как найти силу тока, зная напряжение и мощность?
Если постоянный ток то тупо перемножить силу и напряжение.
Если переменный ток то отдельно находится активная и реактивная мощность (формулы не помню)
Если несинусоидальный, то раскладывается в ряд фурье, и далее формула для синусоидального
-это для мощности.. . Силу тока выразить из этих формул нетрудно 🙂
Dan_ShapiroУченик (167) 8 лет назад
а по проще ты ответить не мог?? как все остальные, просто обьяснили, а не писали заумные слова?!
Spathi Искусственный Интеллект (224951) Меня не волнует как меня воспринимают дебилы.
Денис ЗариповУченик (130) 6 лет назад
Spathi до. б, не понимает суть вопроса))))
Spathi Искусственный Интеллект (224951) 9 лет прошло. Spathi уже помереть давно мог, а вы всё его ответы комментируете. Лол.
Александр КустовПрофи (574) 6 лет назад
Какой мудак поставил этот ответ в самый лучший. Вопрос как найти силу тока. Ваш ответ перемножить силу на напряжение. збс просто самый лучший ответ, а главное правильный
Spathi Искусственный Интеллект (224951) Если ты не можешь из формулы, связывающий 3 величины выразить любую из них — тебе нечего делать в техническом вузе, дебила кусок
Формула тока. Как найти ток. Вычисляем и определяем ток по формуле закона Ома.
Основополагающей формулой для нахождения силы тока является классический закон Ома, который гласит, что сила тока равна напряжение деленное на сопротивление. И эта основополагающая формула любого электрика и электроника, которая постоянно используется для быстрого вычисления силы тока той или иной цепи. Из любых двух известных величин закона Ома (это ток, напряжение и сопротивление) всегда можно найти третью. В случае нахождения напряжения мы перемножаем ток на сопротивление, ну а при вычислении тока или сопротивления всегда напряжение делим на ту величину, которая известная (сила тока или сопротивление).
Стоит сказать, что данная формула тока подходит как для переменного, так и для постоянного тока. Хотя для переменного имеются некоторые нюансы. А именно: это случаи, когда мы используем активную нагрузку (нагреватели, лампочки). Формула тока показывает зависимость напряжения, сопротивления, и собственно силы тока.
Поскольку немаловажной характеристикой, используемой в области электричества, является также электрическая мощность, то для нахождения силы тока применять можно и её. Электрическая мощность, это произведение силы тока на напряжение. И чтобы найти силу тока необходимо мощность поделить на известное напряжение. Например, нам известна мощность нагревательного элемента, которая равна 880 Вт. Мы также знаем напряжение, что будет подаваться на него, равное 220 В. Нам нужно найти силу тока, которая будет протекать по цепи питания данного нагревателя. Для этого мы просто 880 ватт делим на 220 вольт, что даст на силу тока в 4 ампера.
Теперь как можно вычислить по формуле тока (по закону Ома) этот самый ток зная напряжение и сопротивление. Итак, у нас всё то же напряжение 220 вольт, и есть тот же нагревательный элемент. Мы мультиметром, тестером измеряем сопротивление элемента (у нагревателя с мощностью 880 ватт и рассчитанного на напряжение 220 вольт оно будет 55 ом). И что бы найти силу тока мы напряжение 220 вольт делим на сопротивление нагревателя 55 ом, в итоге получаем всю ту же силу тока в 4 ампера.
Просто нужно хорошо запомнить эти две формулы тока (его нахождение через мощность и через сопротивление с известным напряжением). Тогда вы быстро и без труда в голове сможете вычислять как силу тока электрической цепи, так и любые другие электрические величины (напряжение, сопротивление, мощность).
Ну, а если вы больше практик, тогда просто берите в руки измерители и меряйте. Напомню, напряжение мы измеряем параллельным прикладыванием щупов тестера, мультиметра к контактам, на которых будет измерять величину разности потенциалов. Силу тока же мы меряем уже путем разрыва цепи, где нужно измерить силу тока, то есть разрываем электрическую цепь в начале (поближе к источнику питания) и между этим разрывом подсоединяем щупы нашего измерителя тока (амперметра). Не забывайте, что переменный ток должен соответствовать своему положению на переключателе тестера, а постоянный своему месту (иначе вы получите неверные значения измеряемого тока).
P.S. Для лучшего запоминания закона Ома вы просто держите в голове, что при делении напряжение всегда в верху, то есть если по закону Ома мы находим напряжение, то перемножаем ток на сопротивление, ну в двух других случаях (при нахождении сопротивления или тока) мы всегда напряжение делим на известную величину, получая вторую, которая ранее была неизвестна.
Зависимость мощности от силы тока, формула мощности, физический смысл
Первое упоминание об электричестве встречается в опытах древнегреческого философа Фалеса. Именно он первым обнаружил, что предметы при трении притягиваются. Одноименный термин был введен в начале 17-го века английским физиком Гилбертом, после опытов, проведенных с магнитами. Отцом же науки об электричестве считается французский ученый Кулон – именно после открытия закона, получившего его имя, электротехника начала свою победную поступь, которая продолжается до сих пор. Этот закон утверждает, что два точечных заряда в безвоздушной среде взаимодействуют с силой, прямо пропорциональной их модулям и обратно – расстоянию между ними, возведенному в квадрат.
Выясним, что же представляет собой понятие электричество?
Если коротко, то это – направленное движение потока заряженных частиц. Тела, через которые они проходят, называются проводниками. Каждый проводник имеет определенное сопротивление электрическому току, которое раз
И, перед тем, как перейти к основным законам, несколько слов о заряженных частицах: они бывают, условно говоря, положительными и отрицательными. Одноименные заряды отталкиваются, а разноименные – притягиваются.
А теперь, перейдем к главному.
Основа-основ науки об электричестве – закон Ома.
Эксперимент, который провел этот немецкий физик, привел его к следующему убеждению: сила тока I, проходящего через металлический проводник, пропорциональна напряжению на его концах, или I = U/R
Здесь напряжением называется разность, образно говоря, «давлений», созданных двумя точками электрической цепи. Измеряют его в вольтах. Электрический ток представляет собой число электронов, которые пропускает участок электрической цепи и измеряется в амперах. Сопротивлением считается свойство цепи помешать этому движению. В честь упомянутого физика, его измеряют в омах. Иначе говоря, проводник, через который проходит ток в 1 ампер при напряжении в 1 вольт, обладает сопротивлением в 1 ом.
Вся остальная электротехника «пляшет» от этого.
О мощности электрического тока
В физике мощностью считают скорость выполнения работы. Неважно, какой. Чем эта операция проводится быстрее, тем большей считается мощность того, кто ее исполняет, будь то человек, механическое устройство или что-то еще.
Так же и в случае с электрическим током: ее мощность представляет собой отношение работы, произведенной движущимися электрическими зарядами к промежутку времени, которое для этого понадобилось.
Проще говоря, для того, чтобы получить электрическую мощность в 1 ватт, когда источник тока имеет напряжение 1 вольт, необходимо пропустить через проводник ток в 1 ампер. Другими словами, мощность (P) можно посчитать, перемножив друг на друга электрическое напряжение и ток:
Запомнив эту нехитрую формулу, на практике можно рассчитать мощность. Например, если известны значения тока и сопротивления, а о напряжении сведений нет, можем воспользоваться законом Ома, подставив в формулу вместо него I*R. Получится, что мощность равна квадрату электрического тока, помноженному на сопротивление.
Этот закон точно так же придет на помощь, если известны величины напряжения и сопротивления. В этом случае подставив вместо значения тока I = U/R, получим значение мощности, равное квадрату напряжения, поделенному на сопротивление.
Вот так – ничего сложного!
Мощность электрического тока: формула и единицы измерения
Мощность тока (W, P) — важнейшее понятие в электротехнике. Именно оно, а не сила тока, характеризует интенсивность физического действия электричества.
Какой вид имеет формула мощности тока, и в каких единицах она измеряется?
Что такое мощность электрического тока?
Этим понятием в физике обозначают скорость выполнения работы или изменения количества энергии. Для наглядности электрический ток можно сравнить с напором воды, который вращает турбину гидроэлектростанции.
W зависит от двух факторов:
- перепад высоты между турбиной и поверхностью запруды;
- объем воды, падающей на турбину за единицу времени, то есть ее расход.
Чем больше каждая из этих величин, тем выше W.
В сфере электрических взаимодействий аналогичными понятиями выступают:
- разность потенциалов (напряжение);
- количество заряда, проходящее через сечение проводника за единичный временной отрезок (сила тока I).
В отличие от воды, поток электрически заряженных частиц механического действия не производит, их работа представлена двумя явлениями:
- нагрев проводника;
- формирование электромагнитного поля.
Соответственно, мощность электрического тока — это скорость выделения тепла или колебания индукции магнитного поля.
Интенсивное электромагнитное поле возникает в том случае, если проводник смотан в катушку. Когда же он представляет собой просто прямой участок, индукция поля пренебрежимо мала и считают, что вся работа тока выражается в нагреве проводника.
Формула
Если все сказанное выразить математическим языком, получится формула: W = U * I, где, W – мощность, Вт, U — напряжение, В, I — сила тока, А. Математическое выражение силы тока как количества проходящего за единицу времени заряда: I = Q / t.
Формула мощности тока
Поскольку U, I и R проводника, согласно закону Ома для участка цепи, соотносятся следующим образом: I = U / R, откуда U = I * R, то W электротока можно выразить как: W = I 2 * R или W = U 2 / R. Мощность переменного тока выражается той же зависимостью.
Только постоянно изменяющиеся U и I замещают так называемыми действующими значениями (константой) – например, эквивалентным постоянным напряжением, которое вызывает в проводнике то же тепловыделение, что и данное переменное. Так, U в розетке 220 В является действующим, тогда как на самом деле оно постоянно колеблется между 311 и -311 В.
Единица измерения мощности
Энергия или работа выражается в Джоулях (Дж). А скорость изменения энергии или выполнения работы выражается в Дж/с. Вместо соотношения, принято использовать единицу «ватт» (Вт). Она равна мощности, при которой за одну секунду совершается работа в один джоуль: 1 Вт = 1 Дж / с.
Измеряют W и в лошадиных силах (л.с.). В электротехнике эта единица не применяется. Но иногда требуется сравнить, к примеру, мощность дизельного двигателя, выражаемую обычно в л.с., и электрического, определяемую в Вт.
Соотношение следующее: 1 л.с. = 735,5 Вт (в англоязычных странах — 745,7 Вт). Между тем, желающие обзавестись ИБП, стабилизатором или автономным электрогенератором обнаруживают, что мощность в характеристиках устройства указана вовсе не в ваттах, а в вольт-амперах (ВА). Поскольку W = U * I, то мощность действительно можно выражать в таких единицах, то есть [Вт] = [В * А].
Но почему же не используют привычные ватты? Так поступают, чтобы отличить W полную (это она измеряется в ВА) от так называемой активной. Дело в том, что в электроприемниках с обмотками, прежде всего электродвигателях и трансформаторах (например, блоки питания), в полезную работу превращается не вся потребляемая электроэнергия, а только ее часть.
Обмотка — это катушка, а протекающий в катушке ток, как было сказано, создает сильное магнитное поле. Если ток переменный, то и параметры поля изменяются, а такое поле, согласно открытому М. Фарадеем закону электромагнитной индукции, наводит в самой катушке ЭДС самоиндукции.
Последняя направлена против изменения силы тока при ее возрастании (первая четверть периода), а при снижении (вторая четверть) — в одном с ней направлении.
На преодоление ЭДС самоиндукции тратится часть энергии, именуемая реактивной мощностью. Данное явление станет более понятным при рассмотрении аналогичного в механике. Если точильщик вращает точильный круг вперед-назад, то часть энергии тратится не на полезную работу (правка лезвия), а на преодоление инерции круга.
В каждом полупериоде круг требуется раскрутить, затем остановить. Это и есть аналог реактивной мощности. То, какая часть полной потребляемой электрической мощности превратится в полезную работу и есть доля активной мощности, выражается характеристикой «cosФ»: cosϕ = Wакт / Wпол, где Wакт — активная мощность, Wпол — полная мощность.
Что такое коэффициент мощности
Параметр cosϕ указывается в характеристиках всех подобных токоприемников. Необходимо учитывать, что приводимая в характеристиках мощность является не активной в полном смысле, а мощностью на выходе. Если это электродвигатель, то указывается механическая W на его валу.
То есть при расчетах требуется учитывать еще и КПД, ведь часть активной мощности будет затрачена на преодоление трения в подшипниках, перемагничивание сердечника, охлаждение и пр. Таким образом, полная потребляемая мощность при известной активной (указывается в характеристиках) определяется так: Wпол = Wакт / (КПД * cosϕ). Вот как это применяется на практике.
Положим, требуется подобрать ИБП для компьютера с блоком питания мощностью 400 Вт, средние параметры таких блоков:
- КПД: 65% — 70% (0,65 – 0,7);
- cosϕ: 0,7.
Тогда потребуется ИБП мощностью не менее: W = 400 / (0,65 * 0,7) = 879,12 ВА.
Например, подбирается стабилизатор для холодильника с такими характеристиками:
- мощность: 0,6 кВт;
- КПД: 0,75;
- cosϕ: 0,8.
Его мощность должна составлять: W = 600 / (0.75 * 0.8) = 1000 ВА. Таким образом, известная мощность электрогенератора или ИБП не позволяет без сведений о характеристиках электроприемника судить о том, какую он выдаст активную мощность. Источник мощностью 3000 ВА при cosϕ = 0,8 выдаст 2,4 кВт полезной мощности, а при cosϕ = 0,7 — только 2,1 кВт (без учета КПД электроприемника).
Недавно в России с целью реализации стандарта энергосбережения 2007 г. была принята сертификация «80+», требующая поддерживать КПД компьютерных блоков питания на уровне 80% или выше.
Преобразование тока
Поскольку электрическая мощность выражается произведением напряжения на силу тока, то из закона сохранения энергии следует: если при передаче одной и той же мощности напряжение повысить, сила тока пропорционально уменьшится, и наоборот.
Преобразованием напряжения переменного тока занимается специальное устройство — трансформатор. В самом простом виде он состоит из двух обмоток, надетых на магнитопровод.
Магнитное поле, возбуждаемое в первичной обмотке, наводит ЭДС во вторичной (закон электромагнитной индукции) и величина ее соотносится с напряжением на выводах первичной обмотки так же, как число витков в обмотках.
Если, к примеру, первичная обмотка содержит 300 витков, и на нее подается переменное напряжение с действующим значением 220 В, то в цепи вторичной обмотки со 150-ю витками возникнет ЭДС в 110 В, то есть в 2 раза меньшая. Поскольку мощность останется практически постоянной (потерями на нагрев и перемагничивание сердечника пренебрегаем), то сила тока в цепи вторичной катушки окажется, наоборот, вдвое выше тока в первичной катушке.
Потому вторичные обмотки понижающих трансформаторов наматывают проводом большего сечения, чем первичные. С повышающим трансформатором все происходит с точностью до наоборот. Снижение силы тока за счет увеличения напряжения применяется при передаче электроэнергии на значительные расстояния.
Сгенерированный электростанцией ток напряжением 10-20 кВ преобразуют находящейся тут же подстанцией, поднимая напряжение до сотен кВ.
В населенных пунктах напряжение снова понижают местными трансформаторными подстанциями, уже до 220 В, и в таком виде электроэнергия поступает в распределительную сеть.
Наибольшей величины этот параметр достигает на ЛЭП «Экибастуз — Кокчетав» — 1,15 МВ (мегавольт). При этом многократно падает сила тока, а поскольку работа тока в проводнике, состоящая в его нагреве, выражается формулой W = I 2 * R (R — сопротивление проводника), то и потери значительно сокращаются.
Прибор для измерения
Мощность тока измеряют ваттметром, существует три разновидности таких приборов:
- низкочастотные;
- радиочастотные;
- оптические.
Низкочастотные применяются для измерения W постоянного тока и переменного промышленной частоты (50 Гц), они делятся на две разновидности:
- однофазные;
- трехфазные.
Для измерения реактивной мощности применяют другой прибор — варметр.
По принципу действия ваттметры делятся на:
Почти все цифровые ваттметры включают в себя варметр, то есть могут измерять W активную и реактивную. Аналоговые приборы (Д8002, Ц301, Д5071 и др.) определяют мощность тока посредством двух катушек: одна подключена последовательно с нагрузкой, другая — параллельно.
Протекающий в катушках ток инициирует возникновение магнитных полей. А те, взаимодействуя друг с другом, создают вращающий момент, воздействующий на стрелку.
Величина момента зависит от:
- силы тока;
- напряжения;
- cosϕ (при изменении активной мощности) или sinϕ (реактивной).
Цифровые ваттметры (MI 2010А, ЩВ02, СР3010 и пр.) оснащены парой датчиков включенных:
- по току — последовательно с нагрузкой;
- по напряжению — параллельно.
Контроллер по показаниям с датчиков делает вычисления и выводит их на табло.
Видео по теме
О том, как определить мощность тока, в видео:
Со школы известно, что мощность тока равна произведению напряжения на силу тока. Но вот о том, что она не всегда измеряется в ваттах, а еще и в вольт-амперах, многие узнают с удивлением. Надеемся, что изложенный материал помог разобраться в этих тонкостях.