Модуль эдс самоиндукции формула через силу тока
Перейти к содержимому

Модуль эдс самоиндукции формула через силу тока

  • автор:

Модуль эдс самоиндукции формула через силу тока

— ЭДС.
ЭДС не является силой в Ньютоновом смысле (неудачное название величины, сохраненное как дань традиции).
εi возникает при изменении магнитного потока Ф, пронизывающего контур.

— ЭДС индукции.

— ЭДС индукции при движении одного из проводников контура (так, чтобы менялся Ф). В этом случае проводник длиной l, движущийся со скоростью v становится источником тока.

— ЭДС индукции в контуре, вращающемся в магнитном поле со скоростью ω.

Другие формулы, где встречается ЭДС:

— закон Ома для полной цепи. В замкнутой цепи ЭДС рождает электрический ток I.

Направление индукционного тока определяют по правилам:
— правило Ленца — возникающий в замкнутом контуре индукционный ток противодействует тому изменению магнитного потока, которым вызван данный ток;
— для проводника, движущегося в магнитном поле, иногда проще воспользоваться правилом правой руки — если расположить раскрытую ладонь правой руки так, чтобу в нее входили силовые линии магнитного поля В, а большой палец, отставленный в сторону указывал направление скорости v, то четыре пальца руки укажут направление индукционного тока I.

Самоиндукция. Энергия магнитного поля

Справочник

Самоиндукция — это один из случаев электромагнитной индукции, при котором электромагнитный поток создается при протекании через контур тока, при этом он изменяется и вызывает ЭДС индукции.

Понятие об ЭДС самоиндукции

При явлении самоиндукции, если ток конкретного контура изменен, то меняется магнитное поле данного тока, а значит и всего магнитного потока, который проходит через конкретный контур. При этом в контуре создается ЭДС самоиндукции, которая создает препятствие на пути изменения электрического тока в контуре. Если цепь, которая имеет постоянный источник тока, замыкают, то сила тока появляется не мгновенно, при размыкании цепи электрический ток не пропадает сразу, а через некоторое время самоиндукция исчезает.

Формула самоиндукции

Магнитный поток Φ, проходящий через катушку с током или контур постоянных форм и размеров, является пропорциональным силе тока I.

Формулы 1 — 3

Самоиндукция определяется по формуле:

\[\boldsymbol<\Phi>=\boldsymbol \boldsymbol\]

Коэффициент пропорциональности L в формуле Ф = L I, это и будет коэффициент самоиндукции. Она тесно связана с формой, размерами контура, магнитными показателями и свойствами вещества, в котором расположен контур.

Закон, которому подчиняется ЭДС самоиндукции:

\[\varepsilon=-L \frac\]

Если контур имеет постоянные размеры и форму, то ЭДС самоиндукции энергии магнитного поля прямо пропорциональна скорости изменения силы тока в конкретном контуре.

Единица индуктивности в СИ имеет общепринятое название Генри, обозначается — Гн.

Индуктивность катушки или контура равна 1 Гн, в случае силы тока в 1 А, поток составляет 1 Вб:

\[1 \Gamma н=\frac\]

Сила самоиндукции зависит от скорости увеличения/уменьшения магнитного поля. При этом может меняться магнитное поле, а также контур может менять положение в магнитном поле.

Как рассчитать индуктивность

Для расчета индуктивности рассмотрим длинный соленоид — это цилиндрическая катушка индуктивности, длина которой значительно больше диаметра.

Соленоид из примера имеет N витков, длину L, площадь сечения S.

\[B=\mu_ \boldsymbol \boldsymbol\]

где I — это обозначение тока в соленоиде, \[n=\frac\]

n показывает количество витков соленоида на единицу его длины.

Магнитный поток, проходящий через все N витков внутри катушки соленоида, составляет:

Индуктивность соленоида будет выражена формулой:

\[L=\mu 0 n^ S \cdot l=\mu 0 n^ V\]

где V = S·l , это объем длинного соленоида.

Рассмотренный пример является приближенно верным для катушек достаточной длины, так как не берется в расчет краевой эффект. В случае, если соленоид заполнен веществом, которое имеет магнитную проницаемость μ, при действии заданного тока I, индукция магнитного поля будет возрастать по модулю в μ раз. Следовательно, индуктивность катушки с сердечником тоже будет увеличиваться в μ раз:

\[L_<\mu>=\mu \cdot L=\mu 0 \cdot \mu \cdot=n^ \cdot V \]

ЭДС самоиндукции в цепи

В соответствии с законом Фарадея, ЭДС самоиндукции записывается по формуле:

\[\delta_=\delta_=\frac=-L \frac\]

ЭДС самоиндукции равна значению, которое прямо пропорционально индуктивности катушки и скорости изменения силы тока, проходящего через нее.

Носителем энергии будет магнитное поле. Катушка, по виткам которой проходит ток, обладает запасом энергии, по аналогии с заряженным конденсатором.

Если параллельно катушке с большим показателем индуктивности включить в цепь постоянного тока электрическую лампу, то при размыкании цепи ЭДС самоиндукции цепи вызовет ток, будет наблюдаться которая вспышка лампы.

ЭДС самоиндукции

На рисунке изображена цепь, в момент размыкания ключа К, происходим короткая вспышка электрической лампы. Ток в цепи возникает под воздействием ЭДС самоиндукции, а источником энергии, которая будет выделяться в цепью, будет магнитное поле катушки.

Исходя из закона сохранения энергии, можно сделать вывод, что вся энергия, выделенная из катушки, будет отдана в виде джоулева тепла.

Формулы 5 — 8

Если R – полное сопротивление цепи, тогда за интервал времени Δt будет выделено теплоты:

\[\Delta Q=I^ \cdot R \cdot \Delta t\]

Ток в цепи можно выразить формулой:

\[I=\frac>=\frac \frac\]

Формула исчисления выделенной теплоты Δt можно записать таким образом:

\[\Delta Q=-L \cdot I \cdot \Delta I=-\boldsymbol<\Phi>(I) \Delta I\]

где \[\Delta I, а значение тока в цепи постепенно понижается до нуля от изначального \[I_\].

Вся теплота, которая выделится в цепи, можно получить при интегрировании в пределах от \[I_\] до нуля. И получаем:

\[Q=\frac^>\]

Нет времени решать самому?

§ 33. Явление самоиндукции. Индуктивность. Энергия магнитного поля катушки с током

Фарадей опытным путём установил, что электромагнитная индукция проявляется во всех случаях изменения магнитного потока через поверхность, ограниченную контуром. Современник Фарадея американский физик Джозеф Генри ( 1797–1878 ) независимо от своего английского коллеги открыл некоторые из электромагнитных эффектов. В 1829 г. Генри обнаружил, что ЭДС индукции возникает в неподвижном контуре и в отсутствие изменения внешнего магнитного поля. Каков механизм возникновения ЭДС индукции в этом случае?

Самоиндукция. Если электрический ток, проходящий в замкнутом проводящем контуре, по каким-либо причинам изменяется, то изменяется и магнитное поле, создаваемое этим током. Это влечёт за собой изменение магнитного потока через поверхность, ограниченную контуром. Поскольку магнитный поток Ф пропорционален модулю магнитной индукции В поля, который, в свою очередь, пропорционален силе тока I в контуре, то

Коэффициенту пропорциональности между магнитным потоком Ф и силой тока I Томсон (лорд Кельвин) в 1853 г. предложил название «коэффициент самоиндукции»:

Коэффициент самоиндукции L часто называют индуктивностью контура. В СИ индуктивность измеряют в генри (Гн). Индуктивность контура равна 1 Гн, если при силе тока в контуре 1 А магнитный поток через поверхность, ограниченную этим контуром, равен 1 Вб. Индуктивность зависит от размеров и формы контура, а также от магнитных свойств среды, в которой находится этот контур.

Если электрический ток, проходящий в контуре, изменяется, то он создаёт изменяющийся магнитный поток, что приводит к появлению ЭДС индукции. Это явление назвали самоиндукцией.

Самоиндукция — явление возникновения ЭДС индукции в электрической цепи в результате изменения силы тока в этой же цепи.

Возникающую в этом случае ЭДС назвали электродвижущей силой самоиндукции. Согласно закону электромагнитной индукции,

Если индуктивность контура не изменяется во времени, т. е. L = const, то

Поскольку контур замкнут, ЭДС самоиндукции создаёт в нём ток самоиндукции. Силу тока самоиндукции можно определить по закону Ома где R — сопротивление контура. Согласно правилу Ленца, ток самоиндукции всегда направлен так, чтобы противодействовать изменению тока, создаваемого источником. При возрастании силы тока ток самоиндукции направлен против тока источника, а при уменьшении — направления тока источника и тока самоиндукции совпадают.

От теории к практике

Какой должна быть скорость изменения силы тока, чтобы в катушке с индуктивностью L = 0,20 Гн возникла ЭДС самоиндукции = 4,0 В?

Рис.

Наблюдение самоиндукции. Для наблюдения явления самоиндукции соберём электрическую цепь, состоящую из катушки с большой индуктивностью, резистора с электрическим сопротивлением, равным сопротивлению обмотки катушки, двух одинаковых лампочек, ключа и источника постоянного тока. Схема цепи представлена на рисунке 185. При замыкании ключа лампочка Л2 начинает светиться практически сразу, а лампочка Л1 — с заметным запаздыванием. При возрастании силы тока I1, созданного источником на участке, образованном катушкой и лампочкой Л1, ЭДС самоиндукции в катушке имеет такую полярность, что создаваемый ею ток самоиндукции Iс направлен навстречу току источника. В результате рост силы тока I1 источника замедляется, и сила тока I1 — |Iс| не сразу достигает своего максимального значения.

Явление самоиндукции можно наблюдать и при размыкании электрической цепи. Соберём цепь, состоящую из катушки с большим количеством витков 1, намотанных на железный сердечник 2, к зажимам которой подключена лампочка с большим электрическим сопротивлением по сравнению с сопротивлением обмотки катушки ( рис. 185.1 ). В качестве источника тока возьмём источник, ЭДС которого 2 В . Лампочка подключена параллельно катушке. При размыкании ключа сохраняется замкнутой часть цепи, состоящая из уже последовательно соединённых катушки и лампочки.

Пока ключ замкнут, лампочка будет тускло светиться, так как отношение сил токов, проходящих через лампочку и катушку, обратно отношению их сопротивлений . Однако при размыкании ключа можно увидеть, что лампочка ярко вспыхивает. Почему это происходит? При размыкании цепи сила тока в катушке убывает, что приводит к возникновению ЭДС самоиндукции. Возникающий в цепи ток самоиндукции, согласно правилу Ленца, совпадает по направлению с током катушки, не позволяя ему резко уменьшать силу тока. Это и обеспечивает вспышку лампочки. Заметим, что явление самоиндукции имеет место в любых случаях изменения силы тока в цепи, содержащей индуктивность, или изменения самой индуктивности.

Энергия магнитного поля. Откуда берётся энергия, обеспечивающая вспышку лампочки? Это не энергия источника тока, так как он уже отсоединён. Вспышка лампочки происходит одновременно с уменьшением силы тока в катушке и создаваемого током магнитного поля. Можно предположить, что запасённая в катушке в процессе самоиндукции энергия магнитного поля превращается во внутреннюю энергию спирали лампочки и энергию её излучения.

При замыкании цепи, состоящей из источника тока с ЭДС , катушки с индуктивностью L и резистора, сопротивление которого R, сила тока в цепи начнёт возрастать и появится ЭДС самоиндукции .

Тогда в соответствии с законом Ома сила тока в цепи .

Умножив полученное равенство на IΔt, где Δt — достаточно малый промежуток времени, в течение которого сила тока I остаётся практически постоянной, найдём элементарную работу, совершаемую сторонними силами в источнике тока: .

Рис.

В процессе установления тока, когда сила тока I и магнитный поток Ф = LI возрастают, работа, совершаемая сторонними силами в источнике тока, превышает выделяющееся в резисторе количество теплоты. Элементарная дополнительная работа, совершаемая сторонними силами за промежуток времени Δt при преодолении ЭДС самоиндукции в процессе установления тока ( рис. 185.2 ):

Полная дополнительная работа Адоп, равная сумме элементарных дополнительных работ δAдоп в процессе установления тока, равна сумме площадей всех аналогичных столбиков, т. е. площади фигуры под графиком зависимости Ф = Ф(I) (см. рис. 185.2 ).

Эта работа превращается в энергию магнитного поля катушки, поэтому:

где L — индуктивность контура; I — сила тока.

От теории к практике

Какова индуктивность катушки, если при силе тока I = 2,0 А энергия магнитного поля катушки Wм = 1,2 Дж?

img

1. Что называют самоиндукцией?

