Почему потери мощности в магнитопроводе трансформатора не зависят от тока нагрузки
Перейти к содержимому

Почему потери мощности в магнитопроводе трансформатора не зависят от тока нагрузки

  • автор:

Потери в силовом трансформаторе

Основные характеристики трансформатора – это напряжение первичной и вторичной обмотки, а также мощность трансформатора. Мощность подается от первичной обмотки на вторичную электромагнитным путем. При этом не вся мощность из электрической сети доходит до нагрузки, которая питает потребителей. Разница мощности, которая поступает на первичную обмотку и мощности, которая возникает во вторичной обмотке называется потерями трансформатора.

Виды потерь силового трансформатора

Так как силовой трансформатор, является статическим электромагнитным устройством – то он не имеет движущихся деталей. Это значит, что механические потери такому оборудованию не свойственны. Потери в нем – это потери активной мощности. Они происходят в магнитном сердечнике, обмотках и других частях оборудования. Во время разных режимов работы трансформатора величина потерь меняется.

Потери холостого хода трансформатора

На холостом ходу к вторичной обмотке трансформатора не подключена нагрузка. Поэтому весь ток, который подается на первичную обмотку, идет на намагничивание сердечника. Такие потери принято назвать магнитными и обозначать Рм. Общее значение потерь холостого хода рассчитывается при номинальной силе тока и напряжении.

Iо – сила тока в первичной обмотке,

r1 – это сопротивление первичной обмотки.

Потери холостого хода – это постоянная цифра, которая зависит от суммы намагничивающей и активной части. А эти величины неизменны, так как на них влияют характеристики обмотки и магнитного сердечника. По значению потерь холостого хода можно судить о работе трансформатора.

Основные потери в обмотках трансформатора

В трансформаторе под нагрузкой электромагнитная мощность, которая поступает на первичную обмотку, передается вторичной. При этом во вторичной обмотке возникает электрический ток I2, а в первичной – ток I1. Первичный ток напрямую зависит от тока нагрузки I2.

Часть мощности теряется в обмотках. Эти потери называются общими потерями мощности под нагрузкой – Рнагр. Они пропорциональны квадратам первичного и вторичного тока, а также значениям сопротивления обмоток.

Рнагр = I21r1 + I22r2,

где I1 и I2 — токи в первичной и вторичной обмотках,

r1 и r2 — значения сопротивлений первичной и вторичной обмоток.

Как видите, потери под нагрузкой полностью зависят от нагрузки трансформатора. Поэтому они носят непостоянный характер.

Дополнительные потери в обмотках трансформатора

В обмотках трансформатора и ферромагнитном сердечнике возникают не только токи нагрузки. Есть токи, которые появляются и замыкаются внутри проводов или внутри пластин магнитопровода – они называются вихревыми токами. Есть токи, которые появляются между параллельными витками обмотки или между отдельными пластинами сердечника – это циркулирующие токи. Направление этих побочных потоков перпендикулярно основному току в обмотках и сердечнике. Поэтому появление вихревых и циркулирующих токов снижает эффективность работы трансформатора.

Кроме обмоток, добавочные потери возникают в стенках самого бака, в прессующих кольцах, в ярмовых балках и других элементах конструкции трансформатора.

Конструкторы электромагнитного оборудования постоянно ищут способы уменьшения потерь и увеличения КПД трансформатора. Например, магнитный сердечник трансформатора делается не монолитным, а набирается из отдельных тонких пластин, которые тщательно изолируются. Изоляция отдельных витков обмоток также положительно сказывается на КПД оборудования. У современных силовых трансформаторов полезная мощность КПД достигает 90% и выше.

Потери мощности в трансформаторе

Основными характеристиками трансформатора являются прежде всего напряжение обмоток и передаваемая трансформатором мощность. Передача мощности от одной обмотки к другой происходит электромагнитным путем, при этом часть мощности, поступающей к трансформатору из питающей электрической сети, теряется в трансформаторе. Потерянную часть мощности называют потерями.

При передаче мощности через трансформатор напряжение на вторичных обмотках изменяется при изменении нагрузки за счет падения напряжения в трансформаторе, которое определяется сопротивлением короткого замыкания. Потери мощности в трансформаторе и напряжение короткого замыкания также являются важными характеристиками. Они определяют экономичность работы трасформатора и режим работы электрической сети.

Потери мощности в трансформаторе являются одной из основных характеристик экономичности конструкции трансформатора. Полные нормированные потери состоят из потерь холостого хода (XX) и потерь короткого замыкания (КЗ). При холостом ходе (нагрузка не присоединена), когда ток протекает только по обмотке, присоединенной к источнику питания, а в других обмотках тока нет, мощность, потребляемая от сети, расходуется на создание магнитного потока холостого хода, т.е. на намагничивание магнитопровода, состоящего из листов трансформаторной стали. Поскольку переменный ток изменяет свое направление, то направление магнитного потока также меняется. Это значит, что сталь намагничивается и размагничивается попеременно. При изменении тока от максимума до нуля сталь размагничивается, магнитная индукция уменьшается, но с некоторым запаздыванием, т.е. размагничивание задерживается (при достижении нулевого значения тока индукция не равна нулю точка N ). Задерживание в перемагничивании является следствием сопротивления стали переориентировке элементарных магнитов.

Кривая намагничивания при перемене направления тока образует так называемую петлю гистерезиса, которая различна для каждого сорта стали и зависит от максимальной магнитной индукции Втах. Площадь, охватываемая петлей, соответствует мощности, затрачиваемой на намагничивание. Так как при перемагничивании сталь нагревается, электрическая энергия, подводимая к трансформатору, преобразуется в тепловую и рассеивается в окружающее пространство, т.е. безвозвратно теряется. В этом физически и заключаются потери мощности на перемагничивание.

Кроме потерь на гистерезис при протекании магнитного потока по магнитопроводу возникают потери на вихревые токи. Как известно, магнитный поток индуктирует электродвижущую силу (ЭДС), создающую ток не только в обмотке, находящейся на стержне магнитопровода, но и в самом его металле. Вихревые токи протекают по замкнутому контуру (вихревое движение) в месте стали в направлении, перпендикулярном направлению магнитного потока. Для уменьшения вихревых токов магнитопровод собирают из отдельных изолированных листов стали. При этом чем тоньше лист, тем меньше элементарная ЭДС, меньше созданный ею вихревой ток, т.е. меньше потери мощности от вихревых токов. Эти потери тоже нагревают магнитопровод. Для уменьшения вихревых токов, потерь и нагревов увеличивают электрическое сопротивление стали путем введения в металл присадок.

В любом трансформаторе расход материалов должен быть оптимальным. При заданной индукции в магнитопроводе его габарит определяет мощность трансформатора. Поэтому стараются, чтобы в сечении стержня магнитопровода было как можно больше стали, т.е. при выбранном наружном размере коэффициент заполнения кз должен быть наибольшим. Это достигается применением наиболее тонкого слоя изоляции между листами стали. В настоящее время применяется сталь с тонким жаростойким покрытием, наносимым в процессе изготовления стали и дающим возможность получить кз = 0,950,96.

При изготовлении трансформатора вследствие различных технологических операций со сталью ее качество в готовой конструкции несколько ухудшается и потери в конструкции получаются примерно на 2550 % больше, чем в исходной стали до ее обработки (при применении рулонной стали и прессовки магнитопровода без шпилек).

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Потери мощности и кпд трансформатора

где G— масса магнитопровода, кг; Вm амплитуда магнитной индукции, Тл; ΔР10 — удельные потери в стали, Вт/кг, при Вm = 1 Тл и f = 50 Гц; ΔР15 — удельные потери в стали, Вт/кг, при Вm = 1,5 Тл и f = 50 Гц; f — частота тока в обмотках, Гц.

Потери в обмотках зависят от нагрузки, потери в магнитопроводе практически не зависят от нагрузки. Коэффициент полезного действия трансформатора равен

где Р2 — мощность, отдаваемая трансформатором; P1 — потребляемая мощность.

Выразив активную мощность, отдаваемую трансформатором, через полную мощность Р2 = S2cos φ2, получим

Рис. 8.23. Зависимость КПД трансформатора от коэффи­циента загрузки

Выразив S2 и I2 через коэффициент загрузки трансформатора β, имеем М2 = βI2ном , что соответствует S2 ≈ βSном , и так как U2U2ном, получим

где ΔPк = ΔPном = I 2 1номrк — потери мощности в обмотках при номинальной нагрузке; ΔPст — потери мощности в магнитопроводе при номинальном напряжении.

На рис. 8.23 изображены графики зависимости КПД от коэффициента загрузки трансформатора при различных значе­ниях cos φ2.

Трансформаторы большой мощности при номинальной нагрузке и cos φ2 = 1 обладают высоким КПД, доходящим до 0,98 — 0,99. Трансформаторы малой мощности имеют КПД примерно 0,82 — 0,9.

Конструктивное исполнение трансформаторов

Трансформаторы малой мощности до 50 — 1000 Вт применяются в радиоприемниках, телевизорах, магнитофонах, осциллографах, многих измерительных устройствах, системах регулирования и т. п. Они бывают однообмоточные, двухобмоточные и многообмоточные. На рис. 8.24 изображен трансформатор малой мощности.

Рис. 8.24. Однофазный трансформатор малой мощности:

1 — магнитопровод; 2 — каркас; 3 — первичная обмотка; 4 — изоляционная прокладка между первичной и вторичной обмотками; 5 — вторичная обмотка

Магнитопровод трансформатора может иметь Ш или П-образную форму (рис. 8.25, а, б).

Площадь сечения окна магнитопровода всегда имеет прямоугольную форму с соотношением сторон б/а = 1,5 ÷ 2,5 (см. рис. 8.24). При такой форме магнитопровод имеет наименьшую массу и, следовательно, меньше потери энергии в нем по сравнению с квадратной формой окна. Обмотка выполняется из медного провода круглого или прямоугольного сечения, чаще всего с эмалевой изоляцией. В отдельных случаях применяются и другие изоляционные материалы. Обмотка укладывается плотными рядами на заранее изготовленный каркас (рис. 8.25, в) из электрокартона, текстолита или пластмассы. Между отдельными обмотками прокладывается слой изоляции из бумаги, лакоткани или другого изоляционного материала. После изготовления обмоток производится сборка трансформатора. Если магнитопровод имеет П-образную форму (рис. 8.25, б), то часть пластины К вставляется в обмотку поочередно то сверху, то снизу, а в возникшие промежутки между ними сверху и снизу вставляются части пластины М. При такой сборке последующий слой перекрывает место стыка предыдущего слоя. Сборка магнитопровода трансформатора, имеющего Ш-образную форму магнитопровода (рис. 8.25, а), производится в том же порядке. Естественно, что в этом случае пластина К вставляется в обмотку своей средней частью.

Трансформатор с Ш-образным магнитопроводом называют бро­невым, поскольку его обмотки с двух сторон охвачены магнитопроводом. Сборка магнитопровода внахлестку — последующий слой перекрывает стыки (воздушные промежутки) предыдущего слоя — существенно уменьшает эквивалентный воздушный зазор магнитопровода, что приводит к значительному снижению тока холостого хода трансформатора. Кроме того, такая сборка значительно повышает механическую прочность трансформатора и удобство крепления его магнитопровода.

Рис. 8 25. Формы магнитопроводов трансформаторов малой мощности (а, б, г) и каркас катушки трансформатора (в)

Для придания магнитопроводу необходимой механической прочности и устранения «гудения» после сборки пластины магнитопровода стягиваются с помощью поперечных пластин и болтов.

Уменьшение эквивалентного воздушного зазора можно объяснить тем, что магнитный поток обходит воздушный промежуток стыка через рядом расположенные пластины, не имеющие в этом месте стыка (рис. 8.26). В последнее время стали широко применяться магнитопроводы из склеенных пластин, состоящие из двух половин (рис. 8.25, г). Поверхности соприкосновения каждой половины для уменьшения зазора шлифуются. Такие две части вставляются в обмотки и крепятся. Для уменьшения потоков рассеяния, а следовательно, индуктивных сопротивлений обмоток на каждом каркасе в случае П-образной формы (рис. 8.25, б, г) укладывается по половине витков первичной и вторичной обмоток. После сборки половины обмоток соединяются последовательно согласно. В трансформаторах с Ш-образной формой магнитопровода все обмотки находятся на одном каркасе. Трансформатор малой мощности имеет естественное воздушное охлаждение.

Для проведения всякого рода исследований иногда требуются трансформаторы малой мощности с отличными от стандартных на­пряжениями первичной и вторичной обмоток. В этом случае можно рассчитать и изготовить трансформатор своими силами. В качестве магнитопровода можно использовать магнитопровод старых не годных к употреблению трансформаторов.

Инженерам-машиностроителям едва ли придется обслуживать установки с трансформаторами средней и большой мощности. Поэтому здесь будет рассмотрено конструктивное исполнение трансформаторов средней (20 — 500 кВ•А) и большой (до 500000 — 1000000 кВ•А) мощности в самом общем виде.

Рис. 8.26. Расположение линий магнитного потока в месте стыка пластин магнитопровода

Рис. 8.27. К пояснению зависимости длины витка обмотки трансформатора от формы площади сечения стержня магнитопровода при одном и том же значении площади.

Окружность а’ соответствует прямоугольной форме сечения а; окружность б’ соответствует квадратной форме сечения б; окружность в’ соответствует крестообразной форме сечения в, окружность г’ соответствует ступенчатой форме сечения г

Рис. 8.28. Пластины магнитопровода трехфазного трансформатора

Рассмотрим конструктивное исполнение трехфазных трансформаторов. Форма магнитопроводов всех трансформаторов одинаковая — трехстержневая (см. рис. 8.17, д). Магнитопровод имеет три стержня, на которых располагаются первичные и вторичные обмотки трех фаз и два ярмаД, Е, объединяющие стержни в единый магнитопровод. Площадь сечения стержней определяется из уравнения UE = 4,44fwBmSст. Форма площади сечения, как вытекает из этой формулы, казалось бы, не оказывает никакого влияния на конструкцию и параметры трансформатора. Однако форма сечения существенно влияет на затраты меди для обмоток, массу, стоимость и параметры трансформатора. Сечения проводов обмоток трансформаторов средней и большой мощности исчисляются десятками и сотнями квадратных миллиметров: это шины квадратной или прямоугольной формы. На­мотать такой провод на сердечник с прямоугольной формой сечения, так чтобы он прилегал к сторонам сердечника, невозможно. При изги­бе провода под прямым углом произошла бы недопустимая дефор­мация провода, да и намотать обмотку значительно проще на шаблон с круглым сердечником, чем с прямоугольным. По этим причинам ка­тушки трансформаторов средней и большой мощности всегда круглые. Это определяет и форму сечения стержней трансформатора. Проще и дешевле изготовить магнитопровод с прямоугольной или квадрат­ной формой площади сечения (рис. 8.27, а, б). Однако при этом, как это видно из рис. 8.27, длина витка и, следовательно, затраты обмоточного материала будут гораздо больше, чем при крестовидной (рис. 8.27, в) и тем более при ступенчатой (рис. 8.27, г) форме площади сечения. Кро­ме того, между обмоткой и стержнем будут большие пустоты, в ре­зультате чего возникнут значительные потоки рассеивания и обмотки будут иметь недопустимо большие индуктивные сопротивления.

Рис. 8.29. Силовой трехфазный трансформатор ТМ-320/10: 1 — магнитопровод, 2 — обмотка высшего напряжения; 3 — обмотка низшего напряжения; 4 — стальной бак; заполненный трансформаторным маслом, 5 — проходные изоляторы для вывода концов обмотки высшего напряжения;

6 — проходные изоляторы для вывода концов обмотки низшего напряжения; 7 — переключатель для изменения коэффициента трансформации; 8 — охлаждающие трубы; 9 — расширительный бачок; 10 — измеритель масла; 11 — заливочное отверстие с пробкой

Все это привело к тому, что по экономическим и техническим соображениям трансформаторы средней мощности выполняются с крестовидной, а большой мощности — со ступенчатой формой площади сечения стержней. Ярма имеют прямоугольную форму площади сечения. Магнитопровод собирается из отдельных тонких листов (0,35 — 0,5 мм) электротехнической стали внахлестку по тем же причинам, что и в трансформаторах малой мощности. Каждый слой магнитопровода состоит из отдельных листов (рис. 8.28), при сборке отдельные части последующего слоя располагаются так, что они перекрывают стыки листов предыдущего слоя. Магнитопровод с обмотками располагается в стальном баке, наполненном трансформаторным маслом. Трансформаторное масло выполняет роль охлаждающей среды и изолятора как между витками, так и между обмоткой и магнитопроводом.

Рис. 8.30. К пояснению изменения коэффициента трансформации трехфазного трансформатора

На рис. 8.29 изображен трансформатор мощностью 320 кВ • А. Бак трансформатора герметически закрыт, а изменение объема масла, вызванное колебаниями температуры, компенсируется маслорасширительным бачком 9. В магнитопроводе и обмотках трансформаторов образуются значительные потери энергии, нагревающие трансформатор. И если поверхность бака недостаточная, трансформатор будет перегреваться. Поэтому бак трансформаторов снабжается радиаторами в виде труб 8,существенно увеличивающими поверхность охлаждения. В трансформаторах большой мощности и этого недостаточно. Действительно, допустим, мощность трансформатора 270000 кВ • А и КПД 98%, следовательно, потери мощности в нем составляют 5400 кВт. Такие трансформаторы охлаждаются с помощью водяных маслоохладителей, через которые пропускается горячее масло трансформатора. Выводы концов обмоток трансформатора осуществляются с помощью проходных фарфоровых изоляторов 5, 6(рис. 8.29).

В условиях эксплуатации иногда значение напряжения первичной обмотки оказывается ниже нормального и тогда напряжение на вторичной (напряжение приемников) будет ниже номинального. Это существенно ухудшает их работу. Для поддержания вторичного напряжения в пределах номинального трансформаторы снабжаются устройством для изменения коэффициента трансформации. Обмотка высшего напряжения каждой фазы имеет три вывода (рис. 8.30), которые подключены к переключателю 7 (рис. 8.29). Переключатель может замыкать концы Х1, Y1, Z1, или Х2, Y2, Z2, или Х3, Y3, Z3. В результате будет изменяться коэффициент трансформации и, следовательно, напряжение на вторичной обмотке при неизменном первичном. Следует заметить, что трансформаторы содержат большое количество трансформаторного масла (до нескольких десятков тонн) и представляют большую пожарную опасность. Для ограничения последствий возникшего пожара под трансформатором всегда есть бетонная маслосборная яма, накрытая сеткой, на которую насыпан гравий. В случае утечки и возгорания масла оно через гравий стекает в маслосборную яму, а пламя изза сетки и гравия в яму не проникает. Возникший пожар быстро ликвидируется.

Потери силового трансформатора

Трансформатор — статическое электромагнитное устройство, в котором нет вращающихся частей и, следовательно, механических потерь. Все потери в трансформаторе — это потери активной мощности, возникающие в магнитной системе, обмотках и других частях трансформатора при различных режимах его работы. Рассмотрим эти потери.

Потери холостого хода

В режиме холостого хода потребляемая трансформатором активная мощность расходуется только на покрытие потерь в стали магнитопровода и в первичной обмотке от тока холостого хода (I 2 0r1). Потери, возникающие при этом в магнитопроводе, называют магнитными и обозначают Рм. А суммарные потери в режиме холостого хода (при номинальных первичном напряжении и частоте) называют потерями холостого хода и обозначают Р0: Р0 = Рм + I 2 0r1, где r1 — активное сопротивление первичной обмотки. Особенностью потерь холостого хода являются их постоянство и независимость от режима нагрузки трансформатора. Действительно, ток холостого хода I0 определяется геометрической суммой намагничивающей и активной составляющих. Ток Iнам создает основной поток Ф0, а активная составляющая Iа определяется только потерями в стали от гистерезиса и вихревых токов. Магнитный поток Ф0 остается постоянным, как бы ни менялся режим нагрузки (токи I1 и I2) трансформатора. Следовательно, и ток Iнам останется неизменным при любой нагрузке. Активная составляющая зависит только от магнитных потерь и для данного магнитопровода, выполненного из определенной марки стали (при номинальных первичном напряжении и частоте), является также неизменной. Естественно, что и потери в первичной обмотке от протекания тока I0 останутся неизменными. Таким образом, при номинальных первичном напряжении и частоте потери холостого хода Р0 постоянны и не зависят от нагрузки трансформатора.

Основные потери в обмотках

При включении нагрузки из первичной обмотки во вторичную передается электромагнитная мощность; во вторичной обмотке появляется ток I2; одновременно в первичной обмотке возникает ток I1, который находится в прямой зависимости от нагрузки, т. е. от тока I2. При этом в обмотках теряется мощность, пропорциональная квадратам токов и сопротивлениям первичной и вторичной обмоток: Рнагр = I 2 1r1 + I 2 2r2, где I1 и I2 — токи нагрузки; r1 и r2 — сопротивления соответствующие обмоток. Естественно, что потери Рнагр непосредственно зависят от величины мощности, необходимой потребителю. Так, если в какой-либо момент потребляемая мощность составляет 0,7 номинальной, т. е. токи равны 0,7 своих номинальных значений, потери будут составлять 0,7 2 = 0,49, или только половину расчетных в номинальном режиме. А если учесть, что потребность в энергии в течение суток неодинакова, то очевидны значительные колебания нагрузочных потерь в обмотках, т. е. эти потери непостоянны и полностью зависят от режима нагрузки.

Добавочные потери в обмотках

Однако I1 и I2 — не единственные токи, протекающие в обмотках трансформатора. Кроме токов нагрузки в обмотках трансформаторов обнаруживаются еще и другие токи, которые замыкаются внутри отдельных проводов и между параллельными ветвями обмоток; эти токи в отличие от токов нагрузки не выходят за пределы обмоток. Токи, замыкающиеся внутри отдельных проводов, называют вихревыми (аналогично токам внутри пластин магнитной системы). Токи, замыкающиеся между параллельно соединенными обмотками или частями обмоток, называют циркулирующими. Эти токи вызываются полем рассеяния, т. е. той частью магнитного поля трансформатора, силовые линии которой сцепляются не со всеми, а только с частью витков обмоток и проходят главным образом в немагнитной среде (в воздухе, масле и т. п.). При расчете потерь в обмотках реальный ток, неравномерно распределяющийся по сечению проводов и между параллельными ветвями обмоток, обычно рассматривают как сумму трех токов: — тока нагрузки, равномерно распределяющегося по поперечному сечению и между параллельными ветвями; — циркулирующего тока, замыкающегося внутри контура, образованного параллельными ветвями; — вихревого тока, замыкающегося только в пределах каждого провода. При этом сумма потерь от трех указанных токов равна реальным потерям в обмотках трансформатора. Кроме потерь в обмотках поля рассеяния вызывают потери в стенках бака, прессующих кольцах, ярмовых балках и других элементах конструкции трансформатора. Добавочные потери снижают эффективность трансформатора; с ними ведется постоянная борьба с целью добиться их минимальной величины. Итак, в трансформаторе различают потери активной мощности, не зависящие от нагрузки (Р0); нагрузочные (Рнагр) и добавочные (Рдоб) потери, определяемые режимом работы (величиной нагрузки) трансформатора: ΣР = Р0 + Рнагр + Рдоб.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *