Программно управляемое устройство предназначенное для обработки информации под управлением программы
4 . Устройства обработки – микропроцессор
В 1959 г. инженеры фирмы “ Texas Instruments ” разработали способ, как разместить внутри одного полупроводникового кристалла несколько транзисторов и соединить их между собой – родилась первая интегральная микросхема (ИМС). По сравнению с функционально теми же устройствами, собранными из отдельных транзисторов, резисторов и т.п. , ИМС обладает значительными преимуществами: меньшими габаритами, более высокой надежностью и т.д. Неудивительно, что количество выпускаемых микросхем стало быстро возрастать, а их ассортимент неуклонно расширяться. Последнее обстоятельство создавало ряд трудностей для потребителей. Важно даже не столько то, что стремительно возраставшее количество типов ИМС затрудняло ориентацию в море наименований. Значительно большим недостатком была узкая специализация ИМС, из-за которой объем их выпуска не мог быть большим, а значит стоимость одной микросхемы оставалась высокой. Улучшить ситуацию позволило бы создание универсальной логической ИМС, специализация которой определялась бы не заложенной на заводе внутренней структурой, а заданной непосредственно самим потребителем программой работы.
Таким образом, оказывается, что первые микропроцессоры (МП) появились совсем не для миниатюризации ЭВМ, а в целях создания более дешевой логической микросхемы, легко адаптируемой к потребностям пользователя.
История создания первого в мире микропроцессора достаточно поучительна. Летом 1969 г. японская компания “ Busicom ”, разрабатывавшая новое семейство калькуляторов, обратилась за помощью в фирму “ Intel ”. К тому времени “ Intel ” просуществовала всего около года, но уже проявила себя созданием самой емкой на тот момент микросхемы памяти. Фирме “ Busicom ” как раз и требовалось изготовить микросхемы, содержащие несколько тысяч транзисторов. Для реализации совместного проекта был привлечен инженер фирмы “ Intel ” М.Хофф. Он познакомился с разработками “ Busicom ” и предложил альтернативную идею: вместо 12 сложных специализированных микросхем создать одну программируемую универсальную – микропроцессор. Проект Хоффа победил и фирма “ Intel ” получила контракт на производство первого в мире микропроцессора.
Практическая реализация идеи оказалась непростым делом. В начале 1970 г. к работе подключился Ф.Фаджин, который за 9 месяцев довел процессор от описания до кристалла (позднее Ф.Фаджин основал фирму “ Zilog ”, создавшую замечательный 8-разрядный процессор Z 80, который успешно работал во многих домашних компьютерах). 15 ноября 1971 г. “ Intel 4004” – так назвали процессор – был представлен общественности.
Поскольку для хранения одной цифры калькулятору требуется 4 бита (именно столько необходимо для изображения десятичных цифр “8” и “9”), “ Intel 4004” был четырехразрядным процессором. Следующий микропроцессор предназначался для установки в терминал и должен был обрабатывать символьную информацию. Поскольку каждый символ кодируется одним байтом, следующая модель “ Intel 8008” стала 8-разрядной; она появилась в апреле 1982 г. По-прежнему этот процессор был заменой “аппаратной логики”, но отдельные энтузиасты уже пытались собрать на нем компьютер. Результаты были скорее демонстрационными, нежели полезными, но микрокомпьютерная революция уже началась.
А в апреле 1974 г. компания “ Intel ” совершила новый качественный скачок: ее изделие с маркой “ Intel 8080” стало первым в мире процессором, походившим на “настоящую” вычислительную машину. Отметим любопытную деталь: хотя процессор. и обрабатывал 8-разрядные данные, но адрес ОЗУ был двухбайтовым! Таким образом, 8080 мог иметь до 64 килобайт памяти, что по тем временам казалось программистам недостижимым пределом.
Дальнейшее развитие событий происходило прямо-таки с фантастической скоростью, даже если сравнивать с темпами динамично развивающейся вычислительной техники. За десятилетие был пройден путь от изобретения 4-разрядного МП до достаточно сложной 32-разрядной архитектуры. Было ликвидировано отставание микропроцессорной техники от обычных ЭВМ и началось интенсивное вытеснение последних (все ЭВМ четвертого поколения собраны на базе того или иного микропроцессора!). Для иллюстрации укажем, что первый МП 4004 содержал 2200 транзисторов, МП 8080 – 4800, МП “ Intel 80486” – около 1,2 миллиона, а современный “ Pentium” – около 3 миллионов!
История развития микропроцессоров представляет собой достаточно интересную самостоятельную тему. Здесь упомянем только, что пионер в создании процессорных микросхем фирма “ Intel ” по-прежнему сохраняет свои лидирующие позиции в этой области. Ее программно-совместимое семейство последовательно усложняющихся МП (16-разрядные 8086, 80286 и 32-разрядные 80386, 80486, “ Pentium ”) являются “мозгом” значительной части использующихся компьютеров. Именно на базе этих микропроцессоров собраны все широко распространенные в нашей стране IBM-совместимые компьютеры.
Другую ветку обширного микропроцессорного семейства образуют МП фирмы “ Motorola ”: ее изделия работают в известных компьютерах “ Apple ”, а также в более простых – “Atari”, “Commador”, “Amiga ” и др. Процессоры “ Motorola ” ничуть не хуже, а порой даже заметно лучше производимых компанией “Intel ”. Но на стороне последней – огромные производственные мощности транснационального гиганта IBM и десятки южно-азиатских фирм, буквально наводнившие мир дешевыми IBM-совместимыми компьютерами.
В 1993 г. фирма “ Motorola ” совместно с IBM и “ Apple ” разработала новый процессор “ PowerPC ”. Этот процессор имеет очень хорошие технические характеристики, но самое главное в нем – он может эмулировать работу компьютеров и “ Apple ”, и IBM . Очевидно, что это событие еще более обострит конкурентную борьбу на рынке микропроцессоров.
Завершая краткий исторический экскурс, попробуем определить некоторые новые направления развития МП в ближайшем будущем. Характерной чертой последних моделей процессоров является возможность работы в многозадачном режиме, который фактически стал нормой для современных ЭВМ. Развивается RISC-архитектура микропроцессоров (процессоры с минимальным числом команд). Такой МП работает необычайно быстро и способен выполнить любую из своих немногочисленных команд за один машинный такт, в то время как обычно на выполнение простой операции требуется 4-5 тактов. Ярким примером достоинств RISC-архитектуры является уже упоминавшийся процессор “ PowerPC ”. Следует особо подчеркнуть, что успехи RISC-подхода оказывают существенное влияние и на конструирование CISC-процессоров (процессоры с полным набором команд). Так, существенное ускорение классических CISC МП старших моделей семейства “ Intel ” достигается за счет конвейерного выполнения команд, заимствованного из RISC МП.
И, наконец, нельзя не упомянуть о транспьютерах, содержащих в процессорном кристалле собственное ОЗУ от 2 до 16 кбайт и каналы связи с внешним ОЗУ и с другими транспьютерами. Теоретические возможности этих ИМС, реализующих алгоритмы параллельных вычислений, поражают воображение. Однако потребуется значительное время, прежде чем они смогут быть практически реализованы.
Не следует думать, что бурное развитие микропроцессоров требуется только для вычислительных машин, где МП используются уже не только в качестве центрального процессора, но и в качестве контроллеров для управления сложными периферийными устройствами типа винчестера или лазерного принтера. Все большее число ИМС ставится в изделия, напрямую не связанные с ЭВМ, в том числе и бытовые: лазерные аудио- и видеопроигрывателц, телетекст и пейджинговая связь, программируемые микроволновые печи и стиральные машины, а также многие другие. Очевидно, что число таких управляемых микропроцессорами устройств будет все время возрастать.
Перечислим основные функции микропроцессора:
• выборка команд из ОЗУ;
•декодирование команд (т.е. определение назначения команды, способа ее исполнения и адресов операндов);
• выполнение операций, закодированных в командах;
• управление пересылкой информации между своими внутренними регистрами, оперативной памятью и внешними (периферийными) устройствами;
• обработка внутрипроцессорных и программных прерываний;
• обработка сигналов от внешних устройств и реализация соответствующих прерываний;
• управление различными устройствами, входящими в состав компьютера.
Внутреннее устройство микропроцессоров очень сложно (вспомним три миллиона транзисторов в “ Pentium ”). Даже если попытаться рассмотреть наиболее общую схему основных функциональных узлов, и то получится достаточно сложная картина. К тому же внутреннее устройство МП сильно зависит от его марки, а стало быть изучение структуры одного процессора не обязательно помогает понять работу другого. Следует признать нецелесообразным для пользователя (и даже, может быть, для программиста) изучение инженерных деталей процессора современной ЭВМ, и ограничиться, как это принято делать, только теми функциональными узлами, которые доступны программно. При таком подходе оказывается, что МП имеют много общего, и становятся отчетливо видны некоторые закономерности их внутреннего устройства. Кроме того, исчезает пугающая сложность и возникает приятное и полезное чувство, что компьютер – это не какая-то там “вещь в себе” и его поведение можно понять.
Микропроцессор ( центральный микропроцессор, CPU ) – программно управляемое устройство, предназначенное для обработки информации под управлением программы, находящейся сейчас в оперативной памяти. Конструктивно представляет собой небольшую микросхему, находящуюся внутри системного блока и установленную на материнской плате, связанную с материнской платой интерфейсом процессорного разъема ( Socket).
4.3. Принципы работы процессора и его характеристики
Маленькие микропроцессоры (их размер можно сравнить с кусочком сахара или мобильным телефоном) являются своего рода локомотивом компьютера и часто самым дорогим внутренним его компонентом. Процессор в основном считывает данные из памяти, манипулирует ими и возвращает их обратно в память или передает на внешние устройства, например, монитор или принтер.
Микропроцессор может обрабатывать данные любой природы: текст, числа, графика, звук и др. Это возможно потому, что данные перед использованием на компьютере преобразовываются к простейшему виду, представляются в двоичном коде, “оцифровываются”. Физически это может выглядеть как чередование намагниченных и размагниченных участков жесткого диска, отражающих и не отражающих луч участков компакт-диска, передаваемых сигналов напряжения высокого и низкого уровня и т.д.
Для описания работы цифровых устройств используется двоичная система счисления, Булева логика, законы алгебры логики.
Основными характеристиками процессора являются:
Функциональные компоненты компьютера
2.3. Функциональные компоненты компьютера 2.3.1. Микропроцессор В технической литературе используют два термина: процессор и микропроцессор. Различие указанных терминов заключается в уточнении технологии изготовления и габаритов процессора. Микропроцессор (МП) изготавливается по полупроводниковой технологии и размещается на одном кристалле, в одной микросхеме (иногда говорят – в одном чипе). Большая интегральная схема содержит сотни тысяч и миллионы активных элементов (транзисторов). Если 8-разрядный процессор Intel 8088, на котором работал первый IBM PC, содержал 3,5 тыс. транзисторов, то процессоры Pentium вмещают уже свыше 3 млн. транзисторов. Микропроцессор (центральный микропроцессор, CPU) – программно управляемое устройство, предназначенное для обработки информации под управлением программы, находящейся в данный момент в оперативной памяти. Микросхема устанавливается на материнской плате и связана с материнской платой интерфейсом процессорного разъема (Socket). Микропроцессор может обрабатывать данные любой природы: текст, числа, графику, звук и др. Это возможно потому, что данные перед использованием на компьютере преобразуются к простейшему виду, представляются в двоичном коде, «оцифровываются». Для описания работы цифровых устройств используется двоичная система счисления, Булева логика, законы алгебры логики. Процессоры классифицируются по базовому типу, называющемуся семейством. С целью преемственности программного обеспечения последующие модели и модификации процессоров, как правило, содержат всю систему команд своих предшественников. Существует большое количество различных семейств процессоров, среди которых можно выделить семейство Intel и совместимых с ними AMD и Cyrix, на которых базируется значительная часть ПК. Фирмой Intel был создан процессор Pentium и его модификации Pentium Pro, Pentium II, Pentium III, Pentium IV. Процессоры фирмы Motorola, применяемые в компьютерах фирмы Apple, относятся к другому семейству. Основными характеристиками процессора являются: ü тактовая частота – количество тактов, производимых процессором за 1 секунду. Операции, производимые процессором, не являются непрерывными, они разделены на такты. Тактовая частота определяет скорость выполнения операций и непосредственно влияет на производительность процессора. Процессор Pentium и его модификации имеют тактовые частоты от 60 МГц до 3 ГГц (выполняют 3 миллиарда операций в секунду);
Рекомендуемые материалы
Ответы на Аттестацию официального партнера amoCRM 2023
Информатика
Вопросы и ответы из теста по 1С Платформе 8.3.
Информатика
Лабораторная работа № 3 + ОТЧЁТ (B19)
Объектно-ориентированное программирование (ООП)
Объектно-ориентированное программирование (ООП)
Готовая лаба №3
Системное программирование
Проектно-технологическая практика ООП №3 Вариант 16 (оцененная на максимум) Проект+отчет Кафедра ИУ6
Объектно-ориентированное программирование (ООП)
ü быстродействие – характеристика, связанная с тактовой частотой. Определяется количеством команд (операций), производимых в 1 секунду. Быстродействие зависит от тактовой частоты и от выполняющейся программы, от того, какие команды – сложения или, скажем, деления – в ней преобладают. Быстродействие определяется на специальных тестовых программах. Измеряется в бит/с. ü разрядность – количество двоичных разрядов, которые процессор обрабатывает за один такт. Чем больше количество одновременно обрабатываемых разрядов, тем выше вычислительная мощность компьютера. Указывая разрядность процессора 64, имеют в виду, что процессор имеет 64-разрядную шину данных, т.е. за один такт он обрабатывает 64 бита. 2.3.2. Шины Комплекс, состоящий из пучка проводов и электронных схем, обеспечивающих правильную передачу информации внутри компьютера, называют магистралью, системной шиной или просто шиной. Шина характеризуется разрядностью и частотой. Максимальное количество одновременно передаваемой информации называется разрядностью шины. Разрядность шины определяется разрядностью процессора и в настоящее время составляет 64 бита. Чем выше разрядность шины, тем больше информации она может предавать в единицу времени. Поиск устройства или ячейки памяти осуществляет процессор. Каждое устройство или ячейка имеет свой адрес. Адрес передается по адресной шине, сигналы по которой передаются в одном направлении от процессора к оперативной памяти и устройствам. Разрядность адресной шины определяет адресное пространство процессора, т.е. количество ячеек памяти. Количество адресуемых ячеек памяти рассчитывается по формуле: N = 2 i , где i – разрядность адресной шины. Если разрядность адресной шины составляет 32 бита, то максимально возможное количество адресуемых ячеек памяти равно 2 32 = 4 294 967 296 ячеек. Информация по шине передается в виде импульсов электрического тока. Шина работает не непрерывно, а циклами. Количество циклов срабатывания шины в единицу времени называется частотой шины. Шина связывает между собой не только процессор и оперативную память, фактически все устройства компьютера – диски, клавиатура, дисплей и т.д. – так или иначе принимают и передают данные через шину. Для этого в шине предусмотрены стандартные разъемы, к которым подключаются те или иные устройства компьютера. Если шина одна, то пропускная способность вводавывода ограничена. Скорость шины лимитируется физическими факторами – длиной шины и количеством подсоединяемых устройств. Поэтому в современных крупных системах используется комплекс взаимосвязанных шин. Традиционно шины делятся на шины, обеспечивающие организацию связи процессора с памятью и шины вводавывода. Шины вводавывода могут иметь большую протяженность, поддерживать подсоединение многих типов устройств и обычно следуют одному из шинных стандартов. Шины процессор-память сравнительно короткие, высокоскоростные и соответствуют организации системы памяти для обеспечения максимальной пропускной способности канала память – процессор. Некоторые компьютеры имеют единственную шину для памяти и устройств вводавывода. Такая шина называется системной. Локальной шиной называется шина, электрически выходящая непосредственно на контакты микропроцессора. Она обычно объединяет процессор, память, схемы буферизации для системной шины и ее контроллер, а также некоторые вспомогательные схемы. Первоначально применялась шина ISA (8- и 16-разрядная, частота – 8 МГц), созданная в начале 80-х годов и обладавшая невысокой пропускной способностью. Сейчас шина ISA иногда используется для подключения низкоскоростных устройств (клавиатуры, мыши и т.д.). В настоящее время чаще используются: ü шина PCI (Peripheral Component Interconnect bus – шина взаимодействия периферийных устройств); ü графическая шина AGP (Accelerated Craphic Port – ускоренный графический порт); ü HyperTransport – высокоскоростная шина для соединения внутренних устройств компьютерной системы. Тактовая частота достигает 800 МГц. Пропускная способность составляет до 6,4 Гбайт/с; ü USB предназначена для подключения до 256 внешних устройств (таких, как мышь, принтер, сканер, фотокамера, FM-тюнер и т.д.) к одному USB-каналу (по принципу общей шины). Пропускная способность до 480 Мбит/с (в версии USB 2.0). В современных компьютерах частота процессора может превышать частоту системной шины (частота процессора 1 ГГц, а частота шины – 100 МГц). 2.3.3. Память Память – функциональная часть компьютера, предназначенная для записи, хранения и выдачи информации. В ПК имеется несколько видов памяти: ОЗУ, ПЗУ, РОН, Кэш, СМОS, ВЗУ. Существует еще видеопамять – электронная память, размещенная на видеокарте. Производительность ПК во многом определяется быстродействием процессора, а также объемом оперативной памяти и скоростью доступа к ней. Оперативная память (RAM – random access memory, ОЗУ) – устройство, предназначенное для хранения обрабатываемой информации (данных) и программ, управляющих процессом обработки информации. Конструктивно представляет собой набор микросхем, размещенных на одной небольшой плате (модуль, планка). Модуль (модули) оперативной памяти вставляется в соответствующий разъем материнской платы, позволяя таким образом связываться с другими устройствами ПК (рис. 2.4, 2.5). Рис. 2.4. Модули оперативной памяти Рис. 2.5. Инсталляция модуля ОП в слот Можно считать, что оперативная память представляет собой последовательность пронумерованных байтов. Каждый байт имеет свой номер, который по аналогии с номерами домов на улице принято называть адресом. Содержимое любого байта памяти может обрабатываться независимым от остальных байтов образом. Указав адрес байта, можно получить код, который в нем записан, или занести, записать в этот байт какой-либо другой код. С точки зрения физического принципа действия различают динамическую память (DRAM) и статическую память (SRAM). Микросхемы динамической памяти используются в качестве основной оперативной памяти компьютера. Ячейки динамической памяти можно представить в виде микроконденсаторов, способных накапливать заряд на своих обкладках. Это наиболее распространенный и экономически доступный тип памяти. Конденсаторы необходимо подзаряжать каждые несколько миллисекунд. В статической памяти элементы построены на триггерах – схемах с двумя устойчивыми состояниями. Для одного триггера требуется 4-6 транзисторов. После записи элемент памяти хранит информацию сколь угодно долго. Имеет высокое быстродействие и низкую удельную плотность. Микросхемы статической памяти используются в качестве кэш-памяти. Разработаны разные модификации статической и динамической памяти. Память характеризуется двумя параметрами: ü время доступа; ü длительность цикла. Время доступа – промежуток времени между формированием запроса на чтение информации и моментом поступления запрошенной информации из памяти. Длительность цикла – минимальное допустимое время между двумя последовательными обращениями к памяти. На время написания учебника типовой компьютер имеет 512 Мб или 1024 Мб оперативной памяти. Оперативная память энергозависима – при выключении электропитания информация, помещенная в оперативную память, исчезает безвозвратно (если она не была сохранена на какой-либо носитель информации). Для ускорения доступа к оперативной памяти используется кэш-память (cache – запас, тайник). Это сверхбыстрая оперативная память, предназначенная для временного хранения текущих данных и помещенная между оперативной памятью и процессором. Специальные программно-аппаратные средства обеспечивают опережающее копирование данных из оперативной памяти в кэш и обратное копирование данных по окончании их обработки. Обработка данных в кэш-памяти производится быстрее, что приводит к увеличению производительности ПК. Непосредственного доступа из программы в кэш-память нет. CMOS-память (изготовленная по технологии CMOS – complementary metal – oxide semiconductor) предназначена для длительного хранения данных о конфигурации и настройке компьютера (дата, время, пароль), в том числе, когда питание компьютера выключено. Для этого используют специальные электронные схемы со средним быстродействием, но очень малым энергопотреблением, питаемые от специального аккумулятора, установленного на материнской плате. Это полупостоянная память. Данные CMOS-памяти записываются и считываются под управлением команд, содержащихся в другом виде памяти – ПЗУ. Она называется ROM (read only memory) – постоянная память, т.е. память, хранящая информацию при отключенном питании теоретически сколь угодно долго. Это такая память, в которую данные занесены при ее изготовлении. Постоянная память содержит наборы групп команд для непосредственного управления различными устройствами ПК, а также их тестирования при включении. Эти программы называются BIOS (Basic Input-Output System – базовая система ввода-вывода). В BIOS содержится также программа настройки конфигурации компьютера – SETUP. Она позволяет установить некоторые характеристики устройств ПК. BIOS непосредственно ориентирована на конкретную аппаратную реализацию компьютера и может быть различной даже в однотипных компьютерах. 2.3.4. Внешние запоминающие устройства Устройства внешней памяти или, иначе, внешние запоминающие устройства весьма разнообразны. Их можно классифицировать по целому ряду признаков: по виду носителя, типу конструкции, по принципу записи и считывания информации, методу доступа и т.д. Один из возможных вариантов классификации ВЗУ приведен на рис. 2.6. Внешние запоминающие устройства (ВЗУ) – это электромеханические запоминающие устройства, которые характеризуются большим объемом хранимой информации и низким (по сравнению с электронной памятью) быстродействием. К ВЗУ относятся накопители на магнитной ленте (НМЛ), накопители на гибких магнитных дисках (НГМД), накопители на жестких магнитных дисках (НЖМД), накопители на оптических дисках (НОД) и др. Рис. 2.6. Классификация ВЗУ Носитель информации – это материальный объект, способный хранить информацию. Например, в первых ЭВМ носителями информации являлись бумажные ленты и карты, на которых были пробиты (перфорированы) отверстия. При магнитной записи информации с помощью записывающей головки происходит изменение магнитной индукции носителя. Носитель изготавливают из ферромагнитного материала. Располагается носитель на подложке, в качестве которой может выступать пластмассовая пленка, металлические или стеклянные диски. Ток, протекающий по обмотке записывающей головки, создает в сердечнике (магнитопроводе) магнитный поток. Через узкий зазор в сердечнике магнитный поток намагничивает носитель в одном из двух направлений, что зависит от направления протекающего по обмотке тока. Разные направления намагниченности носителя соответствуют логическому нулю или логической единице. Таким образом, записывающая головка – это маленькие электромагниты, которые своим электромагнитным полем изменяют ориентацию магнитных доменов в носителе в зависимости от полярности протекающего в обмотке тока. При считывании информации с ленты или диска движущийся намагниченный носитель индуцирует в считывающей головке электродвижущую силу. Полярность возникающего на обмотке напряжения зависит от направления намагниченности носителя. Накопители на магнитных дисках включают в себя ряд систем: ü элекромеханический привод, обеспечивающий вращение диска; ü блок магнитных головок для чтения и записи; ü системы установки (позиционирования) магнитных головок в нужное для записи или чтения положение; ü электронный блок управления и кодирования сигналов. Дискета – гибкий пластиковый диск с нанесенным на обе стороны магнитным покрытием, заключенный в достаточно твердый пластиковый конверт для предохранения от механических повреждений. Информация на диск наносится вдоль концентрических окружностей (рис. 2.7) – дорожек. Каждая дорожка разбита на несколько секторов (обычно 18) – минимально возможных адресуемых участков. Стандартная емкость сектора – 512 байт. Рис. 2.7. Логическая структура поверхности магнитного диска Процедура разметки нового диска – нанесение секторов и дорожек – называется форматированием. Одноименные сектора обеих поверхностей образуют кластеры. В центре дискеты имеется приспособление для захвата и обеспечения вращения диска внутри пластмассового корпуса. Дискета вставляется в дисковод, который вращается с постоянной угловой скоростью. Магнитные головки примыкают к обеим поверхностям и при вращении диска проходят мимо всех кластеров дорожки. Перемещение головок по радиусу с помощью шагового двигателя обеспечивает доступ к каждой дорожке. Запись/чтение осуществляется целым числом кластеров, обычно под управлением операционной системы. Для дискет формата 3,5’’ максимальная емкость составляет 2,88 Мб, самый распространенный формат емкости для них – 1,44 Мб. В целях сохранения информации гибкие магнитные диски необходимо предохранять от воздействия сильных магнитных полей и нагревания, так как такие воздействия могут привести к размагничиванию носителя и потере информации. Накопителем на гибких дисках является дисковод ZIP фирмы Iomega. Накопитель подобен дискете по принципу действия, (но емкостью около 100 Мб) и вставляется в специальный диско-вод. Носитель информации имеет гибкую основу, сам накопитель использует эффект Бернулли. Основная идея такого накопителя заключается в следующем. Воздушные потоки, возни-кающие вследствие вращения гибкого диска, вызывают изгиб части поверхности диска, находя-щейся под головкой. Однако диск не соприкасается с головкой, и между ними остается неболь-шой, достаточно стабильный зазор, который обеспечивается потоками воздуха. Этот эффект поз-воляет использовать более плотную запись информации. Жесткий магнитный диск (винчестер, HDD – Hard Disk Drive) –накопитель, предназначенный для долговременного хранения всей имеющейся в компьютере информации. Операционная система, постоянно используемые программы загружаются с жесткого диска, на нем хранится большинство документов. Жесткий диск является несменным носителем. Жесткий диск представляет собой герметичную коробочку (рис. 2.8), внутри которой спрятано несколько дисков, покрытых магнитным слоем. Над ними очень быстро движутся несколько головок чтения-записи. Рис. 2.8. Жесткий диск Винчестер содержит набор пластин, представляющих собой чаще всего металлические диски, покрытые магнитным материалом (гамма-феррит-оксид, феррит бария, окись хрома и т.п.) и соединенные между собой при помощи шпинделя (вала, оси). Жесткие диски изготавливаются из алюминия, латуни, керамики или стекла. Для записи данных используются обе поверхности дисков. Шпиндель вращается с высокой постоянной скоростью (» 8000 оборотов в минуту). Вращение головок осуществляется с помощью двух электродвигателей. Данные записываются или считываются с помощью головок записи и считывания, по одной на каждую поверхность диска. На рис. 2.9 для упрощения показаны головки, расположенные только с одной стороны диска.
Рис. 2.9. Устройство жесткого диска Запись информации на диск ведется по строго определенным местам – концентрическим дорожкам (трекам). Дорожки, как и в случае гибких дисков, делятся на сектора. Специальный двигатель с помощью кронштейна позиционирует головку над заданной дорожкой (перемещает ее в радиальном направлении). При повороте диска головка располагается над нужным сектором. Очевидно, что все головки перемещаются одновременно и считывают информацию с одинаковых дорожек разных дисков. Дорожки винчестера с одинаковыми порядковыми номерами, расположенные на разных дисках, называются цилиндром. Внутренняя полость винчестера заполняется очищенным от пыли воздухом, а внутри корпуса поддерживается атмосферное давление. При вращении диски создают сильный поток воздуха, который постоянно очищается фильтром. Основные параметры жесткого диска. ü Емкость – винчестер имеет объем от 40 Гб до 200 Гб и более. ü Скорость чтения данных. Средний сегодняшний показатель – около 8 Мбайт/с. ü Среднее время доступа. Измеряется в миллисекундах и обозначает то время, которое необходимо диску для доступа к любому выбранному вами участку. Средний показатель – 9 мс. ü Скорость вращения диска. Показатель, напрямую связанный со скоростью доступа и скоростью чтения данных. Скорость вращения жесткого диска в основном влияет на сокращение среднего времени доступа (поиска). Повышение общей производительности особенно заметно при выборке большого числа файлов. ü Размер кэш-памяти – быстрой буферной памяти небольшого объема, в которую компьютер помещает наиболее часто используемые данные. У винчестера есть своя кэш-память размером до 8 Мбайт. ü Фирма-производитель. Освоить современные технологии могут только крупнейшие производители, потому что организация изготовления сложнейших головок, пластин, контрол-леров требует крупных финансовых и интеллектуальных затрат. В настоящее время жесткие диски производят семь компаний: Fujitsu, IBM-Hitachi, Maxtor, Samsung, Seagate, Toshiba и Western Digital. При этом каждая модель одного производителя имеет свои, только ей присущие особенности. В ПК используются также диски с высокой плотностью записи, на поверхности которых для более точного позиционирования магнитной головки используется лазерный луч. По внешнему виду эти диски напоминают 3,5-дюймовые дискеты, но имеют более жесткую конструкцию. Накопители на флоппи дисках – выполняют обычную магнитную запись информации, но со значительно большей плотностью размещения дорожек на поверхности диска. Такая плотность достигается ввиду наличия на дисках специальных нанесенных лазерным лучом серводорожек, служащих при считывании/записи базой для позиционирования лазерного луча, и соответственно, магнитной головки, жестко связанной с лазером. Стандартная емкость флоппи диска 20,8 Мбайта; накопители сверхвысокой плотности записи (VHD — Very High Density) используют кроме лазерного позиционирования еще и специальные дисководы, обеспечивающие иную тех-нологию записи/считывания – «перпендикулярного» способа записи вместо обычного «продоль-ного». По способу организации записи и считывания оптические диски могут быть разделены на три класса: только для чтения CD-ROM (Read Only), с однократной записью и многократным считыванием СC-WORM (Continuous Composite Write Once Read Many) и с многократной перезаписью информации CD-RW (Compact Disc-ReWritable). В основе записи информации с помощью лазера лежит модуляция интенсивности излучения лазера дискретными значениями 0 и 1. Излучение достаточно мощного лазера оставляет на поверхности диска метки, вызванные воздействием луча на металл. Поверхность диска предварительно покрывается тонким слоем металла – теллура. При записи логической единицы луч прожигает в пленке теллура микроскопическое отверстие. Если единицы следуют одна за другой, то за счет вращения диска во время записи отверстие оказывается вытянутым вдоль дорожки. Запись ведется с большой плотностью – 630 дорожек на миллиметр. Длина всей спиральной дорожки около 5 км. Таким способом изготавливается первичный «мастер диск», с которого затем производится тиражирование всей партии дисков методом литья под давлением. При считывании информации с оптического диска луч считывающего лазера отражается от поверхности диска, кроме мест, выжженных записывающим лучом. Отраженные лучи с помощью оптической системы, состоящей из призм и линз, направляются на фотодетектор. Делитель луча отправляет отраженный луч по отдельной траектории к фотодетектору (рис. 2.10). Напряжение на выходе фотодетектора воспроизво-дит впадины и бугорки, имеющиеся на оптическом диске. Рис. 2.10. Принцип работы оптических дисков Технология записи на перезаписывающие диски иная. Запись информации в магнитооптических накопителях осуществляется на диск из стекла, содержащий магнитный слой из сплава тербия, железа и кобальта. Этот сплав имеет низкую температуру Кюри (около 145°С). Температура Кюри – это такая температура, при которой появляется возможность перемагнитить данный сплав. С помощью лазера нагревают небольшой участок диска до температуры Кюри и прикладывают магнитное поле нужного направления. После остывания данный участок запоминает направление намагниченности. Для считывания данных используют эффект Керра, который проявляется в изменении направления поляризации лазерного луча, отраженного от намагниченной поверхности. Более высокой плотностью записи обладают диски DVD (Digital Video Disc). Информация на этих дисках может быть размещена на одной либо на обеих сторонах, в одном либо в двух слоях. Переключение между слоями осуществляется фокусировкой лазера на требуемом расстоянии. Классическим способом резервного копирования является применение стримеров – устройств записи на магнитную ленту. Однако возможности этой технологии как по емкости, так и по скорости, сильно ограничены физическими свойствами носителя. Стример по принципу действия очень похож на кассетный магнитофон. Данные записываются на магнитную ленту, протягиваемую мимо головок. Недостатком стримера является слишком большое время последовательного доступа к данным при чтении. Емкость стримера достигает нескольких Гбайт, что меньше емкости современных винчестеров, а время доступа во много раз больше. В качестве стримера порой используют обычный видеомагнитофон. Для этого компьютер должен быть укомплектован специальной платой – «АрВид». Устройства, основанные на кристаллах электрически перепрограммируемой памяти, не имеющие подвижных частей, называются флэш-память. Физический принцип организации ячеек флэш-памяти можно считать одинаковым для всех выпускаемых устройств, как бы они ни назывались. Различаются такие устройства по интерфейсу и применяемому контроллеру, что обусловливает разницу в емкости, скорости передачи данных и энергопотреблении. USB Flash Drive – последовательный интерфейс USB с пропускной способностью 12 Мбит/с или его современный вариант USB 2.0 с пропускной способностью до 480 Мбит/с. Сам носитель заключен в обтекаемый компактный корпус, напоминающий автомобильный брелок. Может служить не только «переносчиком» файлов, но и работать как обычный накопитель – с него можно запускать приложения, воспроизводить музыку и сжатое видео, редактировать и создавать файлы. PC Card (PCMCIA ATA) – основной тип флэш-памяти для компактных компьютеров.
В настоящее время существует четыре формата карточек PC Card: Type I, Type II, Type III и CardBus, различающиеся размерами, разъемами и рабочим напряжением. Емкость PC Card достигает 4 Гб, скорость – 20 Мб/с при обмене данными с жестким диском. MirrorBit Flash, разработанная компанией AMD, основана на технологии хранения в ячейке двух бит. Каждая ячейка разделена на симметричные (зеркальные) половинки изолирующим слоем из нитрида кремния и, таким образом, имеет удвоенную емкость. За счет «зеркальности» более быстро формируется стандартная 16-битная страница данных, что увеличивает скорость обмена. Чипы семейства MirrorBit имеют емкость 64 Мбит и могут быть установлены на большинство современных типов твердотельных устройств памяти. CompactFlash (CF) – самый распространенный, универсальный и перспективный формат. Легко подключается к любому ноутбуку. Основная область применения – цифровая фотография. По емкости (до 3 Гбайт) сегодняшние CF-карты не уступают IBM Microdrive, однако отстают по скорости обмена данными (около 2 Мбайт/с). Miniature Card (MC) – карточка флэш-памяти, предназначена в основном для карманных компьютеров, мобильных телефонов и цифровых фотокамер. Стандартная емкость составляет 64 Мбайт. SmartMedia – основной формат для карт широкого применения от банковских и проездных в метро до удостоверений личности. Тонкие пластинки весом 2 грамма имеют открыто расположенные контакты, но значительная для таких габаритов емкость (до 128 Мбайт) и скорость передачи данных (до 600 Кбайт/с) обусловили их проникновение в сферу цифровой фотографии и носимых МР3-устройств. Memory Stick – «эксклюзивный» формат фирмы Sony, практически не используется другими компаниями. Максимальная емкость — 256 Мбайт, скорость передачи данных доходит до 410 Кбайт/с, цены сравнительно высокие. xD Picture Card (extreme Digital) является новым типом флэш-памяти, разработанным компанией Toshiba специально для цифровых фотоаппаратов. В момент написания учебника – это самое миниатюрное устройство флэш-памяти. Благодаря использованию технологии NAND не имеет ограничений на максимальный объем. 2.3.5. Порты Порты – это устройства для подключения к системной шине различных внешних устройств. Различают несколько типов портов: внутренний (таймерный), клавиатурный, коммуникационный, игровой (джойстик). Каждому порту выделяется группа адресов, по которым в порт записываются или из порта считываются данные, служебная информация для программирования параметров порта и текущее состояние порта. Через таймерный порт можно программировать частоту следования меток времени, используемых в электронных часах компьютера. Сигналы порта подсчитываются операционной системой, для хранения накопленного значения используется область памяти с определенным адресом. Клавиатурный порт обеспечивает ввод кодов нажатых клавиш. Данные от порта накапливаются и обрабатываются в специальном кольцевом буфере клавиатуры в определенной области памяти. Коммуникационные порты обеспечивают подключение таких внешних устройств как мышь, принтер, сканер, внешний модем и некоторых других. Эти порты подразделяются на последовательные (СОМ1 и COM2) и параллельные (LPT). Последовательные порты обеспечивают двусторонний побайтовый обмен последовательными кодами, выполнены в виде 25-контактного и 9-контактного разъемов. Порты размещаются в контроллере, который устанавливается либо на системной плате, либо на мультикарте и выведен на заднюю панель системного блока. Порты можно запрограммировать на требуемую скорость передачи данных. Используются обычно для подключения мыши и модема. Параллельные порты могут реализовать либо однонаправленную побайтовую (8 электрических импульсов) передачу параллельных кодов, либо двунаправленную. Порты выполнены в виде 25-контактного разъема на задней стенке системного блока. Параллельный порт имеет более высокую скорость передачи информации, чем последовательные порты, и используется для подключения принтера. Коммуникационные порты используются также для межкомпьютерной связи в режиме Link. Широкое распространение получил порт USB (Universal Serial Bus – универсальная последовательная шина). Он обеспечивает высокоскоростное подключение к компьютеру сразу нескольких периферийных устройств (сканера, цифровых камер и т.п.). Также высокоскоростное подключение до 7 устройств (винчестеров, сканеров, CD-ROM дисководов и т.п.) к компьютеру реализует интерфейс малых вычислительных систем (Small Computer System Interface). SCSI-адаптеры размещаются в слотах расширения системной платы. Подключение джойстиков, предназначенных для управления играми, реализуется в специальный игровой порт (Game-порт), который размещается на звуковой карте. 2.3.6. Устройства вывода Выводимая информация может отображаться на экране монитора, печататься на бумаге (с помощью принтера или плоттера), воспроизводиться в виде звуков (с помощью акустических колонок или головных телефонов), регистрироваться в виде тактильных ощущений (технология виртуальной реальности), распространяться в виде управляющих сигналов (устройства автоматики), передаваться в виде электрических сигналов по сети. 2.3.6.1. Мониторы К средствам визуального отображения относятся мониторы. Монитор работает под управлением специального аппаратного устройства – видеоадаптера, который преобразует информацию, предназначенную для вывода на экран, из внутреннего машинного представления в представление монитора. Видеокарта установлена в слот расширения системной платы в системном блоке, и с помощью нее монитор подключается к компьютеру. Дисплей и адаптер очень тесно связаны между собой и совместно определяют качество изображения – разрешение, количество воспроизводимых цветов, скорость регенерации (число кадров в единицу времени). Отображение информации на экране монитора возможно в одним из двух режимов: символьном или графическом. В любом режиме изображение на экране составляется из отдельных точек, каждая из которых имеет свой цвет или яркость. В графическом режиме, который в основном используется в современных программных продуктах, управление цветом или яркостью осуществляется для каждой точки экрана в отдельности. В текстовом режиме управление цветом или яркостью осуществляется сразу для группы точек, образующих прямоугольную матрицу определенного размера. Для этой группы задается цвет фона, то есть цвет точек, не участвующих в формировании символа, цвет символа и код символа. Формирование символа осуществляется под управлением специального электронного устройства – знакогенератора, представляющего для каждого символа кодовой таблицы набор байтов, определяющих местоположение в матрице точек с цветом символа и цветом фона. Изменение таблицы знакогенератора позволяет менять шрифт и создавать альтернативные таблицы кодировок символов. В обязанности современной видеокарты входит быстрая и качественная обработка двумерной графики и поддержка (возможность вывода на экран качественно прорисованного) объемного, трехмерного изображения (3D, 3-Dimensions). Кроме того, у многих видеокарт есть и дополнительные функции – прием изображения внешнего источника – видеокамеры, видео-магнитофона или телевизионной антенны (эти операции выполняют, соответственно, видеовход и TV-тюнер), вывод изображения на внешние устройства – телевизор или видеомагнитофон (этим занимается видеовыход). Видеокарта оснащена достаточно мощным специализированным графическим процессором и собственной оперативной памятью (видеопамятью), объем которой постепенно догоняет стандартный объем оперативной памяти самого компьютера. Бурное развитие графического пользовательского интерфейса операционных систем, прикладных и игровых программ явилось стимулом к появлению нового поколения видеоадаптеров, которые принято называть «графическими ускорителями ». Это означает, что многие графические функции выполняются в самом видеоадаптере на аппаратном уровне, благодаря чему высвобождаются ресурсы процессора для выполнения других задач. Основные параметры видеокарт. 1. Разрешающая способность – определенное количество точек графического изображения на единицу площади. Чем больше этих точек, тем менее зернистой и более качественной будет картинка. Разрешающую способность описывают две величины — количество точек по вертикали и по горизонтали: 640´480, 800´600, 1024´768, 1152´864, 1280´1024, 1600´1200, 1792´1344. 2. Цветовой режим – количество цветов. Любая современная видеокарта обеспечит количество цветов от 16 до нескольких десятков миллионов, достигая границы чувствительности человеческого глаза. Самый «грубый» режим – 16 цветов. LowColor – режим 256 цветов. High Color – режим «высококачественного цвета» (65 тыс. цветов). True Color – режим «реального цвета» (16 млн. цветов). Два последних режима являются «рабочими» для Windows, они же чаще всего используются в играх. Эти два параметра вместе называются видеорежимом (режим 800´600´65K – разрешение 800´600 при 65 тыс. цветов). 3. Максимальная частота развертки (Refresh Rate) – частота обновления кадров. Чем выше частота развертки – тем меньше будет «рябить» экран монитора. Для комфортной работы необходимо, чтобы частота вертикальной развертки составляла не менее 80 Гц, т.е. чтобы изображе-ние на экране обновлялось с частотой не менее 80 раз в секунду. Управление видеокартой в графическом режиме, в том числе включение того или иного графического режима, осуществляется с помощью специальной программы, называемой графическим драйвером. Стандартные драйверы имеют расширение bgi, например svga256.bgi. В настоящее время наиболее распространены цветные мониторы с видеоадаптером SVGA (Super Video Graphic Array – видеографическая матрица). Монохромные мониторы в современных компьютерах не используются. Характеристиками монитора являются: ü размер зерна люминофора (вещества, светящегося под воздействием пучка электронов); ü размер экрана по диагонали. Размер зерна – это минимальный размер пикселя, который может быть получен в данном мониторе. Минимальный элемент изображения на экране (точка) называется пикселем – от английского «picture element». Нельзя смешивать понятия «пиксель» и «зерно». Размер зерна изменить нельзя, а размер пикселя зависит от режима видеоадаптера. Для адаптеров с высоким разрешением нет смысла использовать монитор с крупным размером зерна. Приемлемым сегодня считается зерно 0,28 мм, качественные мониторы имеют зерно 0,25–0,24 мм, профессиональные – 0,22 мм. Величина зерна заметно сказывается на контрастности изображения. Поэтому для графических работ следует выбирать мониторы с зерном не более 0,25 мм. Мониторы имеют различный размер экрана. Размер диагонали экрана измеряется в дюймах (1 дюйм = 2,54 см) и составляет 15,17, 19, 21 и более дюймов. В настоящее время используются два вида мониторов: мониторы на электронно-лучевой трубке (ЭЛТ) и жидкокристаллические мониторы. Параметры монитора ЭЛТ определяются характеристиками электронно-лучевой трубки и качеством элементов, управляющих видеотрактом. Конструкция ЭЛТ совпадает с телевизионным кинескопом (рис. 2.11). Перечислим основные детали, из которых состоит ЭЛТ: катод, анод, экран, колба модулятор, горизонтальные отклоняющие пластины, вертикальные отклоняющие пластины. Катод, анод и модулятор образуют электронный прожектор, который иногда называют электронной пушкой. Горизонтальные и вертикальные отклоняющие пластины образуют отклоняющую систему. Рис. 2.11. Принципиальное устройство электронно-лучевой трубки монитора В ЭЛТ используется поток электронов, сфокусированных в узкий пучок, управляемый по интенсивности и по положению в пространстве. Электронный пучок испускается электронным прожектором (точнее, катодом), а изменение положения пучка на кране производится отклоняющей системой. Перемещение электронного луча по экрану ЭЛТ в соответствии с определенным законом называется разверткой, а рисунок, прочерченный следом пучка на экране, – растром. Развертка осуществляется подачей на отклоняющую систему ЭЛТ периодически изменяющихся напряжений. В ходе развертки электронный пучок последовательно обегает по строчкам поверхность экрана ЭЛТ. В процессе сканирования поток электронов движется по зигзагообразной траектории от левого верхнего угла экрана к нижнему правому углу. Экран покрыт люминофором, поэтому в местах падения электронного пучка появляется свечение, яркость которого пропорциональна интенсивности пучка. Интенсивность потока электронов изменяется в соответствии с сигналами, подаваемыми на управляющий электрод – модулятор. Именно эти сигналы формируют необходимое изображение на экране дисплея. С помощью отклоняющей системы модулированный пучок электронов развертывается в растр, высвечивая на экране строку за строкой. Изображение воспроизводится кадр за кадром. Благодаря инерционности зрения человек видит на экране слитное, динамическое, изображение. В цветных мониторах для формирования изображения применяют отдельные пушки для каждого из основных цветов (Red – красный, Green – зеленый, Blue – синий), а слой люминофора составляют из близко расположенных группами по три (также в сочетании Red, Green, Blue – RGB) точек цветного люминофора. Мониторы на ЭЛТ (рис. 2.12) являются источником высокого статического напряжения, элек-тромагнитного излучения и мягкого рентгеновского излучения, которые оказывают неблагоприятное воздействие на пользователя. Наиболее интенсивны электромагнитные и другие излучения в области задней стенки корпуса монитора. Экраны на плоских панелях могут быть основаны на нескольких технологиях: ü жидких кристаллах (LCD); ü плазменных (PDP); ü светодиодных элементах (LED); ü электронной эмиссии (FED) ü и других. Рис. 2.12. Внешний вид ЭЛТ-монитора Жидкокристаллические мониторы (LCD – Liquid Crystal Display) имеют панели, ячейки (пикселы) которых содержат жидкие вещества, обладающие некоторыми свойствами, присущими кристаллам (рис. 2.13). Молекулы жидких кристаллов под воздействием электрического поля могут изменять свою ориентацию и вследствие этого изменять свойства светового луча, проходящего сквозь них. Рис. 2.13. Внешний вид ЖК-монитора ЖК-панель имеет несколько слоев, среди которых ключевую роль играют две стеклянные подложки и находящийся между ними слой жидких кристаллов. На подложках проделаны параллельные бороздки, определяющие ориентацию жидких кристаллов. Бороздки двух подложек перпендикулярны между собой. Молекулы жидких кристаллов в отсутствие напряжения под воздействием источника проходящего или падающего света поворачивают плоскость поляризации на угол 90°, что обеспечивает совпадение с ориентацией бороздок. При появлении электрического поля ЖК-молекулы выстраиваются вдоль поля, и угол поворота плоскости поляризации света становится отличным от 90°. Поворот плоскости поляризации светового луча незаметен для глаза, поэтому на панели устанавливают несколько поляризационных фильтров. Они пропускают только ту компоненту светового потока, у которой ось поляризации соответствует заданной. В отсутствие напряжения на сегменте углы поляризации света после прохождения ЖК-ячеек и второй подложки совпадают, и потому пиксел выглядит прозрачным. Важнейшим параметром плоскопанельных дисплеев является стандартное (Native) разрешение. Оно соответствует числу пикселов по горизонтали и вертикали. Именно в стандартном разрешении ЖК-монитор воспроизводит изображение наиболее качественно. Разрешение определяется размером ячеек и диагональю панели. В настоящее время производятся панели с ячейками размером 0,24–0,3 мм. Яркость и контрастность определяют комфортность работы с ЖК-монитором. Цветовой охват современных ЖК-панелей достигает 16,7 млн цветов. Таким образом, к преимуществам ЖК-мониторов можно отнести небольшое питающее напряжение, малую глубину панели, действительно плоское изображение (без геометрических искажений), высокие значения яркости, низкое энергопотребление, отсутствие электромагнитных излучений. Существенных недостатков четыре: высокая цена (которая динамично снижается), искажение цветов, единственный режим разрешения, обеспечивающий хорошее качество, малые углы комфортного обзора. Мониторы, основанные на плазменных технологиях, светодиодных элементах и электронной эмиссии, пока используются редко. 2.3.6.2. Принтеры Принтер предназначен для вывода текстовой и графической информации на твердый носитель, в основном – на бумагу. Для уменьшения загруженности компьютера, под управлением которого они работают, принтеры имеют собственный узкоспециализированный процессор и оперативную память (буфер), в которую помещается полностью или частично информация, выводимая на печать. Принтеры классифицируются по пяти основным позициям: ü принципу работы печатающего механизма, ü максимальному формату листа бумаги, ü использованию цветной печати, ü наличию или отсутствию аппаратной поддержки языка PostScript (см. пункт 1.5.4), ü рекомендуемой месячной нагрузке, которая взаимосвязана со скоростью печати. По принципу действия принтеры делятся на: ü матричные, ü струйные, ü лазерные, ü и другие. Матричные принтеры являются принтерами ударного действия. Печатающая головка матричного принтера состоит из вертикального столбца маленьких стержней, которые под воздействием магнитного поля «выталкиваются» из головки и ударяют по бумаге через красящую ленту. Перемещаясь, печатающая головка оставляет на бумаге строку символов. Недостатками матричных принтеров являются медленная печать, много шума при печати и качество печати. Достоинства матричных принтеров определяются способностью работать с любой бумагой и низкой стоимостью печати. Струйные и лазерные принтеры могут быть монохромными или цветными. Для каждого класса принтеров существуют основные стандарты протокола обмена и систем команд. Для матричных принтеров основными являются стандарты фирм IBM и Epson, для струйных – фирмы Hewlett Packard, для лазерных – фирмы Hewlett Packard и язык описания страниц PostScript. В струйных принтерах (рис. 2.14) используется чернильная печатающая головка, которая под давлением выбрасывает чернила из ряда мельчайших отверстий на бумагу. Печатающая головка струйного принтера содержит от 12 до 64 сопел, диаметры которых тоньше человеческого волоса. Перемещаясь вдоль бумаги, печатающая головка оставляет строку символов или полоску изображения. Известно несколько принципов действия струйных печатающих головок. В одной из конструкций на входном конце каждого сопла расположен маленький резервуар с чернилами. Позади резервуара располагается нагреватель (тонкопленочный резистор). Когда резистор нагревается проходящим по нему током до температуры 500°С, окружающие его чернила вскипают, образуя пузырек пара. Этот расширяющийся пузырек выталкивает из сопла капли чернил диаметром 50–85 мкм со скоростью около700 км/ч. В другой конструкции печатающей головки источником давления служит мембрана, приводимая в движение пьезоэлектрическим способом. Во всех конструкциях принтеров электромеханические устройства перемещают печатающие головки и бумагу таким образом, чтобы печать происходила в нужном месте. Струйные принтеры печатают достаточно быстро, производят мало шума. Качество печати определяется разрешающей способностью струйных принтеров, которая составляет 600 dpi и выше. Символы dpi означают число точек на дюйм (dot per inch). Однако они очень требовательны к бумаге. На бумаге низкого качества чернила расплываются. Также полученное изображение чувствительно к действию влаги. В лазерных принтерах (рис. 2.15) используется электрографический принцип создания изображения. Процесс печати включает в себя создание невидимого рельефа электростатического потенциала в слое полупроводника с последующей его визуализацией. Визуализация осуществляется с помощью частиц сухого порошка – тонера, наносимого на бумагу. Тонер представляет собой кусочки железа, покрытые пластиком. Наиболее важными частями лазерного принтера являются полупроводниковый барабан, лазер и прецизионная оптико-механическая система, перемещающая луч (рис. 2.16). Рис. 2.15. Внешний вид лазерных принтеров Рис. 2.16. Принцип работы лазерного принтера Лазер генерирует тонкий световой луч, который, отражаясь от вращающегося зеркала, формирует электронное изображение на светочувствительном полупроводниковом барабане. Поверхности барабана предварительно сообщается статический заряд. Для получения изображения на барабане лазер должен включаться и выключаться, что обеспечивается схемой управления. Вращающееся зеркало служит для разворота луча лазера в строку, формируемую на поверхности барабана. Поворот барабана на новую строку осуществляет позиционный шаговый двигатель. Процесс развертки изображения на барабане во многом напоминает построение изображения на экране монитора (создание растра). Когда луч лазера попадает на предварительно заряженный барабан, заряд «стекает» с освещенной поверхности. Освещаемые и неосвещаемые лазером участки барабана имеют разный заряд. В результате сканирования всей поверхности полупроводникового барабана на нем создается скрытое (электронное, не видимое для человека) изображение. На следующем этапе работы принтера происходит проявление изображения, т.е. превращение скрытого электронного изображения в видимое изображение. Заряженные частицы тонера притягиваются только к тем местам барабана, которые имеют противоположный заряд по отношению к заряду тонера. Когда видимое изображение на барабане построено, и он покрыт тонером в соответствии с оригиналом, подаваемый лист бумаги заряжается таким образом, что тонер с барабана притягивается к бумаге. Прилипший порошок закрепляется на бумаге за счет нагрева частиц тонера до температуры плавления. В результате этих операций формируется водоупорный отпечаток. Цветные лазерные принтеры формируют изображение, последовательно накладывая голубой, пурпурный, желтый и черный тонеры на фоточувствительный барабан. Принтер работает в четырехпроходном режиме, поэтому скорость печати цветного принтера существенно меньше, чем черно-белого принтера. Лазерные принтеры обеспечивают практически бесшумную печать, высокую скорость печати, которая достигается постраничной печатью. Страница печатается целиком. Разрешающая способность лазерных принтеров достигает 1200 dpi и выше. Кроме лазерных принтеров, существуют так называемые LED-принтеры (Light Emitting Diode), которые получили свое название из-за того, что полупроводниковый лазер в них заменен «гребенкой» (линейкой) светодиодов. Изображение одной строки на полупроводниковом барабане формируется одновременно. Цветные лазерные принтеры пока не идеальны. Для получения цветного изображения с качеством, близким к фотографическому, используют термические принтеры или, как их еще называют, цветные принтеры высокого класса. В настоящее время распространение получили три технологии цветной термопечати: струйный перенос расплавленного красителя (термопластичная печать); контактный перенос расплавленного красителя (термовосковая печать); термоперенос красителя (сублимационная печать). Скорость печати термических принтеров вследствие инерционности тепловых эффектов невысокая. Для сублимационных принтеров от 0,1 до 0,8 страниц в минуту, а для термовосковых – 0,5 – 4 страницы в минуту. При работе принтера требуется подача команд на перевод строки и возврат каретки, на продвижение бумаги на один шаг, на регулировку величины шага и т.д. Некоторые принтеры допускают обратное перемещение бумаги. Для печати символов используются шрифты, встроенные в постоянную память принтера или загружаемые из компьютера в оперативную память принтера. Встроенные шрифты не обеспечивают разнообразие и не всегда содержат символы кириллицы, поэтому чаще используются загружаемые шрифты. Принтер может подключаться к последовательному порту, для обеспечения большей скорости печати чаще подключается к параллельному порту. 2.3.6.3. Другие устройства вывода Плоттером (графопостроителем) называется устройство для вывода широкоформатной графической информации на бумагу (плакатов, чертежей, электрических и электронных схем и т.п.). Принцип действия плоттеров такой же, как и у струйных принтеров. Принципиальным отличием плоттера от принтера является способность наносить непрерывные линии. Плоттеры характеризуются максимальным форматом бумаги и возможностями цветопередачи. Подключаются к компьютеру через параллельный порт. Вывод звуковой информации осуществляется с помощью акустических колонок и головных телефонов, которые подключаются через специальный адаптер (контроллер, звуковую плату). Модем – устройство для передачи цифровой информации по телефонным или выделенным каналам связи. Подключается к компьютеру через последовательный порт (внешний модем) или включается в разъем системной платы (внутренний модем). По техническим характеристикам внешние и внутренние модемы практически не отличаются. Модемы обмениваются между собою правилами, набор которых называется протоколом. Наиболее важными параметром модема являются максимальная скорость передачи (пропускная способность) в бодах (1 бод = 1 бит/с), методы коррекции ошибок и сжатия данных. Реальная скорость передачи ограничивается качеством подключенного канала связи и может быть существенно меньше максимальной. Сетевая карта – устройство для высокоскоростного межкомпьютерного обмена цифровой информацией на небольших расстояниях, включается в системную плату компьютера. Она связана с аналогичным устройством другого компьютера высокочастотной линией. При отсутствии в компьютере загрузочного диска сетевая карта обеспечивает загрузку операционной системы с другого компьютера. 2.3.7. Устройства ввода Универсальным устройством ввода информации является клавиатура, с помощью которой вводятся алфавитно-цифровые данные и реализуется управление работой компьютера. Стандартная клавиатура имеет 101 клавишу и подключается к специальному разъему на задней панели системного блока. Для ввода графической информации наиболее распространенными устройствами являются оптико-механические манипуляторы мышь и трекбол. В них рабочим органом является металлический шар, покрытый резиной (рис. 2.17). У мыши он вращается при перемещении ее корпуса по горизонтальной поверхности, а у трекбола вращается непосредственно рукой. Вращение шара передается двум пластмассовым валам, положение которых с большой точностью считывается инфракрасными оптопарами (парами «светоизлучатель – фотоприемник») и затем преобразуется в электрический сигнал, управляющий движением указателя мыши на экране. Рис. 2.17. Принцип действия манипулятора мышь Мышь содержит две или три клавиши и датчики перемещения в двух взаимно перпендикулярных направлениях. Имеются мыши с дополнительной кнопкой, которая располагается посередине основных кнопок. Эта кнопка предназначена для прокрутки вверх или вниз изображения и текста. Мышь работает под управлением специальной программы – драйвера, например mouse.com, и подключается либо к последовательному порту компьютера, либо к специальному разъему PS/2, либо к USB-порту. К устройству ввода относится и TouchPad (тачпад), представляющий собой прямоугольную панель, чувствительную к нажатию, пальцев. Прикоснувшись пальцем к поверхности тачпада и перемещая его, пользователь маневрирует курсором так же, как и при использовании мыши. Нажатие на поверхность тачпада равносильно нажатию кнопки мыши. Это устройство выполняет ту же роль, что и мышь, но не требует пространственного перемещения, обычно используется в портативных компьютерах. В играх часто используется джойстик – рычаг, с помощью которого можно направлять, например, самолет вправо, влево, вверх, вниз. При выборе предметов (например, в магазине) человек порой показывает на нужный объект пальцем. Именно таким образом вводится информация в ЭВМ с помощью сенсорных экранов (СЭ). По принципу действия СЭ разделяются на ультразвуковые, фотоэлектрические, резистивные и емкостные экраны. Главная задача СЭ состоит в определении координаты прикосновения пальца к экрану. Определив координату, дальше можно с помощью меню управлять работой ЭВМ. В ультразвуковых СЭ по краям экрана размещаются ультразвуковые преобразователи (датчики), которые создают на поверхности экрана акустические волны. Ультразвуковые колебания расходятся по стеклу монитора подобно кругам на воде. Ультразвуковые преобразователи одновременно выполняют функции передатчика и приемника акустических волн. Время прохождения от передатчика до приемника постоянно, если акустическая волна не наталкивается на какой-либо возмущающий объект (палец). Точку прикосновения можно достаточно точно определить методом эхолокации путем измерения времени прихода отраженных волн. Аналогично в аэропорту радиолокатор определяет расстояние до самолета. В фотоэлектрическом СЭ монитор освещается линейками светодиодов, расположенными по нижнему и правому краям дисплея. С левой и верхней сторон экрана установлены линейки фотодиодов. В результате образуется матрица из световых лучей, затемнение которых позволяет определить вертикальную и горизонтальную координаты прикосновения к экрану. Емкостные СЭ представляют собой матрицу конденсаторов, которые меняют свою емкость в месте прикосновения к экрану. В резистивных СЭ измеряется электрическое сопротивление двух соприкасающихся пленок. Световое перо представляет собой устройство в форме карандаша, принимающее свет от люминофора дисплея. Чувствительным элементом является фотодиод или фототранзистор. Подсчет числа строк растра позволяет определить вертикальную координату, а отсчет времени от начала формирования строки до момента срабатывания пера дает координату по горизонтали. Для ввода рисунков сложной формы используется режим, при котором под кончиком светового пера формируется светящаяся траектория (контур). Цифровые (графические) планшеты – диджитайзеры обеспечивают перенос изображения с накладываемого листа бумаги в ЭВМ с помощью перемещения по планшету специального указателя. Диджитайзеры позволяют создавать чертежи сразу в электронном виде. Работа с графическим планшетом аналогична рисованию карандашом. Особенно они удобны для формирования штриховых рисунков и чертежей. У графического планшета высокая разрешающая способность (свыше 2500 dpi против
200–400 dpi у мыши). При контакте с поверхностью планшета указатель обретает чувствительность к нажатию (256 уровней или градаций) и наклону относительно плоскости планшета. Сканером называется устройство для ввода в компьютер графической информации: фотографий, рисунков, слайдов, а также текстовых документов. В нем яркость (или цветовой оттенок) каждой точки документа преобразуется в цифровой код, при этом формируется точечный графический образ страницы. Сканер исключает утомительную процедуру введения текста с помощью клавиатуры и формирование рисунка с помощью мыши. Полученную копию изображения можно редактировать: изменять масштаб, добавлять и удалять детали, изменять цвет и т.д. Электронную копию изображения можно длительное время хранить на магнитном или оптическом носителе. Копируемое изображение освещается источником света (как правило, флуоресцентная лампа). При этом луч света осматривает (сканирует, разворачивает) каждый участок оригинала
(рис. 2.18). Отраженный от бумажного листа луч света через уменьшающую линзу попадает на прибор зарядовой связи (ПЗС). Рис. 2.18. Упрощенная конструкция сканера На поверхности ПЗС за счет сканирования формируется уменьшенное изображение копируемого объекта. ПЗС осуществляет преобразование оптической картинки в электрические сигналы. ПЗС представляет собой матрицу (прямоугольную таблицу), которая содержит большое число полупроводниковых элементов (вплоть до 2000 ´ 2000 элементов), чувствительных к световому излучению. При этом в черно-белых штриховых сканерах на выходе освещенных элементов с помощью контроллера формируется сигнал логической единицы, а на выходе неосвещенных элементов – сигнал логического нуля. Штриховые черно-белые сканеры используются для копирования чертежей. Существуют полутоновые черно-белые сканеры, в которых на выходе каждого элемента ПЗС с помощью аналогово-цифрового преобразователя формируется несколько (например 256) оттенков (уровней) серого цвета. Эта конструкция сканеров позволяет копировать черно-белые фотографии и рисунки. В цветных сканерах освещение копируемого изображения осуществляется либо от трех разноцветных источников света, либо от источника белого света, но через трехцветный фильтр. При цветном сканировании происходит формирование изображения в полутоновом (сером) режиме с различными фильтрами или источниками света (красным, синим, зеленым). Сигнал с выхода каждого элемента ПЗС кодируется восьмью битами, что дает 256 оттенков серого цвета. В результате такого преобразования можно получить более 16,7 миллиона возможных цветовых оттенков (24-битное кодирование, 3 цвета по 8 битов). По своему конструктивному исполнению сканеры бывают: ü ручные, ü планшетные, ü барабанные, ü проекционные и др. В ручных сканерах (рис. 2.19) перемещение чувствительного элемента по странице документа производит человек, что приводит к перекосам и ухудшению качества получаемого графического образа. Гораздо более высокое качество и скорость ввода достигаются в настольных (планшетных) сканерах. Внешне они похожи на ксероксы. Считываемый документ располагается на поверхности стеклянной пластины, под которой перемещается сканирующая головка. С помощью таких сканеров можно сканировать не только листы, но и книги. Такие сканеры рассчитаны на ввод картинок с непрозрачных оригиналов. Сканируемый документ подсвечивается снизу лампой, а сверху накрывается крышкой, дополнительно отражающей и рассеивающей свет. Барабанные сканеры дороги и сложны в использовании. Используются для высококачественной цветной печати. В качестве светочувствительного элемента в барабанных сканерах используется фотоэлектронный умножитель. Он располагается внутри полого стеклянного цилиндра, на поверхность которого накладывается оригинал. В ходе процесса сканирования цилиндр вращается вокруг своей оси, что дает возможность вводить изображение точка за точкой. Фотоэлектронные умножители чувствительны к незначительным изменениям яркости. Могут различать большое количество оттенков. Сканеры характеризуются: ü разрешающей способностью, ü глубиной цвета, ü максимальным форматом сканируемого документа, ü быстродействием и способом подключения. Разрешающая способность – это количество точек, которые сканер может различить на отрезке единичной длины, измеряется в единицах dpi. Существуют две величины разрешения: в горизонтальном и вертикальном направлениях. Разрешение по ширине определяется свойствами чипа ПЗС (количеством светочувствительных элементов в линейке). В вертикальном направлении разрешающая способность зависит от шага ее перемещения и равна количеству позиций, которые может занимать сканирующая головка. Существуют сканеры, разрешение которых составляет 600 ´ 1200 dpi. Глубина цвета – это число разрядов, отводимых для кодирования цвета каждой точки. Измеряется в битах. От этого зависит количество оттенков, которые можно закодировать двоичным числом соответствующей разрядности. Скорость процесса сканирования зависит от большого количества факторов. Имеют значения характеристики механизмов сканера и характеристики компьютера, к которому он подключен. Поэтому скорость сканирования обычно измеряется эмпирически. Полученная от сканера цифровая информация может либо обрабатываться как графический образ, либо преобразовываться в текст. Использование сканера совмещается с системами распознавания образов типа OCR (Optical Character Recognition). Система OCR распознает считанные сканером с документа мозаичные портреты символов (букв, цифр, знаков препинания) и преобразует их в байты в соответствии с кодовой таблицей. За счет системы OCR можно считывать машинописный и рукописный тексты. Правда, в последнем случае привлекаются сложные алгоритмы распознавания образов, основанные на теории искусственного интеллекта. Сканеры подключаются к параллельному или USB портам компьютера. Ввод объемных изображений (зданий, автомобилей и т.д.) в ЭВМ осуществляется с помощью цифровых камер. Цифровые камеры (видеокамеры и фотоаппараты), позволяют получать видеоизображение и фотоснимки непосредственно в цифровом коде. Цифровые видеокамеры могут быть постоянно подключены к компьютеру и обеспечивать запись видеоизображения на жесткий диск или его передачу по компьютерным сетям. Цифровые фотоаппараты позволяют получать высококачественные фотографии, для хранения которых используются специальные модули памяти или жесткие диски очень маленького размера. Запись изображения на жесткий диск компьютера может осуществляться с помощью подключения камеры к USB порту компьютера. При установке в компьютер специальной платы –ТВ—тюнера и подключении его ко входу телевизионной антенны можно просматривать телевизионные передачи непосредственно на компьютере. В будущем работой ЭВМ будут управлять преимущественно голосом, с помощью микрофона. Звуковая карта (рис. 2.20) преобразовывает звук из аналоговой формы в цифровую. Для ввода звуковой информации используется микрофон, который подключается ко входу звуковой карты. Некоторые звуковые карты имеют GAME-порт, к которому подключаются джойстики. Обычно звуковая карта может синтезировать звук, в ее памяти хранятся звуки различных музыкальных инструментов, которые она может воспроизводить. Вместе с этой лекцией читают «Настройка ПЗК на срабатывание по верхнему пределу». Рис. 2.20. Звуковая карта Sound Blaster Live На звуковой карте устанавливаются аналого-цифровой и цифро-аналоговый преобразователи, аналоговый микшер, усилитель, устройства коммутации сигналов и дополнительный порт для подключения цифрового канала накопителя CD. Звуковые карты отличаются частотой дискретизации сигнала, разрядностью цифрового и наличием/отсутствием аналогового стереоканала. Термин «мультимедиа» происходит от латинского слова «media» – среда или носитель информации. Таким образом, мультимедиа – это возможность работы со звуком и видеоинформацией. Мультимедиа-программа – это программа, использующая звуковые и анимационные средства. Мультимедийные компьютеры способны выполнять эти программы. К устройствам мультимедиа относятся накопители на компакт-дисках (лазерные дисководы – CD-ROM, DVD-ROM), звуковые карты и графические ускорители. Практически повсеместным стандартом стало внедрение формата обработки звука Dolby Digital 5.1. Это означает, что компьютер способен работать в звуковой среде, прежде характерной только для аппаратуры класса HiFi. Подключив к звуковой карте по цифровому выходу комплект колонок высокого класса, пользователь получает полноценный звук для домашнего электронного театра по цене ниже, чем самые дешевые системы бытового класса.
2.2.3. Основной цикл работы компьютера
Важной составной частью фон-неймановской архитектуры является счетчик адреса команд. Этот специальный внутренний регистр процессора всегда указывает на ячейку памяти, в которой хранится следующая команда программы. При включении питания или при нажатии на кнопку сброса (начальной установки) в счетчик аппаратно заносится стартовый адрес находящейся в постоянном запоминающем устройстве программы инициализации всех устройств и начальной загрузки. Дальнейшее функционирование компьютера определяется программой. Вся деятельность компьютера – это непрерывное выполнение тех или иных программ, причем программы могут в свою очередь загружать новые программы и т.д.
Каждая программа состоит из отдельных машинных команд. Каждая машинная команда, в свою очередь, делится на ряд элементарных унифицированных составных частей, которые принято называть тактами. В зависимости от сложности команды она может быть реализована за разное число тактов. Например, пересылка информации из одного внутреннего регистра процессора в другой выполняется за несколько тактов, а для перемножения двух целых чисел их требуется на порядок больше.
При выполнении каждой команды компьютер проделывает определенные стандартные действия:
- согласно содержимому счетчика адреса команд считывается очередная команда программы (ее код обычно заносится на хранение в специальный регистр УУ, который носит название регистра команд);
- счетчик команд автоматически изменяется так, чтобы в нем содержался адрес следующей команды (в простейшем случае для этой цели достаточно к текущему значению счетчика прибавить некоторую константу, определяющуюся длиной команды);
- считанная в регистр команд операция расшифровывается, извлекаются необходимые данные и над ними выполняются требуемые действия.
2.3. Функциональные компоненты компьютера
2.3.1. Микропроцессор
- тактовая частота – количество тактов, производимых процессором за 1 секунду. Операции, производимые процессором, не являются непрерывными, они разделены на такты. Тактовая частота определяет скорость выполнения операций и непосредственно влияет на производительность процессора. Процессор Pentium и его модификации имеют тактовые частоты от 60 МГц до 3 ГГц (выполняют 3 миллиарда операций в секунду);
- быстродействие – характеристика, связанная с тактовой частотой. Определяется количеством команд (операций), производимых в 1 секунду. Быстродействие зависит от тактовой частоты и от выполняющейся программы, от того, какие команды – сложения или, скажем, деления – в ней преобладают. Быстродействие определяется на специальных тестовых программах. Измеряется в бит/с.
- разрядность – количество двоичных разрядов, которые процессор обрабатывает за один такт. Чем больше количество одновременно обрабатываемых разрядов, тем выше вычислительная мощность компьютера. Указывая разрядность процессора 64, имеют в виду, что процессор имеет 64-разрядную шину данных, т.е. за один такт он обрабатывает 64 бита.
Программно управляемое устройство предназначенное для обработки информации под управлением программы
1.1. Состав технических средств
Все устройства, входящие в состав современного компьютера, делятся на два класса — центральные устройства (прежде всего процессор и основная память) и внешние устройства. Причем внешними устройства называют не по их размещению, а по функциям. Центральные устройства работают с информацией, представленной в специфической форме – в виде двоичных чисел. Основное назначение внешних устройств – организовать связь центральных устройств с окружающим миром, то есть преобразовать информацию из вида, понятного пользователю, во внутримашинное представление и наоборот. Кроме того, внешние устройства применяются для долговременного хранения больших объемов информации, для связи с другими ЭВМ и т.д.
Все внешние устройства можно разделить на четыре группы.
1. Устройства ввода информации : клавиатура, ручные манипуляторы («мышь»), сканер, CD ROM и т.д.
2. Устройства вывода информации : видеосистема, принтер, графопостроитель и т.д.
3. Устройства хранения информации : внешние запоминающие устройства.
4. Устройства связи и передачи информации : модемы, сетевые платы (адаптеры) и т.д.
Общую схему вычислительного комплекса на базе персональной ЭВМ можно представить таким образом (рис. 1):
Рис. 1. Общая схема вычислительного комплекса
В России наибольшее распространение получили так называемые IBM-совместимые персональные компьютеры.
1.2. Центральные устройства компьютера
Рис. 2. Структура системной (материнской) платы
Обычно все центральные устройства размещены на так называемой системной (материнской) плате. Общая структура системной платы представлена на рис. 2. Кратко рассмотрим ее содержимое.
Центральный процессор – программно-управляемое электронное цифровое устройство, предназначенное для обработки различной информации, представленной в цифровом виде.
Основными функциями процессора являются:
§ Управление работой всего вычислительного комплекса.
§ Выполнение математических и логических действий с данными.
Осуществляя функции управления, процессор обеспечивает должное взаимодействие компонентов компьютерной системы друг с другом. Управление производится с помощью импульсных сигналов, посылаемых управляемым компонентам.
При выполнении вычислений и логических операций процессор настраивается на различные операции и непосредственно выполняет их.
IBM-совместимые компьютеры оснащаются микропроцессорами типа Intel или аналогичными. Современные компьютеры оснащены микропроцессорами модели Pentium .
Самый важный параметр конкретной модели процессора – тактовая частота, которая измеряется в единицах частоты (мегагерцах и гигагерцах). Этот показатель определяет скорость работы процессора и, следовательно, его производительность. Типичные значения тактовой частоты для некоторых процессоров приведены в таблице. Следует сказать, что увеличение порядкового номера процессора свидетельствует о росте его характеристик и, следовательно, об улучшении параметров компьютера в целом.
Основная память – электронное устройство, предназначенное для хранения информации. Основная память состоит из двух частей: оперативной памяти и постоянной памяти. Оперативная память предназначена для хранения информации, необходимой для текущего сеанса работы. Она обеспечивает как чтение, так и запись данных. Эта память является энергозависимой, т.к. её содержимое разрушается при выключении питания. Постоянная память обеспечивает только чтение данных. Содержимое этой части памяти постоянно и может быть изменено только специальными приёмами. Это энергонезависимая память и её содержимое не пропадает при отсутствии питания.
К важнейшим характеристикам памяти относятся её ёмкость (объём) и время доступа. Ёмкость памяти — это количество входящих в неё адресуемых элементов (ячеек). Объём основной памяти компьютера во многом определяется потребностями пользователя и устанавливается, исходя из возможностей пользователя и класса решаемых им задач. Следует отметить, что небольшой объем памяти существенно замедляет прохождение задач, вплоть до полной невозможности их решения. Слишком большой объем памяти иметь нерационально, поскольку это увеличивает цену компьютера. Для большинства персональных компьютеров общего назначения в настоящее время объём памяти лежит в пределах 32 Мб ¸ 256 Мб. Время доступа определяется как интервал времени между моментом возникновения запроса к памяти (с целью чтения или записи информации) и моментом, когда информация прочитана или записана. Типичное значение этой величины для современных микросхем памяти 4*10 -8 с ¸ 0,5*10 -8 с.
Контроллеры внешних устрой ств пр едставляют собой программно- управляемые электронные блоки для согласования (сопряжения) внешних и центральных устройств компьютера между собой. Необходимость использования контроллеров вызывается тем, что внешние устройства обычно нельзя непосредственно подключить к центральным. Одной из причин этого является то обстоятельство, что характер сигналов, вырабатываемых или воспринимаемых процессором, как правило, отличается от сигналов, формируемых или воспринимаемых соответствующим внешним устройством. Контроллер и обеспечивает согласование этих сигналов. Кроме того, поскольку контроллер является программно-управляемым средством, то при наличии соответствующего программного обеспечения один и тот же контроллер может обеспечить подключение к компьютеру разных типов внешних устройств. Использование контроллеров несколько усложняет конструкцию компьютера, но при этом возникает возможность легко наращивать его технические возможности.
Системная магистраль (общая шина) служит для передачи сигналов между элементами системной платы. Контроль занятости магистрали и управление прохождением сигналов по ней осуществляется устройством управления системной магистралью. Оно не разрешает обращение к шине в те моменты, когда она уже занята и «регулирует» движение информации по магистрали.
Порты компьютера служат для подключения внешних устройств к центральному блоку.
1.3. Внешняя память компьютера
Внешние устройства компьютеров, предназначенные для хранения больших объёмов информации, называются внешними запоминающими устройствами. В современных компьютерах чаще всего используются внешние накопители информации на магнитных дисках. Существуют дисковые накопители двух видов: на гибких дисках и на жестких дисках.
Устройства первого типа состоят из двух частей: дисковода, позволяющего считывать или записывать информацию (привод), и носителя информации (дискета). Дисковод устанавливается в компьютере, а носитель является съемным. В качестве носителя информации используется диск из синтетического материала, покрытый магнитным слоем. В настоящее время используются диски диаметром 3,5 дюйма (около 90 мм ). Они размещены в пластмассовом защитном конверте. Информация записывается и считывается с диска магнитными головками с использованием общеизвестных принципов магнитной записи. Перед использованием новая дискета определенным образом размечается магнитным полем (форматируется). Информационная ёмкость дискеты довольно невелика и составляет 1,44 Мб.
Другой современной разновидностью магнитных дисковых накопителей являются накопители на жестких магнитных дисках. Принципиальным отличием у них является то, что диски изготовлены из алюминиевого сплава и являются несменяемыми. Весь механизм (приводы, диски, головки и т.д.) помещаются в герметичный корпус, что существенно увеличивает долговечность устройства. Высокое качество магнитного покрытия, большая скорость вращения и другие технические решения дают возможность повысить плотность записи у накопителей информации данного типа. Информационная ёмкость серийных накопителей составляет до 40 Гб, а у отдельных моделей достигает сотен Гб.
Принципиально другой способ записи и считывания информации используется в устройствах с лазерными компакт-дисками ( CD диски). Они имеют несколько разновидностей. Самые простые и дешевые из них позволяют только считывать информацию. Такие устройства называются
CD ROM . Строго говоря, их следует отнести к устройствам ввода информации. Более дорогие приводы компакт дисков позволяют записывать информацию. Они называются CD — RW . Емкость стандартного компакт-диска — около 650 Мбайт.
Самым современным на настоящее время является стандарт записи, называемый DVD (цифровой многоцелевой диск). Уже у первых из появившихся моделей емкость составила более 4 Гбайт. Вслед за ними появились диски емкостью десятки Гбайт .
Время доступа к устройствам внешней памяти существенно больше, чем к основной памяти ПЭВМ. Для накопителей на жестких и оптических дисках оно составляет микросекунды, а для устройств с гибкими дисками уже десятые доли и даже целые секунды.
1.4. Устройства ввода-вывода информации
Рассмотрим основные устройства ввода-вывода информации современных компьютеров.
Клавиатура. Служит для ручного ввода информации в ПЭВМ и для управления работой компьютера. Клавиатура содержит клавиши цифр, латинских и русских букв, знаки операций и препинания, функциональные и управляющие клавиши. Клавиатура распознает нажимаемую клавишу, формирует соответствующий цифровой код и передаёт его в центральные устройства.
Мышь. Представляет собой устройство, позволяющее управлять компьютером. Мышь подключается к компьютеру гибким кабелем и имеет две или три кнопки, служащие органами управления. При перемещении мыши на экране компьютера синхронно двигается специальный указатель, имеющий в зависимости от программы или ситуации вид стрелки, прямоугольника и т. п. Работа с мышью сводится к нажатию, удержанию и отпусканию кнопок в определенном порядке.
Сканер. Так называется устройство для ввода в компьютер графической информации. С помощью сканеров обычно вводятся рисунки, фотографии и даже тексты. Информация, введенная сканером, может впоследствии обрабатываться.
CD ROM. Устройство для считывания информации с оптического диска (компакт-диска). Принципы его работы те же, что и у аналогичных устройств бытовой техники ( CD-плейер ). Достоинством CD ROM является большой объём информации, хранимой на диске (сотни мегабайт), и защищенность этой информации.
Видеосистема. Служит для отображения выводимой информации на экране. Главными частями видеосистемы являются видеомонитор и видеоадаптер. Современные мониторы позволяют отображать информацию с сохранением полутонов (градаций яркости), как в бытовых телевизорах. Основной функцией видеоадаптера (видеокарты) является преобразование сигналов, поступающих от центральных устройств, в форму, доступную для монитора.
Принтеры. Печатающее устройство (принтер) предназначено для вывода информации на бумагу. Как правило, используются следующие типы принтеров: матричные ударные, струйные и лазерные.
Плоттер (графопостроитель). Это устройство для вывода на листы бумаги крупного формата графической информации, прежде всего технического и научного характера. В принципе, выводить иллюстративный материал можно и с помощью принтеров, однако это не всегда удобно, неэффективно и часто невозможно. Плоттер является специализированным устройством для вывода графических изображений и особенно удобен для построения технических чертежей, схем, диаграмм и т. д.
1. 5. В ычислительные сети
Вычислительная сеть представляет собой систему компьютеров, соединенных каналами передачи информации. Сети позволяют увеличивать вычислительные мощности за счет использования ресурсов сети и перераспределения нагрузки между машинами. Сети позволяют организовать ряд дополнительных услуг, таких как оперативные совещания, электронная почта, обучение и пр.
Различают локальные и распределенные вычислительные сети. В распределенной вычислительной сети компьютеры могут быть удалены на сотни и тысячи километров друг от друга. Они соединяются телекоммуникационными линиями связи для обмена информацией. В локальных сетях (ЛВС) максимальное расстояние между машинами не превышает нескольких километров. Как правило, ЛВС предназначаются для обработки информации в пределах одной организации. При этом узлами сети являются компьютеры (рабочие станции) и другое абонентское оборудование.
Главным техническим параметром сети является скорость передачи данных. У современных сетей она обычно составляет до 100 Мбит/ с .
В качестве технических устрой ств дл я объединения компьютеров в сеть используют следующие аппаратные средства.
Сетевые адаптеры. Являются электронными устройствами, позволяющими объединять отдельные компьютеры в единые вычислительные сети. Сетевой адаптер устанавливается в компьютер и соединяется с аналогичными устройствами других компьютеров специальными линиями связи. Обычно в такие сети объединяют не слишком удаленные друг от друга компьютеры.
Модемы и факс-модемы. Модем — это устройство, позволяющее компьютеру общаться с внешним миром. В отличие от сетевых адаптеров модем позволяет получить доступ к удаленным компьютерным системам. Модем подключает компьютер к имеющимся линиям связи, например, телефонным, радиорелейным и др. Особым видом информации, которым способны обмениваться компьютеры, являются факсы, позволяющие передавать изображения. При этом применяется устройство под названием факс-модем. С его помощью пересылаются какие-либо документы.
Рис. 3. Сеть шинной топологии с выделенным файл-сервером
Важным свойством сети является способ соединения компьютеров в ней (топология сети). Существует несколько видов топологий сетей. Простейшей является сеть шинной топологии (рис.3). Она представляет собой общий кабель, к которому подключены сетевые адаптеры рабочих станций и другие сетевые устройства. Каждый узел такой сети физически связан с двумя соседними узлами. Сообщение проходит последовательно через все рабочие станции.
По приоритету (значимости) компьютеров в сети различают следующие виды сетей.
В одноранговых сетях все сетевые рабочие места равноправны и имеют одинаковый приоритет. В каждый момент передачей данных управляет тот компьютер, который инициирует процесс передачи. Однако использование одноранговых сетей оправдано лишь при небольшом числе рабочих станций — до десяти или чуть больше. При увеличении числа узлов сети резко падает производительность и скорость передачи данных. Поэтому для сетей с большим количеством рабочих станций на один из компьютеров возлагаются задачи управления работой сети. В данном случае получается сеть с выделенным файл-сервером. В таких сетях осуществляется не только передача информации между рабочими станциями, но возможно также использование машинных ресурсов (процессора, части оперативной памяти) одних рабочих станций для удовлетворения потребностей других станций. Распределение ресурсов сети, управление передачей данных и другие операции предъявляют к файл-серверу повышенные требования. Для обеспечения работы большого количества пользователей компьютер, используемый в качестве сервера, должен обладать большим объемом оперативной и дисковой памяти, мощным процессором и высокоскоростной системной магистралью.
Рис. 4. Схема компьютерной сети типа «звезда» с файл-сервером и концентратором
Компьютерные сети с большим числом рабочих мест часто имеют звездообразную топологию, когда каждое рабочее место соединено с сервером отдельным кабелем (рис.4). Шинные топологии проще и экономичнее, чем звездообразные, так как для них расходуется меньше кабеля, но они очень чувствительны к неисправностям кабельной системы.
Рабочие станции обычно подключаются к сети не напрямую, а через устройства доступа к среде, которые выполняют роль многопортовых концентраторов. Концентраторы бывают пассивные и активные. Активные концентраторы не просто передают сигнал на каждый из своих портов, но и регенерируют его, выполняя функцию усилителя. Применение данных устройств часто обусловлено ограничениями на длину сети и количество рабочих станций. Концентраторы являются ключевым компонентом и в обеспечении надежности локальной сети, поскольку их помещают в центр сети.