2. В каких опытах можно наблюдать явление самоиндукции?

3. От чего зависит ЭДС самоиндукции?

4. Что называют индуктивностью? В каких единицах в СИ её измеряют?

5. Как вычислить энергию магнитного поля катушки с током?

6. Почему для создания электрического тока в цепи с катушкой индуктивности источник тока должен затратить энергию?

Примеры решения задач

Пример 1. На рисунке 186 представлен график зависимости силы тока, проходящего по соленоиду, от времени. Определите максимальное значение модуля ЭДС самоиндукции в соленоиде, если его индуктивность L = 40 мГн.

Рис.

Дано:
L = 40 мГн = 4,0 · 10 –2 Гн

Решение: ЭДС самоиндукции . Анализируя график ( рис. 186 ), можно сделать вывод, что сила тока, проходящего по соленоиду, изменяется на трёх участках:

1) от момента времени t1 = 0,0 с до момента времени t2 = 2,0 с сила тока изменяется на ΔI1 = 10 А за промежуток времени Δt1 = 2,0 с;

2) от момента времени t3 = 4,0 с до момента времени t4 = 6,0 с сила тока изменяется на ΔI2 = –20 А за промежуток времени Δt2 = 2,0 с;

3) от момента времени t5 = 8,0 с до момента времени t6 = 10,0 с сила тока изменяется на ΔI3 =10 А за промежуток времени Δt3 = 2,0 с.

Поскольку промежутки времени Δt1 = Δ t2 = Δ t3 = 2,0 с, то очевидно, что максимальное значение модуля скорости изменения силы тока, а следовательно, и максимальное значение модуля ЭДС самоиндукции, создаваемой в соленоиде, соответствует промежутку времени Δt2 = 2,0 с (от t3 = 4,0 с до t4 = 6,0 с):

Пример 2. На рисунке 187 представлен график зависимости ЭДС самоиндукции, возникающей в катушке с индуктивностью L = 2,0 мГн, от времени. Определите изменения силы тока на участках I, II и III графика. Чему равна энергия магнитного поля в момент времени t = 4,0 с, если в начальный момент времени сила тока в катушке I = 0?

Рис.

Дано:
L = 2,0 мГн = 2,0 · 10 –3 Гн
t = 4,0 с
ΔII — ? ΔIII — ?
ΔIIII — ? Wм — ?

Решение: Анализируя график, можно сделать вывод, что на участке I ЭДС самоиндукции = –3,0 мВ, на участке III — = 6,0 мВ. Изменение силы тока на этих участках графика можно определить, воспользовавшись законом электромагнитной индукции для явления самоиндукции:

На участке II графика = 0, следовательно, сила тока не изменялась: ΔIII = 0.

В момент времени t = 4,0 с энергия магнитного поля катушки .

Пример 3. За промежуток времени Δt = 9,50 мс сила тока в катушке индуктивности равномерно возросла от I1 = 1,60 А до I2 = 2,40 А . При этом в катушке возникала ЭДС самоиндукции = ‒14,0 В . Определите собственный магнитный поток в конце процесса нарастания тока и приращение энергии магнитного поля катушки.

Дано:
Δt = 9,50 мс = 9,50 · 10 -3 с
I1 = 1,60 А
I2 = 2,40 А
= ‒14,0 В

Решение: При изменении в катушке силы тока от I1 до I2 возникает собственный магнитный поток Фс = LI2 . Индуктивность L катушки можно определить из закона электромагнитной индукции для явления самоиндукции: . Следовательно,

Приращение энергии магнитного поля катушки

Упражнение 24

1. Сила тока, проходящего по замкнутому проводящему контуру, I = 1,2 А. Магнитное поле этого тока создаёт магнитный поток Ф = 3,0 мВб через поверхность, ограниченную контуром. Определите индуктивность контура.

2. При равномерном изменении силы тока в катушке на ΔI = –4,0 А за промежуток времени Δt = 0,10 с в ней возникает ЭДС самоиндукции = 20 В. Определите индуктивность катушки.

3. Определите ЭДС самоиндукции, возникающую в катушке, индуктивность которой L = 1,2 Гн, при равномерном изменении силы тока от I1 = 2,0 А до I2 = 6,0 А за промежуток времени Δt = 0,60 с. Определите приращение энергии магнитного поля при заданном изменении силы тока.

Рис.

4. На рисунке 188 представлен график зависимости силы тока в катушке, индуктивность которой L = 10 мГн, от времени. Определите ЭДС самоиндукции через промежутки времени t1 = 10 с и t2 = 20 с от момента начала отсчёта времени.

5. Сила тока в катушке равномерно уменьшилась от I1 = 10 А до I2 = 5,0 А. При этом энергия магнитного поля изменилась на ΔWм = –3,0 Дж. Определите индуктивность катушки и первоначальное значение энергии магнитного поля.

6. Определите ЭДС самоиндукции, возникающую в катушке, индуктивность которой L = 0,12 Гн, при равномерном уменьшении силы тока от I1 = 8,0 А, если за промежуток времени t1 = 0,20 с энергия магнитного поля уменьшилась в α = 2,0 раза.

7. Энергия магнитного поля катушки с индуктивностью L1 = 0,5 Гн больше энергии магнитного поля катушки с индуктивностью L2 в α = 1,5 раза . Определите индуктивность второй катушки, если отношение собственного магнитного потока через поверхности, ограниченные витками второй катушки, к собственному магнитному потоку через поверхности, ограниченные витками первой катушки, .

SA. Самоиндукция

Электрический ток, проходящий по контуру, создает вокруг него магнитное поле. Магнитный поток Φ через контур этого проводника (его называют собственным магнитным потоком) пропорционален модулю индукции В магнитного поля внутри контура \(\left( \Phi \sim B \right)\), а индукция магнитного поля в свою очередь пропорциональна силе тока в контуре \(\left( B\sim I \right)\).

Таким образом, собственный магнитный поток прямо пропорционален силе тока в контуре \(\left( \Phi \sim I \right)\). Эту зависимость математически можно представить следующим образом:

где L — коэффициент пропорциональности, который называется индуктивностью контура.

  • Индуктивность контура — скалярная физическая величина, численно равная отношению собственного магнитного потока, пронизывающего контур, к силе тока в нем:

В СИ единицей индуктивности является генри (Гн):

  • Индуктивность контура равна 1 Гн, если при силе постоянного тока 1 А магнитный поток через контур равен 1 Вб.

Индуктивность контура зависит от размеров и формы контура, от магнитных свойств среды, в которой находится контур, но не зависит от силы тока в проводнике. Так, индуктивность соленоида можно рассчитать по формуле

\(~L = \mu \cdot \mu_0 \cdot N^2 \cdot \dfrac,\)

где μ — магнитная проницаемость сердечника, μ0 — магнитная постоянная, N — число витков соленоида, S — площадь витка, l — длина соленоида.

При неизменных форме и размерах неподвижного контура собственный магнитный поток через этот контур может изменяться только при изменении силы тока в нем, т.е.

\(\Delta \Phi =L \cdot \Delta I.\) (1)

Явление самоиндукции

Если в контуре проходит постоянный ток, то вокруг контура существует постоянное магнитное поле, и собственный магнитный поток, пронизывающий контур, не изменяется с течением времени.

Если же ток, проходящий в контуре, будет изменяться со временем, то соответственно изменяющийся собственный магнитный поток, и, согласно закону электромагнитной индукции, создает в контуре ЭДС.

  • Возникновение ЭДС индукции в контуре, которое вызвано изменением силы тока в этом контуре, называют явлением самоиндукции. Самоиндукция была открыта американским физиком Дж. Генри в 1832 г.

Появляющуюся при этом ЭДС — ЭДС самоиндукции Esi. ЭДС самоиндукции создает в контуре ток самоиндукции Isi.

Направление тока самоиндукции определяется по правилу Ленца: ток самоиндукции всегда направлен так, что он противодействует изменению основного тока. Если основной ток возрастает, то ток самоиндукции направлен против направления основного тока, если уменьшается, то направления основного тока и тока самоиндукции совпадают.

Используя закон электромагнитной индукции для контура индуктивностью L и уравнение (1), получаем выражение для ЭДС самоиндукции:

  • ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока в контуре, взятой с противоположным знаком. Эту формулу можно применять только при равномерном изменении силы тока. При увеличении тока (ΔI > 0), ЭДС отрицательная (Esi< 0), т.е. индукционный ток направлен в противоположную сторону тока источника. При уменьшении тока (ΔI< 0), ЭДС положительная (Esi > 0), т.е. индукционный ток направлен в ту же сторону, что и ток источника.

Из полученной формулы следует, что

  • Индуктивность – это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

Явление самоиндукции можно наблюдать на простых опытах. На рисунке 1 показана схема параллельного включения двух одинаковых ламп. Одну из них подключают к источнику через резистор R, а другую — последовательно с катушкой L. При замыкании ключа первая лампа вспыхивает практически сразу, а вторая — с заметным запозданием. Объясняется это тем, что на участке цепи с лампой 1 нет индуктивности, поэтому тока самоиндукции не будет, и сила тока в этой лампе почти мгновенно достигает максимального значения. На участке с лампой 2 при увеличении тока в цепи (от нуля до максимального) появляется ток самоиндукции Isi, который препятствует быстрому увеличению тока в лампе. На рисунке 2 изображен примерный график изменения тока в лампе 2 при замыкании цепи.

При размыкании ключа ток в лампе 2 также будет затухать медленно (рис. 3, а). Если индуктивность катушки достаточно велика, то сразу после размыкания ключа возможно даже некоторое увеличение тока (лампа 2 вспыхивает сильнее), и только затем ток начинает уменьшаться (рис. 3, б).

Явление самоиндукции создает искру в том месте, где происходит размыкание цепи. Если в цепи имеются мощные электромагниты, то искра может перейти в дуговой разряд и испортить выключатель. Для размыкания таких цепей на электростанциях пользуются специальными выключателями.

Энергия магнитного поля

Энергия магнитного поля контура индуктивности L с силой тока I

Так как \(~\Phi = L \cdot I\), то энергию магнитного поля тока (катушки) можно рассчитать, зная любые две величины из трех (Φ, L, I):

Энергию магнитного поля, заключенную в единице объема пространства, занятого полем, называют объемной плотностью энергии магнитного поля:

*Вывод формулы

Подключим к источнику тока проводящий контур с индуктивностью L. Пусть за малый промежуток времени Δt сила тока равномерно увеличится от нуля до некоторого значения II = I). ЭДС самоиндукции будет равна

За данный промежуток время Δt через контур переносится заряд

\(\Delta q = \left\langle I \right \rangle \cdot \Delta t,\)

где \(\left \langle I \right \rangle = \dfrac\) — среднее значение силы тока за время Δt при равномерном его возрастании от нуля до I.

Сила тока в контуре с индуктивностью L достигает своего значения не мгновенно, а в течение некоторого конечного промежутка времени Δt. При этом в цепи возникает ЭДС самоиндукции Esi, препятствующая нарастанию силы тока. Следовательно, источник тока при замыкании совершает работу против ЭДС самоиндукции, т.е.

\(A = -E_ \cdot \Delta q.\)

Работа, затраченная источником на создание тока в контуре (без учета тепловых потерь), и определяет энергию магнитного поля, запасаемую контуром с током. Поэтому

\(W_m = A = L \cdot \dfrac \cdot \dfrac \cdot \Delta t = \dfrac.\)

Если магнитное поле создано током, проходящим в соленоиде, то индуктивность и модуль индукции магнитного поля катушки равны

Подставив полученные выражения в формулу для энергии магнитного поля, получим

\(~W_m = \dfrac \cdot \mu \cdot \mu_0 \cdot \dfrac \cdot S \cdot \dfrac <(\mu \cdot \mu_0)^2 \cdot N^2>= \dfrac \cdot \dfrac <\mu \cdot \mu_0>\cdot S \cdot l.\)

Так как \(~S \cdot l = V\) — объем катушки, плотность энергии магнитного поля равна

где В — модуль индукции магнитного поля, μ — магнитная проницаемость среды, μ0 — магнитная постоянная.

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 351-355, 432-434.
  2. Жилко В.В. Физика: учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. Обучения с 12-летним сроком обучения (базовый и повышенный уровни) / В.В. Жилко, Л.Г. Маркович. — Мн.: Нар. асвета, 2008. — С. 183-188.
  3. Мякишев, Г.Я. Физика : Электродинамика. 10-11 кл. : учеб. для углубленного изучения физики / Г.Я. Мякишев, А.3. Синяков, В.А. Слободсков. — М.: Дрофа, 2005. — С. 417-424.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *