутых опилок заметно увеличилось.

Магнитное действие катушки с током тем сильнее, чем больше число витков в ней.

Добавим к нашей электрической цепи реостат (рисунок 6). Он позволит изменять силу тока.

С помощью таких изменений силы тока, мы увидим, что при разных ее значениях катушка притягивает разное количество железных предметов.

При увеличении силы тока действие магнитного поля катушки с током усиливается, при уменьшении — ослабляется.

Можно ли усилить магнитное действие катушки с током, не изменяя количество витков и силу тока? Можно! Для этого нужно ввести внутрь катушки железный стержень (рисунок 7). Такие стержни называются сердечниками.

Электромагнит

Добавление сердечников в катушки с током — простой способ значительно усилить их магнитное действие. Поэтому такие конструкции получили широкое применение. Называют же их электромагнитами.

Электромагнит — это катушка с железным сердечником внутри.

Электромагниты являются основной частью многих приборов. Они обладают несколькими крайне полезными свойствами:

  • Они быстро размагничиваются при выключении тока
  • Во время работы можно менять силу тока в катушке и таким способом изменять магнитное действие электромагнита
  • Электромагниты легко изготавливаются самых различных размеров.

Применение электромагнитов

Рассмотрим несколько примеров применения электромагнитов.

На рисунке 8 изображен дугообразный электромагнит. Он удерживает железную пластину (якорь) с подвешенным грузом.

Такие установки широко используются на заводах для перемещения различных изделий из металлов, сбора металлической стружки.

На рисунке 9 изображен в разрезе магнитный сепаратор для зерна.

Принцип его работы очень прост. В собранное зерно добавляют очень мелкие железные опилки. Они не прилипают к гладким зернам злаков, но прилипают к зернам сорняков.

Из бункера 1 зерна с опилками высыпаются на вращающийся барабан 2. Внутри него находится мощный электромагнит 5. Он притягивает железные опилки, а вместе с ними и зерна сорняков. Так сепаратор очищает зерно.

Электромагниты также применяются во многих других устройствах. Некоторые из них мы рассмотрим ниже в данном уроке в разделе “Задания”.

Упражнения

Упражнение №1

Нужно построить электромагнит, подъемную силу которого можно регулировать, не изменяя конструкции. Как это сделать?

Подъемная сила будет зависеть от магнитного действия электромагнита. Мы знаем три способа, как это сделать: изменить число витков, добавить сердечник или изменить силу тока.

Первый способ нам не подходит, так как подразумевает собой изменение конструкции. Второй не подходит, так как у нас и так уже катушка с вставленным сердечником (электромагнит).

Остается изменение силы тока. Для того, чтобы у нас была возможность это делать, необходимо включить в цепь реостат. Изменяя с его помощью силу тока, мы будем уменьшать или увеличивать магнитное действие электромагнита и изменять его подъемную силу.

Упражнение №2

Что надо сделать, чтобы изменить магнитные полюсы катушки с током на противоположные?

Вы уже знаете, что для определения полюсов катушки можно воспользоваться правилом правой руки. Пользуясь им, мы обхватываем катушку так, чтобы наши четыре пальца совпадали с направлением тока в витках. Тогда наш большой палец указывает на северный полюс катушки.

Это означает, что направление тока и расположение полюсов катушки связаны между собой.

Что сделать, чтобы северный полюс оказался с другой стороны? Поменять направление тока на противоположное.

Упражнение №3

Как построить сильный электромагнит, если конструктору дано условие, чтобы ток в электромагните был сравнительно малым?

Если мы не можем усилить магнитное действие электромагнита с помощью увеличения силы тока, то остается только увеличить количество витков в катушке.

Вставить дополнительно железный сердечник мы тоже не можем, так как электромагнит — это уже катушка с сердечником.

Упражнение №4

Используемые в подъемном кране электромагниты обладают громадной мощностью. Электромагниты, при помощи которых удаляют из глаз случайно попавшие железные опилки, очень слабы. Какими способами достигают такого различия?

Для увеличения мощности увеличивают число витков в катушке, силу тока, оставляют в катушке железный сердечник. Для уменьшения мощности можно уменьшить число витков, снизить силу тока и вытащить сердечник.

Задания

Задание №1

На рисунке 10 дана схема устройства электрического звонка. На ней буквами обозначено: ЭМ — дугообразный электромагнит, Я — железная пластинка — якорь, М — молоточек, З — звонковая чаша, К — контактная пружина, касающаяся винта В. Рассмотрите схему звонка и объясните, как он действует.

Когда мы подаем на это устройство питание, по проводам начинает течь ток. Он течет и по проводам в катушках дугообразного электромагнита (ЭМ).

Возникает магнитное поле. Катушки начинают действовать как магниты и притягивают к себе якорь (так как он железный).

К якорю прикреплен молоточек (М). При притяжении якоря к электромагниту он ударяется о звонковую чашу (З).

Также якорь соединен с контактной пластиной (К). При притяжении к электромагниту он тянет ее за собой и электрическая цепь размыкается — винт (В) перестает касаться пластины, тока нет.

Тут же пропадает и магнитное поле катушек. Якорь возвращается на прежнее место и цепь снова замыкается. Снова по проводам течет ток, возникает магнитное поле, и якорь притягивается к электромагниту.

Получается, что молоточек совершает мелкие быстрые удары по звонковой чаше. Каждый удар происходит при возникновении магнитного поля. Так будет происходить до тех пор, пока звонок не будет отключен от источника питания.

Задание №2

На рисунке 11 показана схема простейшей телеграфной установки, позволяющей передавать телеграммы со станции A на станцию B. На схеме цифрами обозначено: 1 — ключ, 2 — электромагнит, 3 — якорь, 4 — пружина, 5 — колесико смазанное краской.
По схеме объясните устройство установки.

Когда на станции A замыкается ключ, по проводам начинает идти электрический ток. На станции B вокруг катушки возникает магнитное поле, она начинает вести себя как магнит.

Катушка притягивает к себе якорь, и другой его конец прижимает ленту к колесику с краской. Пока лента прижата к колесику, на ней остается след.

Когда на станции A размыкают ключ, якорь возвращается в исходное положение. Он больше не прижимает ленту к колесику с краской — на ней не остается следов.

С помощью такой установки, находясь далеко друг от друга, можно выбивать на ленте, замыкая и размыкая ключ, символы азбуки Морзе — точки и тире.

Задание №3

В мощных электрических двигателях, применяемых в прокатных станах, шахтных подъемниках, насосах, сила тока достигает нескольких тысяч ампер. Так как в последовательно соединенных проводниках сила тока одинакова, то такая же сила тока будет во всех соединительных проводах этой цепи. Это очень неудобно, особенно если потребитель тока находится на большом расстоянии от пульта управления, где включается ток. Такие цепи можно включать при помощи специального устройства — электромагнитного реле (рисунок 12), приводя его в действие малой силой тока. На схеме обозначено: 1 — электромагнит, 2 — якорь, 3 — контакты рабочей цепи, 4 — пружина, 5 — электродвигатель, 6 — контакты цепи электродвигателя.
Объясните как действует прибор.

При замыкании ключа, в катушке электромагнита 1 возникает электрический ток. Также возникает и магнитное поле. Из-за этого электромагнит начинает притягивать к себе якорь 2.

Когда якорь притянулся к катушке, его правый конец опускается на контакты 3. Цепь оказывается замкнутой. Теперь по цепи, в которой находится электродвигатель тоже течет ток. Двигатель начинает работать.

Смысл такой установки в том, что малой силой тока с помощью использования электромагнита в устройстве реле, можно запускать электродвигатель большой мощности, находящийся на большом расстоянии от места включения тока.

Катушка с током, 8 букв — сканворды и кроссворды

Ответ на вопрос в сканворде (кроссворде) «Катушка с током», 8 букв (первая — с, последняя — д):

с о л е н о и д

(СОЛЕНОИД) �� 2 �� 0

Другие определения (вопросы) к слову «соленоид» (21)

  1. Разновидность катушки индуктивности
  2. Проволочная спираль, намотанная на сердечник, вокруг которой при пропускании электрического тока создается магнитное поле
  3. Электромагнит
  4. Спираль для создания магнитного поля
  5. Проволочная спираль, вокруг которой, при пропускании электрического тока, создается магнитное поле
  6. Свернутый в спираль электрический проводник, по которому течет электрический ток
  7. Цилиндрическая катушка, состоящая из большого числа намотанных вплотную друг к другу витков проводника
  8. Катушка проволоки вокруг железного сердечника
  9. Электронно управляемый магнитный клапан
  10. Разновидность катушки индуктивности цилиндр.формы
  11. https://sinonim.org/sc
  12. Электрокатушка с подвижным сердечником
  13. Электромагнит с подвижным сердечником
  14. Именно так называется спираль, обтекаемая током
  15. Основная деталь электромагнита
  16. Катушка индуктивности
  17. Спираль, обтекаемая током
  18. Как называется спираль, обтекаемая током
  19. электрич. катушка в форме цилиндра с большим числом витков в обмотке
  20. Основа электромагнита
  21. Электрическая катушка в форме цилиндра с большим числом витков в обмотке
  22. Электрокатушка с втягивающимся сердечником
  1. физ. (физическое) разновидность катушки индуктивности; проволочная спираль, намотанная на сердечник, вокруг которой при пропускании электрического тока создается магнитное поле

Значение слова

СОЛЕНО́ИД, -а, м. Физ., тех. Намотанный на цилиндрическую поверхность проводник, по которому течет электрический ток.

[От греч. σωλήν — трубка и ε’ι̃δου — вид]

Солено́ид (от греческого σωλήνας (солинаc) — труба и ειδός (эйдос) — подобный, похожий ) — разновидность катушки индуктивности.

Конструктивно длинные соленоиды выполняются как в виде однослойной намотки (см. рис.), так и многослойной.

Если длина намотки значительно превышает диаметр намотки, то в полости соленоида при подаче в него электрического тока порождается магнитное поле, близкое к однородному.

Также часто соленоидами называют электромеханические исполнительные механизмы, обычно со втягиваемым ферромагнитным сердечником. В таком применении соленоид почти всегда снабжается внешним ферромагнитным магнитопроводом, обычно называемым ярмом.

Бесконечно длинный соленоид — это соленоид, длина которого стремится к бесконечности (то есть его длина много больше его поперечных размеров).

Что искали другие

  • Стеллион
  • Царский министр финансов
  • Город в Швейцарии
  • За хранение орлиных перьев американцам грозит штраф до 25 тысяч долларов. Для кого сделано исключение
  • Игрок в шашки

Случайное

  • Символ девственности в мифологии
  • Чистый бензин
  • Полный бред в устах оппонента
  • Клейкий цветной пластырь для гримма
  • Подвижный «хвостик» у живой клетки
  • Поиск занял 0.012 сек. Вспомните, как часто вы ищете ответы? Добавьте sinonim.org в закладки, чтобы быстро искать их, а также синонимы к любым словам, антонимы, ассоциации и предложения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *