Не а или в таблица истинности
Перейти к содержимому

Не а или в таблица истинности

  • автор:

Таблица истинности

Например, логическое выражение abc+ab~c+a~bc необходимо ввести так: a*b*c+a*b=c+a=b*c
Для ввода данных в виде логической схемы используйте этот сервис.
Для булевой функции, заданной вектором значений (например, 00111011 ) используйте ввод данных через таблицу.

Видеоинструкция

Правила ввода логической функции
  1. Вместо символа v (дизъюнкция, ИЛИ) используйте знак + .
  2. Перед логической функцией не надо указывать обозначение функции. Например, вместо F(x,y)=(x|y)=(x^y) необходимо ввести просто (x|y)=(x^y) .
  3. Максимальное количество переменных равно 10 .

Проектирование и анализ логических схем ЭВМ ведётся с помощью специального раздела математики — алгебры логики. В алгебре логики можно выделить три основные логические функции: «НЕ» (отрицание), «И» (конъюнкция), «ИЛИ» (дизъюнкция).
Для создания любого логического устройства необходимо определить зависимость каждой из выходных переменных от действующих входных переменных такая зависимость называется переключательной функцией или функцией алгебры логики.
Функция алгебры логики называется полностью определённой если заданы все 2 n её значения, где n – число выходных переменных.
Если определены не все значения, функция называется частично определённой.
Устройство называется логическим, если его состояние описывается с помощью функции алгебры логики.
Для представления функции алгебры логики используется следующие способы:

  • словесное описание – это форма, которая используется на начальном этапе проектирования имеет условное представление.
  • описание функции алгебры логики в виде таблицы истинности.
  • описание функции алгебры логики в виде алгебраического выражения: используется две алгебраические формы ФАЛ:
    а) ДНФ – дизъюнктивная нормальная форма – это логическая сумма элементарных логических произведений. ДНФ получается из таблицы истинности по следующему алгоритму или правилу:
    1) в таблице выбираются те строки переменных для которых функция на выходе =1 .
    2) для каждой строки переменных записывается логическое произведение; причём переменные =0 записываются с инверсией.
    3) полученное произведение логически суммируется.
    Fднф= X 123 ∨ Х1 x 2Х3 ∨ Х1Х2 x 3 ∨ Х1Х2Х3
    ДНФ называется совершенной, если все переменные имеют одинаковый ранг или порядок, т.е. в каждое произведение обязательно должны включаться все переменные в прямом или инверсном виде.
    б) КНФ – конъюнктивная нормальна форма – это логическое произведение элементарных логических сумм.
    КНФ может быть получена из таблицы истинности по следующему алгоритму:
    1) выбираем наборы переменных для которых функция на выходе =0
    2) для каждого набора переменных записываем элементарную логическую сумму, причём переменные =1 записываются с инверсией.
    3) логически перемножаются полученные суммы.
    Fскнф=(X1 V X2 V X3) ∧ (X1 V X2 V X 3) ∧ (X1 V X 2 V X3) ∧ ( X 1 V X2 V X3)
    КНФ называется совершенной, если все переменные имеют одинаковый ранг.

По алгебраической форме можно построить схему логического устройства, используя логические элементы.

Рисунок1- Схема логического устройства Все операции алгебры логики определяются таблицами истинности значений. Таблица истинности определяет результат выполнения операции для всех возможных логических значений исходных высказываний. Количество вариантов, отражающих результат применения операций, будет зависеть от количества высказываний в логическом выражении. Если число высказываний в логическом выражении N, то таблица истинности будет содержать 2 N строк, так как существует 2 N различных комбинаций возможных значений аргументов.

Операция НЕ — логическое отрицание (инверсия)

  • если исходное выражение истинно, то результат его отрицания будет ложным;
  • если исходное выражение ложно, то результат его отрицания будет истинным.
A не А
0 1
1 0

Результат операции отрицания истинен, когда исходное высказывание ложно, и наоборот.

Операция ИЛИ — логическое сложение (дизъюнкция, объединение)

Логическая операция ИЛИ выполняет функцию объединения двух высказываний, в качестве которых может быть и простое, и сложное логическое выражение. Высказывания, являющиеся исходными для логической операции, называют аргументами. Результатом операции ИЛИ является выражение, которое будет истинным тогда и только тогда, когда истинно будет хотя бы одно из исходных выражений.
Применяемые обозначения: А или В, А V В, A or B, A||B.
Результат операции ИЛИ определяется следующей таблицей истинности:

A B А или B
0 0 0
0 1 1
1 0 1
1 1 1

Результат операции ИЛИ истинен, когда истинно А, либо истинно В, либо истинно и А и В одновременно, и ложен тогда, когда аргументы А и В — ложны.

Операция И — логическое умножение (конъюнкция)

Логическая операция И выполняет функцию пересечения двух высказываний (аргументов), в качестве которых может быть и простое, и сложное логическое выражение. Результатом операции И является выражение, которое будет истинным тогда и только тогда, когда истинны оба исходных выражения.
Применяемые обозначения: А и В, А Λ В, A & B, A and B.
Результат операции И определяется следующей таблицей истинности:

A B А и B
0 0 0
0 1 0
1 0 0
1 1 1

Результат операции И истинен тогда и только тогда, когда истинны одновременно высказывания А и В, и ложен во всех остальных случаях.

Операция «ЕСЛИ-ТО» — логическое следование (импликация)

Эта операция связывает два простых логических выражения, из которых первое является условием, а второе — следствием из этого условия.
Применяемые обозначения:
если А, то В; А влечет В; if A then В; А→ В.
Таблица истинности:

A B А → B
0 0 1
0 1 1
1 0 0
1 1 1

Результат операции следования (импликации) ложен только тогда, когда предпосылка А истинна, а заключение В (следствие) ложно.

Операция «А тогда и только тогда, когда В» (эквивалентность, равнозначность)

Применяемое обозначение: А ↔ В, А ~ В.
Таблица истинности:

A B А↔B
0 0 1
0 1 0
1 0 0
1 1 1

Результат операции эквивалентность истинен только тогда, когда А и В одновременно истинны или одновременно ложны.

Операция «Сложение по модулю 2» (XOR, исключающее или , строгая дизъюнкция)

Применяемое обозначение: А XOR В, А ⊕ В.
Таблица истинности:

A B А⊕B
0 0 0
0 1 1
1 0 1
1 1 0

Результат операции эквивалентность истинен только тогда, когда А и В одновременно истинны или одновременно ложны.

Приоритет логических операций

  • Действия в скобках
  • Инверсия
  • Конъюнкция ( & )
  • Дизъюнкция ( V ), Исключающее ИЛИ (XOR), сумма по модулю 2
  • Импликация ( → )
  • Эквивалентность ( ↔ )

Совершенная дизъюнктивная нормальная форма

  1. Каждое логическое слагаемое формулы содержит все переменные, входящие в функцию F(x1,x2. xn).
  2. Все логические слагаемые формулы различны.
  3. Ни одно логическое слагаемое не содержит переменную и её отрицание.
  4. Ни одно логическое слагаемое формулы не содержит одну и ту же переменную дважды.

Совершенная конъюнктивная нормальная форма

  1. Все элементарные дизъюнкции содержат все переменные, входящие в функцию F(x1,x2. xn).
  2. Все элементарные дизъюнкции различны.
  3. Каждая элементарная дизъюнкция содержит переменную один раз.
  4. Ни одна элементарная дизъюнкция не содержит переменную и её отрицание.

Не а или в таблица истинности

Истинность составных высказываний, образованных в результате выполнения каких-либо логических операций над простыми высказываниями, зависит только от истинности исходных высказываний. Чаще всего для установления значений сложных высказываний используют таблицы истинности.

Таблица истинности — это таблица, устанавливающая соответствие между всеми возможными наборами логических переменных, входящих в логическую функцию, и значениями функции.

Рассмотрим построение таблиц истинности на примере операций, рассмотренных в предыдущем разделе. Начнем с унарной операции отрицания &#256. Поскольку операция выполняется над одним операндом (A), принимающим всего два значения ( 1-истина; 0-ложь), таблица будет иметь три строки и два столбца. В заголовке таблицы укажем высказывание A и результат отрицания &#256, как показано на рисунке.

Далее в первом столбце разместим все возможные значения высказывания A, а во втором — значения логической функции &#256, как показано на рисунке.

Приведем таблицу истинности логического умножения (конъюнкции).

A B A Λ B
0 0 0
0 1 0
1 0 0
1 1 1

Заметим, что составное высказывание A &#923 B истинно только в том случае, когда истинны ода высказывания и A, и B.

Таблица истинности логического сложения приведена на следующем рисунке.

A B A V B
0 0 0
0 1 1
1 0 1
1 1 1

Составное высказывание A V B ложно лишь в случае, когда оба операнда ложны.

Таблица истинности импликации, выглядит следующим образом.

A B A -&#155 B
0 0 1
0 1 1
1 0 0
1 1 1

Составное высказывание A -&#155 B ложно лишь в случае, когда ложь имплицируется истиной. Таблица истинности эквивалентности представлена на следующем рисунке.

A B A ~ B
0 0 1
0 1 0
1 0 0
1 1 1

Составное высказывание A ~ B истинно в том случае, когда значения операндов совпадают. Полезно иметь под рукой сводную таблицу истинности.

Сводная таблица истинности

Заметим, что таблицы истинности находят широкое применение для

Два сложных высказывания называют эквивалентными , если совпадают их таблицы истинности.

Высказывания, истинность которых постоянна и не зависит от истинности входящих в них простых высказываний, а определяется только их структурой, называются тождественными или тавтологиями. Различают тождественно-истинные и тождественно-ложные высказывания.

Логические элементы и таблицы истинности

Абсолютно все цифровые микросхемы состоят из одних и тех же логических элементов – «кирпичиков» любого цифрового узла. Вот о них мы и поговорим сейчас. Логический элемент – это такая схемка, у которой несколько входов и один выход. Каждому состоянию сигналов на входах, соответствует определенный сигнал на выходе. Итак, какие бывают элементы? Элемент «И» (AND) Иначе его называют «конъюнктор». Для того, чтобы понять как он работает, нужно нарисовать таблицу, в которой будут перечислены состояния на выходе при любой комбинации входных сигналов. Такая таблица называется «таблица истинности». Таблицы истинности широко применяются в цифровой технике для описания работы логических схем. Вот так выглядит элемент «И» и его таблица истинности:

Элемент И

Поскольку вам придется общаться как с русской, так и с буржуйской тех. документацией, я буду приводить условные графические обозначения (УГО) элементов и по нашим и по не нашим стандартам. Смотрим таблицу истинности, и проясняем в мозгу принцип. Понять его не сложно: единица на выходе элемента «И» возникает только тогда, когда на оба входа поданы единицы. Это объясняет название элемента: единицы должны быть И на одном, И на другом входе. Если посмотреть чуток иначе, то можно сказать так: на выходе элемента «И» будет ноль в том случае, если хотя бы на один из его входов подан ноль. Запоминаем. Идем дальше. Элемент «ИЛИ» (OR) По другому, его зовут «дизъюнктор». Любуемся:

Элемент ИЛИ

Опять же, название говорит само за себя. На выходе возникает единица, когда на один ИЛИ на другой ИЛИ на оба сразу входа подана единица. Этот элемент можно назвать также элементом «И» для негативной логики: ноль на его выходе бывает только в том случае, если и на один и на второй вход поданы нули. Едем дальше. Дальше у нас очень простенький, но очень необходимый элемент. Элемент «НЕ» (NOT) Чаще, его называют «инвертор».

Элемент НЕ

Надо чего-нибудь говорить по поводу его работы? Ну тогда поехали дальше. Следующие два элемента получаются путем установки инвертора на выход элементов «И» и «ИЛИ». Элемент «И-НЕ» (NAND)

Элемент И-НЕ

Элемент И-НЕ работает точно так же как «И», только выходной сигнал полностью противоположен. Там где у элемента «И» на выходе должен быть «0», у элемента «И-НЕ» — единица. И наоборот. Э то легко понять по эквивалентной схеме элемента:

Эквивалентная схема элемента И-НЕ

Элемент «ИЛИ-НЕ» (NOR)

Элемент ИЛИ-НЕ

Та же история – элемент «ИЛИ» с инвертором на выходе. Следующий товарищ устроен несколько хитрее:
Элемент «Исключающее ИЛИ» (XOR) Он вот такой:

Элемент исключающее ИЛИ

Операция, которую он выполняет, часто называют «сложение по модулю 2». На самом деле, на этих элементах строятся цифровые сумматоры. Смотрим таблицу истинности. Когда на выходе единицы? Правильно: когда на входах разные сигналы. На одном – 1, на другом – 0. Вот такой он хитрый. Эквивалентная схема примерно такая:

Эквивалентная схема элемента исключающее ИЛИ

Некоторые микросхемы

Ее запоминать не обязательно. Собственно, это и есть основные логические элементы. На их основе строятся абсолютно любые цифровые микросхемы. Даже ваш любимый Пентиум 4. Далее мы позанудствуем о том, как синтезировать цифровую схему, имея ее таблицу истинности. Это совсем несложно, а знать надо, ибо пригодится (еще как пригодится) нам в дальнейшем. Ну и напоследок – несколько микросхем, внутри которых содержатся цифровые элементы. Около выводов элементов обозначены номера соответствующих ног микросхемы. Все микросхемы, перечисленные здесь, имеют 14 ног. Питание подается на ножки 7 (-) и 14 (+). Напряжение питания – смотри в таблице в предыдущем параграфе. Источник: radiokot.ru

none Опубликована: 2005 г. 0 1

Вознаградить Я собрал 0 0

Оценить статью

  • Техническая грамотность

Таблица истинности онлайн

Данный онлайн калькулятор строит таблицу истинности для любого логического выражения. Чтобы начать, введите логическое выражение в поле ввода.

Калькулятор таблицы истинности
Примеры Очистить Ссылка
Загрузка изображения, подождите .

Составить таблицу истинности

Установить калькулятор на свой сайт

Калькулятор поддерживает следующие логические операции:

Логическая операция «не» (отрицание, инверсия)

Данная операция обозначается символом . Для её ввода в наш онлайн калькулятор можно использовать либо символ ¬, либо значок восклицательного знака !. Операция отрицания является унарной (содержит один операнд) и обладает наивысшим приоритетом (выполняется первой) среди логических операций.

Таблица истинности логической операции «не» имеет вид:

Логическое «и» (конъюнкция, логическое умножение)

Данная операция обозначается символом . Для её ввода в наш онлайн калькулятор можно использовать либо символ ∧, либо два значка амперсанда &&. Операция конъюнкция является бинарной (содержит два операнда).

Таблица истинности логической операции «и» имеет вид:

Логическое «или» (дизъюнкция, логическое сложение)

Данная операция обозначается символом . Для её ввода в наш онлайн калькулятор можно использовать либо символ ∨, либо два значка ||. Операция дизъюнкция является бинарной.

Таблица истинности логической операции «или» имеет вид:

Логическая операция «исключающее или» (сложение по модулю 2)

Данная операция обозначается символом . Для её ввода в наш онлайн калькулятор можно использовать либо символ ⊕, либо функцию .

Таблица истинности логической операции «исключающее или» имеет вид:

Логическая операция «не и» (штрих Шеффера)

Данная операция обозначается символом . Для её ввода в наш онлайн калькулятор можно использовать либо символ ↑, либо значок |.

Таблица истинности логической операции «не и» имеет вид:

Логическая операция «не или» (стрелка Пирса)

Данная операция обозначается символом . Для её ввода в наш онлайн калькулятор можно использовать либо символ ↓, либо функцию .

Таблица истинности логической операции «не или» имеет вид:

Логическая операция «эквивалентность»

Данная операция обозначается символом . Для её ввода в наш онлайн калькулятор можно использовать либо символ ⇔, либо конструкцию (знак меньше, знак равно, знак больше).

Таблица истинности логической операции «эквивалентность» имеет вид:

Логическая операция «исключающее не или»

Данная операция обозначается символом . Для её ввода в наш онлайн калькулятор можно использовать либо символ ⊙, либо функцию .

Таблица истинности логической операции «исключающее не или» имеет вид:

Стоит отметить, что таблицы истинности для бинарных логических операций «эквивалентность» и «исключающее не или» совпадают. В случае, если указанные операции являются -арными, их таблицы истинности различаются. Отметим, что -арную операцию в наш калькулятор можно ввести только в виде соответствующей функции, например , и результат такого выражения будет отличаться от результата выражения . Потому что последнее интерпретируется как , в то время как в случае с — операция «эквивалентность» выполняется сразу с учетом всех аргументов.

Логическая операция «импликация»

Данная операция обозначается символом . Для её ввода в наш онлайн калькулятор можно использовать либо символ ⇒, либо конструкцию => (знак равно, знак больше).

Таблица истинности логической операции «импликация» имеет вид:

При формировании таблицы истинности сложного (составного) логического выражения необходимо использовать представленные выше таблицы истинности соответствующих логических операций.

Другие полезные разделы:

Оставить свой комментарий:

Мы в социальных сетях:
Группа ВКонтакте | Бот в Телеграмме

© Mathforyou 2024
Контакты: support@mathforyou.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *