Обозначение логики в цифровых микросхемах
Перейти к содержимому

Обозначение логики в цифровых микросхемах

  • автор:

Обозначение логики в цифровых микросхемах

Чтобы рассмотреть схемотехнику, составим таблицу функций элементов И, И-НЕ для двух входов А и В (простейший вариант). Каждая переменная А и В моделируется электронным ключом, который можно замкнуть или разомкнуть. Если ключи соединены последовательно, то они работают согласно логике И: ток в цепи появится, если замкнуть оба ключа: и А и В. Если активными входными сигналами считать замыкание ключей А и В и назвать это событие логической 1, то, последовательно перебирая состояние этих ключей, составим таблицу входных и выходных данных для элементов И и И-НЕ.

Таблица состояний

Логический
элемент
Входные
переменные
Выходная
функция
А B И НЕ-И
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

Рассмотрим способ реализации логической операции И-НЕ на элементах ТТЛ. На рис. 2.8, а приведена принципиальная схема двухвходового логического элемента И-НЕ.

Рис. 2.8.а. Принципиальная схема логического элемента.

Подавая от ключей S1 и S2 на входы А и В напряжение высокого В и низкого Н уровней, составим таблицу выходных уровней элемента.

Таблица состояний логического элемета

Вход Выход
Q(НЕ-И)
Вход Выход
Q(НЕ-И)
А B A B
Н Н В 0 0 1
Н В В 0 1 1
В Н В 1 0 1
В В Н 1 1 0

Напряжение низкого уровня Н появляется на выходе Q, когда на обоих входах А и В присутствует высокое напряжение В. Условное графическое обозначение двухвходового логического элемента показано на рис 2.8, в

Рис 2.8.в. Условное обозначение элемента.

Среди простейших ИС ТТЛ преобладают элементы И, И-НЕ. Каждый из корпусов ИС типа ЛА и ЛИ содержит от двух до четырех логических элементов, а микросхемы ЛА2 и ЛА19 содержат по одному логическому элементу И-НЕ на восемь и двенадцать входов соответственно.

Цоколевки микросхем типа ЛА и ЛИ и их условные графические обозначения приведены на рис. 2.9, а основные параметры даны в табл. 2.3.

Рис 2.9. Условные обозначения и цоколевки микросхем ЛИ
Рис 2.9. Условные обозначения и цоколевки микросхем ЛА

Следует особо выделить группу микросхем, логические элементы которых имеют выходы с открытым коллектором (ЛА7. ЛА11, ЛА13. ЛА18), (ЛИ2, ЛИ4, ЛИ5). Схема двухвходового логического элемента И-НЕ с открытым коллектором показана на рис. 2.10, а.

Рис. 2.10а. Принципиальная схема логического элемента И-НЕ

Для формирования выходного перепада напряжения к выходу такого элемента необходимо подключить внешний нагрузочный резистор Rн. Такие микросхемы применяются для обслуживания сегментов индикаторов, зажигания ламп накаливания, светодиодов (рис. 2.10,б).

Рис. 2.10б. Схема подключения ламп накаливания и светодиодов

При необходимости в схемах можно использовать элемент ТТЛ с двухтактным выходом. Для некоторых микросхем с открытым коллекторным выходом (ЛА11) нагрузку можно подключать к более высоковольтному источнику питания (рис. 2.10,в).

Рис. 2.10в. Схема подключения нагрузки к высоковольтному источнику

Такое включение необходимо для зажигания газоразрядных и электролюминесцентных индикаторов. Выходы с открытого коллектора используют для подключения обмоток реле.

Выходы нескольких элементов с открытым коллектором можно присоединять к общей нагрузке Rн (рис. 2.10, г).

Рис. 2.10г. Схема подключения нескольких элементов к общей нагрузке

Такое подключение позволяет реализовать логическую функцию И, называемую «монтажное И». Схему (рис. 2.10. г) используют для расширения числа входов логического элемента.

Следует помнить, что двухтактные выходы ТТЛ нельзя соединять параллельно, это приводит к токовой перегрузке одного из элементов.

Многовходовые составные логические элементы с открытым коллектором и общим сопротивлением нагрузки Rн реализуются наиболее просто, однако они не позволяют получить предельное быстродействие. Более лучший способ увеличения числа входов осуществляется с помощью специальной микросхемы-расширителя, имеющей дополнительные выводы коллектора и эмиттера фазоразделительного каскада VT2 (рис. 2.11). Одноименные вспомогательные выводы нескольких таких элементов можно объединять.

Рис. 2.11а. Принципиальная схема 2И-НЕ с дополнительными выводами коллектора и эмиттера.

Рис. 2.11б. Условное обозначение расширителя и способ соединения нескольких микросхем.

Микросхема К531ЛА16 (магистральный усилитель) может передавать данные в линию с сопротивлением 50 Ом.

Микросхемы ЛА17, ЛА19 — это логические элементы И-НЕ с тремя состояниями на выходе, т. е. они имеют дополнительный вход /ЕО (Enable output), дающий разрешение по выходу. На рис. 2.12 показана схема элемента, который имеет третье выходное состояние Z, когда выход размыкается.

Рис. 2.12. Принципиальная схема логического элемента с тремя состояниями на выходе.

Для этой цели в схему стандартного сложного инвертора ТТЛ вводится дополнительный инвертор DDI и диод VD2. Если на этот вход /ЕО подать от переключателя S1 напряжение высокого уровня — 1, то выходное напряжение инвертора DD1 станет низким, т. е. катод диода VD2 будет практически соединен с корпусом. Из-за этого коллектор транзистора VT2 будет иметь нулевой потенциал, т. е. транзистор VT2 будет закрыт. Транзисторы VT3 и VT4 будут находиться в режиме отсечки, т. е. оба закрыты. Следовательно, выходной вывод как бы «висит» в воздухе, микросхема переходит в состояние Z с очень большим выходным сопротивлением. Если на вход ЕО подается разрешающий низкий уровень — О, то логический элемент И-НЕ работает как в обычном режиме.

Таблица состояний логического элемента.

Вход Выход
/EO I /Y
0 0
1
1
0
1 0
1
Z

Такие логические элементы разработаны специально для обслуживания проводника шины данных. Если к такому проводнику присоединить много выходов, находящихся в состоянии Z, то они не будут влиять друг на друга. Активным передающим сигналом должен быть лишь один логический элемент, только от его выхода в проводник шины данных будет поступать информация. Следовательно, соединенные вместе выходы не должны быть одновременно активными.

Чтобы сигналом разрешения (низкий уревень — О) , подаваемым на вход /EO, подключался к проводнику выход только одного логического элемента, необходимо предусмотреть дополнительный (защитный) временной интервал, т. е. переключать входы /ЕО различных элементов с паузой. Сигналы разрешения, даваемые выходам разных элементов, не должны перекрываться.

Микросхема К531ЛА19-это 12-входовый логический элемент И-НЕ с дополнительным инверсным входом /ЕО. Сигнал появится на его выходе, если на вход /ЕО подано напряжение низкого уровня — О. Выход логического элемента перейдет в разомкнутое состояние Z, если на вход /ЕО подается напряжение высокого уровня. В состоянии Z элемент потребляет ток Iпот.z=25 мА. Время задержки перехода выхода к разомкнутому состоянию tзд.1z= 16 нс, время задержки перехода выхода tзд.0z= 12 нс (от напряжения низкого выходного уровня), при условии, что Сн = 15 пФ [1].

Логические элементы и их типы, микросхемы и основы цифровой электроники

Условное графическое обозначение логического элемента НЕ

Существуют и более сложные логические схемы, представляющие собой соединение нескольких простейших схем. Для запоминания результатов преобразований, которые выполняются логическими схемами применяют элемент памяти — триггер. Его схема имеет два выхода (единичный и нулевой) и несколько входов. Триггер может находиться в одном из возможных состояний: единичном или нулевом. Состояние триггера зависит от вида (1 или 0) дискретного сигнала, поступающего на его вход.

Микросхемы серии 155

Большой популярностью среди радиолюбителей пользуются микросхемы серии 155, которые построены на основе так называемой транзисторно-транзисторной логики (ТТЛ). Эта серия включает многовходовые элементы И-НЕ, триггеры, счетчики, дешифраторы, запоминающие устройства и т.д. Напряжение питания микросхем серии 155 составляет 5±0,25 В, которое подается на выводы 14 (+5 В) и 7 (общий провод). При изображении логических элементов на принципиальных схемах подключение к ним источника питания, как правило, не показывают. Рассмотрим практическое использование в радиоэлектронных конструкциях микросхем серии 155. Наиболее часто в конструкциях используется микросхема K155ЛA3. Условное графическое изображение K155JIA3 приведено на рис. 20.4.а. В состав микросхемы входит четыре элемента 2И-НЕ, каждый из которых выполняет операцию логического умножения сигналов по двум входам с последующей инверсией результата на выходе. Следует отметить, что логический элемент, входящий в микросхему, может работать отдельно независимо от других, в связи с этим на принципиальных схемах элементы, составляющие микросхему, изображаются отдельно один от другого. На принципиальных схемах этот факт отмечают в буквенно-цифровом обозначении, например, DD1.1, DD1.2, DD1.3 и DD1.4 (рис. 20.4.6). Принципиальная схема одного логического элемента дана на рис. 20.5.

Условное графическое изображение интегральной микросхемы К155ЛАЗ

Рис. 20.4. Условное графическое изображение интегральной микросхемы К155ЛАЗ: а — без деления на элементы, б — с выделением входящих элементов 2И-НЕ

Как видно из представленной схемы, входящие в нее транзисторы имеют непосредственную связь. В схеме транзистор VT1 имеет два эмиттера и выполняет логическое умножение, VT2 — усиление, ѴТЗ — усиление, a ѴТ4 — инверсию сигнала. Необходимый режим работы транзисторов задается резисторами R1. R4. Диоды VD1. VD3 предназначены для защиты цепей от напряжения обратной полярности. В момент поступления напряжения на один или оба входа логического элемента (выводы 1 и 2), транзистор VT1 открыт. В то время, как транзистор VT2 закрыт, на базу транзистора VT4 поступает напряжение низкого логического уровня, которое закрывает этот транзистор. В то же время, транзистор ѴТЗ открыт, так как напряжение на его базе, наоборот, соответствует уровню логической 1.

Принципиальная схема логического элементов 2И-НЕ, входящего в интегральную микросхему К155ЛАЗ

Рис. 20.5. Принципиальная схема логического элементов 2И-НЕ, входящего в интегральную микросхему К155ЛАЗ

В итоге на выходе (вывод 3) элемента оказывается напряжение высокого логического уровня и через нагрузку проходит ток. Если подать на оба входа элемента сигнал, соответствующий логической единицы, то транзистор VT1 закроется, a ѴТ2 откроется. Транзисторы ѴТЗ и ѴТ4 переключатся в противоположные состояния, на выходе появится логический 0 и через нагрузку не будет идти ток. Основными параметрами логической микросхемы, состоящей из элементов И-НЕ, являются:

  • Напряжение питания Un.
  • Потребляемая от источника питания номинальная мощность Рном.
  • Пороговое напряжение Unop переключения логического элемента из одного состояния в другое.
  • Выходное напряжение Uвых логического 0 и единицы.
  • Время включения tвкл и выключения tвыкл.
  • Коэффициент разветвления по выходу Краз показывающий, какую из микросхем можно подключить к выходу данного элемента.

Литература: В.М. Пестриков. Энциклопедия радиолюбителя.

Урок 8.3 — Логические элементы

Все, абсолютно все электронные компоненты, обрабатывающие цифровые сигналы, состоят из небольшого набора одинаковых «кирпичиков». В микросхемах малой степени интеграции могут быть единицы и десятки таких элементов, а в современных процессорах их может быть очень и очень много. Они называются логические элементы. Логическим элементом называется электрическая схема, предназначенная для выполнения какой-либо логической операции с входными данными. Логический элемент — элемент, осуществляющий определенные логические зависимость между входными и выходными сигналами. Входные данные представляются здесь в виде напряжений различных уровней, и результат логической операции на выходе — также получается в виде напряжения определенного уровня. Логические элементы обычно используются для построения логических схем вычислительных машин, дискретных схем автоматического контроля и управления.

Тем не менее, принцип работы цифровой логики остается неизменным – на входе логического элемента (входов может быть несколько) должен быть цифровой сигнал (сигналы, если входов несколько), который однозначно определяет сигнал на выходе логического элемента.

Конечно, логические элементы строятся, в свою очередь, из уже рассмотренных в предыдущих уроках резисторов, транзисторов и других электронных компонентов, но с точки зрения разработки цифровых схем именно логический элемент является их «элементарной» частицей.

При анализе работы логических элементов используется так называемая булева алгебра . Начала этого раздела математики было изложено в работах Джорджа Буля – английского математика и логика 19-го века, одного из основателей математической логики. Основами булевой алгебры являются высказывания, логические операции, а также функции и законы. Для понимания принципов работы логических элементов нет необходимости изучать все тонкости булевой алгебры, мы освоим ее основы в процессе обучения с помощью таблиц истинности.

Еще несколько замечаний. Логические элементы (как, впрочем, и другие элементы электронных схем) принято обозначать так, чтобы входы были слева, а выходы справа. Число входов может быть, вообще говоря, любым, отличным от нуля. Реальные цифровые микросхемы могут иметь до 8 входов, но мы ограничимся двумя – этого достаточно для понимания. Условные обозначения соответствуют отечественному ГОСТу, в других стандартах они могут быть иными.

Какие же бывают логические элементы?

Логические элементы имеют один или несколько входов и один или два (обычно инверсных друг другу) выхода. Значения «нулей» и «единиц» выходных сигналов логических элементов определяются логической функцией, которую выполняет элемент, и значениями «нулей» и «единиц» входных сигналов, играющих роль независимых переменных. Существуют элементарные логические функции, из которых можно составить любую сложную логическую функцию.

Элемент «И» (AND), он же конъюнктор, выполняет операцию логического умножения:

Условное обозначение — Таблица истинности

Мастер Кит Урок 8.3 - Логические элементы

Здесь изображен логический элемент «2И» (цифра перед буквой «И» означает число входов). Знак & (амперсант) в левом верхнем углу прямоугольника указывает, что это логический элемент «И». Первые две буквы обозначения DD1.2 указывают на то, что это цифровая микросхема (Digital), цифра слева от точки указывает номер микросхемы на принципиальной схеме, а цифра справа от точки – номер логического элемента в составе данной микросхемы. Одна микросхема может содержать несколько логических элементов.

Состояние входов в таблице обозначаются «0» и «1» («ложь» и «истина»). Из таблицы видно, что выход «Y» будет иметь состояние «1» только в том случае, когда на обоих входах «Х1» и «Х2» будут «1». Это легко запомнить: умножение на «0» всегда дает «0».

Элемент «ИЛИ» (OR), он же дизъюнктор, выполняет операцию логического сложения:

Условное обозначение — Таблица истинности

Мастер Кит Урок 8.3 - Логические элементы

Состояние «1» на выходе будет всегда, пока есть хотя бы одна «1» на входах.

Элемент «НЕ» (NOT), он же инвертор, выполняет операцию логического отрицания:

Условное обозначение — Таблица истинности

Мастер Кит Урок 8.3 - Логические элементы

Состояние на входе обратно состоянию на входе.

Вот из этих трех элементов строятся все цифровые устройства!

Рассмотрим еще три логических элемента, которые можно получить, комбинируя уже рассмотренные. В силу исторически сложившихся схемотехнических решений эти скомбинированные схемы тоже считаются логическими элементами.

Элемент «И-НЕ» (NAND), конъюнктор с отрицанием:

Условное обозначение — Таблица истинности

Мастер Кит Урок 8.3 - Логические элементы

Элемент И-НЕ работает точно так же как «И», только выходной сигнал противоположен. Там где у элемента «И» на выходе должен быть «0», у элемента «И-НЕ» будет единица. И наоборот.

Элемент «ИЛИ-НЕ» (NOR), дизъюнктор с отрицанием:

Условное обозначение — Таблица истинности

Мастер Кит Урок 8.3 - Логические элементы

Элемент работает так же как и «ИЛИ», но с инверсией выхода.

Элемент «Исключающее ИЛИ» (XOR), сумматор по модулю 2:

Условное обозначение — Таблица истинности

Мастер Кит Урок 8.3 - Логические элементы

В этом элемента «1» на выходе будет только тогда, когда на входах разные состояния.

На таких элементах строят сумматоры двоичных многоразрядных чисел. Для этого используется еще один дополнительный выход, на котором при появлении на входах двух «1» появляется сигнал переноса разряда.

Мы рассмотрели логические элементы, которые применяются в цифровой технике для построения логических схем любого уровня сложности, но рассмотренные нами элементы не могут делать одну крайне важную работу – они не умеют хранить информацию. Для хранения используется более сложный класс устройств, называемый элементами с памятью или конечными автоматами. В этот класс входят триггеры, регистры, счетчики, шифраторы (дешифраторы), мультиплексоры (демультиплексоры) и сумматоры. Некоторый из этих устройств мы рассмотрим в следующем уроке.

Введение в логические микросхемы

Обозначение логических элементов

Логические микросхемы — это интегральные схемы, которые выполняют логические функции И (AND), ИЛИ (OR), Исключающее ИЛИ (XOR), И-НЕ (NAND) и ИЛИ-НЕ (NOR). Они распространены в старых электронных устройствах, поскольку более совершенные ИС заменили необходимость в отдельных логических микросхемах в большинстве схем.

Но до появления микроконтроллеров логические микросхемы были важными компонентами сложных электронных схем. Они были неотъемлемой частью создания сложных электронных систем, например, на первых космических кораблях.

Микроконтроллеры сегодня в моде, но для некоторых проектов микроконтроллер может оказаться излишним. Если ваши цели по проектированию схемы могут быть достигнуты с помощью простой логической микросхемы, которая делает устройство меньше в размерах и потребляет меньше энергии, почему бы и нет?

Основные логические элементы

Логические сигналы выражаются в виде 1 и 0, высоких и низких уровней напряжения или в истинных и ложных значениях.

Ниже показаны схематические обозначения и таблицы истинности обычных электронных логических элементов:

Логический элемент И (AND)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *