Носители заряда в примесных полупроводниках
При производстве полупроводниковых приборов вместо чистых полупроводников используют примесные полупроводники. Введение примеси связано с необходимостью создания в полупроводнике преимущественно электронной либо дырочной электропроводности и увеличения электрической проводимости. В связи с этим различают соответственно электронные (n-типа) и дырочные (р-типа) полупроводники. Для получения полупроводника n-типа в чистый полупроводник вводят примесь, создающую в полупроводнике только свободные электроны. Вводимая примесь является «поставщиком» электронов, в связи с чем, ее называют донорной.
Для германия и кремния, относящихся к IV группе Периодической системы элементов, донорной примесью служат элементы V группы (сурьма, фосфор, мышьяк), атомы которых имею пять валентных электронов. При внесении такой примеси атомы примеси замещают атомы полупроводника в отдельных узлах кристаллической решетки. Четыре электрона каждого атома примеси участвуют в ковалентной связи с соседними атомами исходного материала, а пятый электрон оказывается значительно слабее связанным со своим атомом (рис. 16). Для его превращения в свободный носитель заряда требуется меньшее количество энергии, чем для освобождения электрона из ковалентной связи. В результате приобретения дополнительной энергии «избыточный» электрон покидает атом и становится свободным, а атом примеси превращается в положительный ион.
Рис. 16 Возникновение свободного электрона в кристалле полупроводника n-типа
В условиях достаточно большой концентрации атомов примеси их ионизация создает некоторую концентрацию в кристалле полупроводника свободных электронов и неподвижных положительных ионов, локализованных в местах расположения атомов примеси. Слой полупроводника остается электрически нейтральным, если освободившиеся электроны не уходят за пределы слоя. При уходе электронов под действием каких-либо факторов в другие слои кристалла оставшиеся положительные ионы донорной примеси создают в данном слое нескомпенсированный положительный объемный заряд.
Концентрация свободных электронов в полупроводнике n-типа определяется преимущественно концентрацией введенной примеси , а не собственными электронами валентной зоны. В соответствии с этим концентрация электронов в полупроводнике — типа существенно выше концентрации дырок , образующихся в результате перехода электронов из валентной зоны в зону проводимости. Электроны в таком типе полупроводника являются основными носителями заряда, а дырки — неосновными носителями заряда.
В полупроводниках р-типа введение примеси направлено на повышение концентрации дырок. Задача решается использованием в качестве примеси элементов III группы Периодической системы (индий, галлий, алюминий, бор), атомы которых имеют по три валентных электрона. При наличии такой примеси каждый ее атом образует только три ковалентные связи с соседними атомами исходного полупроводника (рис. 17). Четвертая связь остается незаполненной. Недостающий валентный электрон принимается от одного из соседних атомов кристаллической решетки. Требуемая для такого перехода энергия невелика. Переход электрона приводит к образованию дырки в ковалентной связи соседнего атома, откуда ушел электрон и превращению атома примеси в неподвижный отрицательный ион. В результате за счет примеси достигается повышение концентрации дырок в полупроводнике. Атомы примеси, принимающие валентные электроны соседних атомов, называют акцепторными, а примесь — акцепторной.
Рис. 17 Возникновение дырки в кристалле полупроводника p-типа
В условиях достаточно большой концентрации атомов акцепторной примеси в кристалле полупроводника создается некоторая концентрация подвижных дырок и неподвижных отрицательных ионов. В нормальных условиях число дырок в полупроводнике p-типа остается равным числу отрицательных ионов, в слое сохраняется зарядная нейтральность. Если, вошедшие из других слоев электроны, заполнят некоторое число существующих дырок, в данном слое появится нескомпенсированный отрицательный объемный заряд, создаваемы ионами акцепторной примеси.
Концентрация дырок в валентной зоне определяется преимущественно концентрацией внесенной акцепторной примеси , а не дырками, возникающими при термогенерации носителей заряда за счет преодоления валентными электронами запрещенной зоны. В соответствии с этим концентрация дырок в полупроводнике p-типа существенно больше концентрации свободных электронов . Дырки в этом случае являются основными носителями заряда, а электроны — неосновными.
Необходимая для создания полупроводников n и p-типа примесь вносится в количестве, при котором концентрация основных носителей заряда существенно (на два-три порядка) превышает концентрацию неосновных носителей заряда. В зависимости от концентрации введенной примеси удельная проводимость примесного полупроводника возрастает по сравнению с чистым полупроводником в десятки и сотни тысяч раз.
Характерной особенностью примесных полупроводников является то, что произведение концентраций основных и неосновных носителей заряда при данной температуре является постоянной величиной и определяется соотношением:
(11)
где собственные концентрации носителей заряда в чистом полупроводнике.
Зависимость концентрации носителей заряда от температуры накладывает ограничения на температурный диапазон применения полупроводниковых приборов. Рабочий диапазон температур характеризуется существенным превышением в примесных полупроводниках кноцентрации основных носителей заряда над неосновными ( и ) при концентрации основных носителей заряда, близкой к концентрации внесенной примеси ( и ).
При температурах, превышающих верхний температурный предел, число носителей заряда, создаваемых в кристалле при термогенерации за счет преодоления валентными электронами запрещенной зоны резко возрастает. При этом может оказаться, что электрическая проводимость в полупроводнике будет определяться не концентрацией внесенной примеси, а концентрацией собственных носителей заряда. Верхний температурный предел зависит от ширины запрещенной зоны полупроводника и составляет для германии 75-85 0 С, а для кремния 150-170 0 С. При этом преимущество кремния на германием очевидно.
При температуре ниже рабочего диапазона основную роль в создании тока играют основные носители заряда, уменьшение концентрации которых за счет уменьшения количества ионизированных атомов примеси вызывает уменьшение электрической проводимости. Нижний температурный предел работы полупроводниковых приборов составляет -55 до -60 0 С.
1.1.2. Полупроводники n — p типа
Чистые i — полупроводники практически не используют. В них специально вводят атомы других элементов (примеси) трехвалентных (алюминий, галлий, индий, бор) или пятивалентных (мышьяк, фосфор, сурьма) элементов или их соединений. При этом на 10 7 …10 8 атомов i — полупроводника вводят один атом примеси. Атомы пятивалентной примеси называются донорами: они увеличивают число свободных электронов. Каждый атом такой примеси добавляет один лишний электрон. При этом лишних дырок не образуется. Примесный атом в структуре полупроводника превращается в неподвижный положительно заряженный ион. Проводимость полупроводника теперь будет определяться в основном числом свободных электронов примеси. В целом такой тип проводимости называют проводимостью n–типа, а сам полупроводник – полупроводником n–типа.
При введении трехвалентной примеси одна из валентных связей полупроводника оказывается незаполненной, что эквивалентно образованию дырки и неподвижного отрицательно заряженного иона примеси. Таким образом, в этом случае увеличивается концентрация дырок. Примеси такого типа называются акцепторами, а проводимость, обусловленная введением акцепторной примеси, называют проводимостью р–типа. Полупроводник данного вида называют полупроводником р–типа.
Преобладающие носители заряда в полупроводнике называются основными. Так в полупроводнике n–типа основными носителями являются электроны, а неосновными – дырки, а в полупроводнике р–типа основными носителями являются дырки, а неосновными – электроны. Как видим, в отличие от проводимости проводников, в которых ток обусловлен направленным движением только электронов, в полупроводниках ток может быть обусловлен двумя типами носителей – электронами и дырками.
© Андреевская Т.М. Кафедра РЭ, МИЭМ, 2005.
Носителями свободного заряда в полупроводниках p типа являются
Свободными носителями заряда в полупроводниках как правило, являются электроны , возникающие в результате ионизации атомов самого полупроводника ( собственная проводимость ) или атома примеси ( примесная проводимость ). В некоторых полупроводниках носителями заряда могут быть ионы . На рисунке показана атомная модель кремния и энергетическая диаграмма собственного полупроводника, в котрором происходит процесс генерации носителей заряда. При абсолютном нуле зона проводимости пустая, как у диэлектриков, а уровни валентной зоны полностью заполнены. Под действием избыточной энергии W o , появляющейся за счет температуры, облучения, сильных электрических полей и т.д., некоторая часть электронов валентной зоны переходит в зону проводимости. Энергия W o в случае беспримесного полупроводника, равна ширине запрещенной зоны и называется энергией активации . В валентной зоне остается свободное энергетическое состояние, называемое дыркой , имеющей единичный положительный заряд.
При отсутствии электрического поля дырка, как и электрон, будет совершать хаотические колебания, при этом происходят и обратные переходы электронов из зоны проводимости на свободные уровни валентной зоны ( рекомбинация ). Эти процессы условно показаны на рисунке . |
Электропроводность , возникающая под действием электрического поля за счет движения электронов и в противоположном напаравлении такого же колическства дырок, называется собственной . В удельную проводимость полупроводника дают вклад носители двух типов — электроны и дырки:
=e(n . n +p . p ) , где
n и n концентрация и подвижность электронов,
каких носителей много в полупроводниках p-типа?
Наличие акцепторной примеси резко снижает удельное сопротивление полупроводника за счет появления большого числа свободных дырок. Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: np >> nn. Проводимость такого типа называется дырочной проводимостью. Примесный полупроводник с дырочной проводимостью называется полупроводником p-типа. Основными носителями свободного заряда в полупроводниках p-типа являются дырки
Похожие вопросы