Видимый свет
Видимое излучение — это электромагнитные волны, воспринимаемые человеческим глазом, которые занимают участок [1] [2] спектра ~ от 380 (Фиолетовый) до 780 нм (Красный).
Интервал видимого излучения является малой частью интервала электромагнитного излучения вообще.
За пределами этой ограниченной области электромагнитное излучение не вызывает у человека зрительных ощущений или, другими словами, является для него невидимым.
Также видимое излучение принято называть светом в узком смысле этого слова. [3]
Характеристики границ видимого излучения
Длина волны, нм | 780 | 380 |
Энергия фотонов, Дж | 2,61·10 –19 | 4,97·10 –19 |
Энергия фотонов, эВ | 1,6 | 3,1 |
Частота, Гц | 3,94·10 14 | 7,49·10 14 |
Волновое число, см –1 | 1,32·10 4 | 2,50·10 4 |
См. также
- Свет
- Цвет
- Спектральные и дополнительные цвета
- Электромагнитное излучение
- Спектр
Примечания
- ↑ Thomas J. Bruno, Paris D. N. Svoronos. CRC Handbook of Fundamental Spectroscopic Correlation Charts. — CRC Press, 2005.
- ↑ Б. И. Степанов. Введение в химию и технологию органических красителей. 2-е изд. — М.: «Химия», 1977.
- ↑ Фотокинотехника: Энциклопедия / Главный редактор Е. А. Иофис. — М.: Советская энциклопедия, 1981.
Wikimedia Foundation . 2010 .
- Видимый спектр
- Видимый диапазон
Полезное
Смотреть что такое «Видимый свет» в других словарях:
- ВИДИМЫЙ СВЕТ — (видимое излучение) в узком смысле лучистая энергия, делающая окружающий мир видимым; т. е. электромагнитные волны в интервале частот (длин волн) 350 780 нанометров (сокращенно им), воспринимаемых глазом человека. Границы В. (белого) с.… … Большая политехническая энциклопедия
- видимый свет — regimoji šviesa statusas T sritis fizika atitikmenys: angl. visible light vok. sichtbares Licht, n rus. видимый свет, m pranc. lumière visible, f … Fizikos terminų žodynas
- ВИДИМЫЙ СВЕТ — оптическое излучение, непосредственно воспринимаемое человеческим глазом. Длины волн В. с. лежат приблизительно в диапазоне от 400 до 760 нм. Оптическое излучение в этом диапазоне субъективно воспринимается человеком как различные цвета.… … Энциклопедический словарь по психологии и педагогике
- СВЕТ В АРАБО-МУСУЛЬМАНСКОЙ ФИЛОСОФИИ — СВЕТ В АРАБО МУСУЛЬМАНСКОЙ ФИЛОСОФИИ. Хотя мотивы света и тьмы и ассоциация светлого начала с познанием и справедливостью, а темного с невежеством и притеснением составляют общее место и философии, и религиозной мысли ислама, философская… … Философская энциклопедия
- СВЕТ В АРАБО-МУСУЛЬМАНСКОЙ ФИЛОСОФИИ. — СВЕТ В АРАБО МУСУЛЬМАНСКОЙ ФИЛОСОФИИ. Хотя мотивы света и тьмы и ассоциация светлого начала с познанием и справедливостью, а темного – с невежеством и притеснением составляют общее место и философии, и религиозной мысли ислама, философская… … Философская энциклопедия
- СВЕТ — (1) в узком смысле то же, что видимый (см.); световые волны различных частот воспринимаемые глазом; (2) в широком смысле синоним оптического (см.). (См. ().) … Большая политехническая энциклопедия
- Свет — У этого термина существуют и другие значения, см. Свет (значения). Видимый свет часть всего света Свет электромагнитное излучение, испускаемое нагретым или находящимся в возбужд … Википедия
- Видимый блеск — Видимая звёздная величина (иногда просто «звёздная величина») безразмерная числовая характеристика объекта на небе, чаще всего звезды, говорящая о том, сколько света приходит от него в точку, где находится наблюдатель. Видимая звёздная величина … Википедия
- СВЕТ — СВЕТ, вид лучистой энергии, воспринимаемой человеческим глазом. По шкале длин волн лучистой энергии видимый участок спектра простирается от 0,4 ju до 0,75 // (см. Лучистая энергия, Сеетоощущениё). Часто термину свет придают более широкое… … Большая медицинская энциклопедия
- Свет (онтология) — У этого термина существуют и другие значения, см. Свет (значения). Солнце … Википедия
- Обратная связь: Техподдержка, Реклама на сайте
- Путешествия
Экспорт словарей на сайты, сделанные на PHP,
WordPress, MODx.
- Пометить текст и поделитьсяИскать в этом же словареИскать синонимы
- Искать во всех словарях
- Искать в переводах
- Искать в ИнтернетеИскать в этой же категории
Видимый диапазон
Диапазон видимого света — самый узкий во всем спектре. Длина волны в нем меняется менее чем в два раза. На видимый свет приходится максимум излучения в спектре Солнца. Наши глаза в ходе эволюции адаптировались к его свету и способны воспринимать излучение только в этом узком участке спектра. Почти все астрономические наблюдения до середины XX века велись в видимом свете. Основной источник видимого света в космосе — звезды, поверхность которых нагрета до нескольких тысяч градусов и потому испускает свет. На Земле применяются также нетепловые источники света, например, флюоресцентные лампы и полупроводниковые светодиоды.
Для сбора света от слабых космических источников используются зеркала и линзы. Приемниками видимого света служат сетчатка глаза, фотопленка, применяемые в цифровых фотоаппаратах полупроводниковые кристаллы (ПЗС-матрицы), фотоэлементы и фотоэлектронные умножители. Принцип действия приемников основан на том, что энергии кванта видимого света достаточно, чтобы спровоцировать химическую реакцию в специально подобранном веществе или выбить из вещества свободный электрон. Затем по концентрации продуктов реакции или по величине освободившегося заряда определяется количество поступившего света.
Источники
Комета Хейла-Боппа
Одна из самых ярких комет конца XX века. Она была открыта в 1995 году, когда находилась еще за орбитой Юпитера. Это рекордное расстояние для обнаружения новой кометы. Прошла перигелий 1 апреля 1997 года, а в конце мая достигла максимального блеска — около нулевой звездной величины. Всего комета оставалась видимой невооруженным глазом в течение 18,5 месяцев — вдвое больше прежнего рекорда, установленного великой кометой 1811 года. На снимке видны два хвоста кометы — пылевой и газовый. Давление солнечного излучения направляет их прочь от Солнца.
Планета Сатурн
Вторая по величине планета Солнечной системы. Относится к классу газовых гигантов. Снимок сделан межпланетной станцией «Кассини», которая с 2004 года ведет исследования в системе Сатурна. В конце XX века системы колец обнаружены у всех планет-гигантов — от Юпитера до Нептуна, но только у Сатурна они легко доступны наблюдению даже в небольшой любительский телескоп.
Солнечные пятна
Области пониженной температуры на видимой поверхности Солнца. Их температура 4300–4800 К — примерно на полторы тысячи градусов ниже, чем на остальной поверхности Солнца. Из-за этого их яркость в 2–4 раза ниже, что по контрасту создает впечатление черных пятен. Пятна возникают, когда магнитное поле замедляет конвекцию и тем самым вынос тепла в верхних слоях вещества Солнца. Они живут от нескольких часов до нескольких месяцев. Число пятен служит индикатором активности Солнца. Наблюдая пятна на протяжении нескольких дней, легко заметить вращение Солнца. Снимок сделан любительским телескопом.
Внимание! Ни в коем случае нельзя смотреть на Солнце в телескоп или другой оптический прибор без специальных защитных фильтров. При использовании фильтров их следует надежно крепить перед объективом, а не у окуляра инструмента, где фильтр может повредиться из-за перегрева. В любом случае безопаснее наблюдать проекцию изображения Солнца на лист бумаги за окуляром телескопа.
Рассеянное звездное скопление Плеяды
Содержит около 3 тысяч звезд, из которых семь видны невооруженным глазом. Скопление имеет поперечник 13 световых лет и расположено в 400 световых годах от Земли. Рассеянные скопления образуются при сжатии космических газопылевых облаков под действием самогравитации (притяжения одних частей облака к другим). В ходе сжатия облако дробится на части, из которых формируются отдельные звезды. Эти звезды слабо связаны между собой гравитацией, и со временем такие скопления рассеиваются.
Спиральная галактика M51
Спиральная галактика, диск которой мы наблюдаем плашмя, известная также под названием Водоворот. Расположена на расстоянии около 37 млн световых лет. Ее диаметр составляет около 100 тысяч световых лет. У конца одной из спиральных ветвей располагается галактика-компаньон.
Обозначение M51 относится ко всей паре в целом. По отдельности основная галактика и ее компаньон обозначаются NGC 5194 и 5195. Гравитационное взаимодействие с компаньоном уплотняет газ в близких к нему участках спиралей, что ускоряет звездообразование. Взаимодействие — типичное явление в мире галактик. Галактика доступна для наблюдения в небольшой любительский телескоп.
Приемники
Визуальные наблюдения
В профессиональной астрономии визуальные наблюдения больше не применяются. Лет 20 назад их полностью вытеснили цифровая фотография, фотометрия, спектрометрия и компьютерная обработка данных.
Однако романтика визуальных наблюдений по-прежнему вдохновляет любителей астрономии. Невооруженному глазу доступны Солнце, Луна, пять планет, около 6 тысяч звезд и четыре галактики — Млечный Путь, Туманность Андромеды, Большое и Малое Магеллановы облака. Эпизодически появляются видимые глазом кометы и астероиды.
Практически каждую ночь можно наблюдать сгорающие в атмосфере космические песчинки — метеоры, а также неторопливо ползущие по небу искусственные спутники Земли. В высоких широтах наблюдаются полярные сияния, в низких при благоприятных условиях виден призрачный зодиакальный свет — освещенная Солнцем космическая пыль. И всё это разнообразие наблюдается в крайне узком спектральном диапазоне, который почти в тысячу раз уже инфракрасного диапазона.
В бинокль видно в десятки раз больше звезд и множество туманных объектов. Любительскому телескопу доступно в тысячи раз больше звезд, детали на поверхности планет, их спутники, а также сотни туманностей и галактик. Но при этом поле зрения у телескопа значительно меньше, и для успешных наблюдений его надо надежно закрепить, а еще лучше медленно поворачивать вслед за вращением неба.
Любительский телескоп
В современном мире любительская астрономия стала увлекательным и престижным хобби. Ряд фирм, таких как Meade и Celestron, производят телескопы специально для любителей. Простейшие инструменты с диаметром объектива от 50–70 мм стоят 200–500 долларов, самые крупные с диаметром 350–400 мм сравнимы по стоимости с престижным автомобилем и требуют стационарной установки на бетонном фундаменте под куполом. В умелых руках такие инструменты вполне могут дать вклад в большую науку.
Самые популярные в мире любительские телескопы имеют диаметр около 200 мм и построены по оптической схеме, изобретенной советским оптиком Максутовым. Они имеют короткую трубу, которую обычно устанавливают на вилочной монтировке и снабжают компьютером для автоматического наведения на различные объекты по их небесным координатам. Именно такой инструмент показан на плакате.
24-метровый телескоп «Магеллан» (строящийся)
В 1975 году в СССР построили 6-метровый телескоп БТА. Чтобы главное зеркало телескопа не деформировалось, его сделали толщиной около метра. Казалось, что дальше увеличивать размеры зеркал невозможно. Однако выход был найден. Зеркала стали делать относительно тонкими (15–25 см) и разгружать на множество опор, положением которых управляет компьютер. Возможность изгибать зеркала, гибко подстраивая их форму, позволила построить телескопы диаметром до 8 метров.
Но и на этом астрономы не остановились. На самых крупных инструментах зеркала делят на сегменты, совмещая положение частей с точностью до сотых долей микрона. Так устроены крупнейшие в мире 10-метровые телескопы Кека. Следующим шагом станет американский телескоп «Магеллан», в котором будет 7 зеркал, каждое диаметром 8 метров. Вместе они будут работать как 24-метровый телескоп. А в Европейском Союзе началась работа над еще более амбициозным проектом — телескопом диаметром 42 метра.
Главным препятствием для реализации возможностей таких инструментов становится земная атмосфера, турбулентность которой искажает изображение. Для компенсации помех, за состоянием атмосферы постоянно наблюдает специальная аппаратура и на ходу изгибает зеркало телескопа так, чтобы компенсировать искажения. Эта технология называется адаптивной оптикой.
Схема оптического телескопа-рефлектора
Телескоп выполняет две задачи: собрать как можно больше света слабого источника и различить как можно более мелкие его детали. Светособирающая способность телескопа определяется площадью главного зеркала, разрешающая способность — его диаметром. Именно поэтому астрономы стремятся построить как можно более крупные телескопы.
У небольших телескопов в качестве объектива может использоваться собирающая линза (телескоп-рефрактор), но чаще применяется вогнутое параболическое зеркало (телескоп-рефлектор). Главная функция объектива — построить изображение наблюдаемых источников в фокальной плоскости телескопа, где располагают фотокамеру или другое оборудование. В любительских телескопах для визуальных наблюдений позади фокальной плоскости ставят окуляр, представляющий собой, по сути, сильную лупу, в которую рассматривается созданное объективом изображение.
Однако у рефлектора фокальная плоскость находится перед зеркалом, что не всегда удобно при наблюдениях. Используют разные приемы, чтобы вывести пучок света за пределы тубы телескопа. В системе Ньютона для этого используется диагональное зеркало. В более сложной системе Кассегрена (на плакате) напротив главного зеркала ставят вторичное выпуклое зеркало в форме гиперболоида вращения. Оно отражает пучок назад, где он выходит через отверстие в центре главного зеркала. В системе Максутова на переднем конце трубы телескопа ставят тонкую выпукло-вогнутую линзу. Она не только предохраняет зеркала телескопа от повреждения, но и позволяет сделать главное зеркало не параболическим, а сферическим, что намного дешевле в изготовлении.
Космический телескоп «Хаббл»
Самый крупный орбитальный оптический телескоп. Диаметр его главного зеркала составляет 2,4 метра. Выведен на орбиту в 1991 году. Может вести наблюдения в видимом, ближнем инфракрасном и ближнем ультрафиолетовом диапазонах. Единственный космический телескоп, который посещали астронавты для ремонта и обслуживания.
Телескопу имени Хаббла астрономия обязана десятками открытий. В числе прочего он позволил увидеть, как выглядели галактики в эпоху их зарождения около 13 млрд лет назад. В настоящее время на смену телескопу Хаббла создается космический телескоп нового поколения — James Webb Space Telescope (JWST) диаметром 6,5 метров, который планируется вывести в космос в 2013 году. Правда, работать он будет не в видимом диапазоне, а в ближнем и среднем инфракрасном.
Обзоры неба
Всё небо в видимом диапазоне
Здесь вновь отчетливо видна плоскость нашей Галактики — Млечного Пути. Ее свечение складывается из света сотен миллиардов звезд и туманностей. Также хорошо заметны темные волокна пылевых облаков, которые заслоняют от нас часть света звезд в галактической плоскости.
Туманные образования в нижней половине обзора — Большое и Малое Магеллановы облака, спутники нашей Галактики. Яркие звезды, которые кажутся нам основными объектами на небе, на такой мелкомасштабной карте практически незаметны.
Небо в линии водорода H-альфа, 656 нм
Спектральная линия H-альфа соответствует переходу электрона в атоме водорода с третьего энергетического уровня на второй.
Это первая линия так называемой серии Бальмера, которая вся состоит из переходов с разных более высоких уровней на второй. Имеются аналогичные серии переходов на первый уровень (серия Лаймана), на третий уровень (серия Пашена) и на другие уровни. Отличительная особенность серии Бальмера состоит в том, что она практически целиком располагается в видимом диапазоне, что значительно облегчает наблюдения. В частности, линия H-альфа приходится на красный участок спектра.
Излучение в этой линии возникает в разреженных космических облаках атомарного водорода. Атомы в них возбуждаются ультрафиолетовым излучением горячих звезд, а потом отдают энергию, переходя на более низкие уровни. Выделяя при помощи фильтров линию H-альфа, можно целенаправленно наблюдать распределение нейтрального водорода.
Обзор неба в линии H-альфа показывает распределение газа в нашей Галактике. На нем видны крупные пузыри газа вокруг областей активного звездообразования.
Земное применение
Микроскоп
При рассматривании предметов на расстоянии ясного зрения (25 см) человек может различить детали величиной около 0,1 мм (угловое разрешение глаза порядка одной угловой минуты 1′ = 2,3×10 -4 рад). Чтобы увидеть более мелкие детали, смотреть надо с меньшего расстояния, но на расстояние менее 10 см глазу очень трудно настроиться.
Добиться этого можно, используя лупу, оптическая сила которой добавляется к оптической силе хрусталика. Но и в этом случае предел увеличения составляет примерно 25х, т. к. размер такой сильной лупы становится очень маленьким и размещать ее приходится близко к образцу. Фактически такая лупа становится объективом микроскопа. Смотреть в него глазом очень неудобно, но можно поступить иначе.
Тщательно отрегулировав расстояние от объектива до предмета, можно получить на некотором отдалении позади объектива его увеличенный образ. Поместив за ним другую лупу и рассматривая в нее построенный объективом образ, можно добиться увеличения в сотни и даже более тысячи раз.
Однако увеличения заметно более 1000 раз не имеют практического смысла, поскольку волновая природа света не позволяет рассмотреть детали размером меньше длины волны (400–700 нм). При увеличении в 2000 раз такие детали видны как миллиметровое деление на линейке, которую вы держите в руках.
Дальнейшее повышение увеличения не откроет вам новых подробностей. Чтобы увидеть детали с большим разрешением, требуются рентгеновские лучи с меньшей длиной волны или вообще потоки электронов, у которых (согласно квантовой механике) длина волны меньше. Также можно применять механический щуп с очень точной системой наводки — так называемый сканирующий микроскоп.
Лампа накаливания
Испускает видимый свет и инфракрасное излучение за счет нагрева электрическим током помещенной в вакуум вольфрамовой спирали. Спектр излучения очень близок к чернотельному с температурой около 2000 К.
При такой температуре максимум излучения приходится на ближнюю инфракрасную область и потому расходуется бесполезно для целей освещения. Существенно поднять температуру не удается, поскольку при этом спираль быстро выходит из строя. Поэтому лампы накаливания оказываются неэкономичным осветительным прибором. Лампы дневного света значительно эффективнее преобразуют электроэнергию в свет.
В каком диапазоне частот передается сигнал в оптическом волокне?
Стенограмма вебинара «Механизмы возникновения потерь и отражений сигнала в оптическом волокне»
Может быть, вы помните из курса школы или института, что оптическое волокно или частицы оптического волокна иногда проявляют свои свойства как частица, а иногда как волна. Это так называемый корпускулярно-волновой дуализм. Как волна, свет проявляет себя. Собственно, как и все другие электромагнитные волны, они состоят из электрической магнитной составляющей, которая имеет все те же параметры: частота, период. Электрическая магнитная составляющая находится в ортогональных проекциях относительно друг друга. Рассмотрение в таком виде достаточно сложно, поэтому далее мы будем использовать представление частицы света фотона как частицы. Это не повлияет на наше понимание, но зато облегчит существенно.
Начнём с того, в каком же диапазоне частот передаётся информация в оптическом волокне. Если рассмотреть, в общем, все частоты, то
- Низкочастотный спектр, в котором работают обычные телефонные аппараты 0,3-3,4 кГц.
- Высокочастотный спектр: телевидение, радио.
- Микроволновый диапазон: микроволновые печи, мобильные телефоны, Wi-Fi тоже в этом диапазоне работает.
- Оптический диапазон
- Спектр рентгеновского излучения.
Рассмотрим более подробно оптический диапазон. Он включает ультрафиолет, видимые длины волн (видимые цвета) и инфракрасный диапазон. Хочу привести небольшой пример. Вспомните, как летом на солнце мы чувствуем такие эффекты: во-первых, нам тепло, во-вторых, мы загораем. Ну и светло.
- Светло нам потому, что если все видимые цвета смешать, то получается белый свет, от которых нам и светло.
- Загораем из-за действия на нас ультрафиолетового света
- Тепло нам от воздействия света в инфракрасном сдиапазоне.
Поэтому я хочу, чтобы вы запомнили: инфракрасный свет или все длины волн, которые находятся в инфракрасном диапазоне, очень тёплые.
Поэтому если посмотреть в источник света, то это лазерный поток попадает на сетчатку глаза и может пережечь её. Очень жаркий такой поток. Поэтому не рекомендую и по технике безопасности всегда объясняю, что смотреть в источник нельзя и направлять его нельзя на отражающие предметы, на зеркало, металлические, глянцевые поверхности, чтобы оно не отразилось и не попало никому в глаза.
СМ. ТАКЖЕ:
- Окно прозрачности оптического волокна.
- Макро изгиб ОВ – причины и последствия
- Архитектура сети доступа. Распространенные и перспективные технологии.
- Преимущества и недостатки оптических волокон
- Производство оптических волокон. Основные этапы технологического процесса.
Товар добавлен в корзину
Количество:
©2014 — 2024 fiberTOP.ru — инструменты и приборы для оптоволокна
Заказать звонок
Согласие на обработку персональных данных
Настоящим вы предоставляете свои персональные данные для получения заказанных вами на нашем веб-сайте товаров, информационных материалов или услуг. Вы также даете согласие на обработку ваших персональных данных, включая: сбор, хранение, обновление, использование, блокирование и уничтожение. Настоящее согласие дается вами на весь период эксплуатации веб-сайта и может быть отозвано вами в любой момент. Для отзыва вашего согласия направьте соответствующее распоряжение в письменной форме по адресу обратной связи, указанному на сайте. В случае отзыва настоящего согласия вы теряете статус зарегистрированного пользователя веб-сайта и все связанные с этим статусом привилегии по всем программам сайта.
Золоторожский вал, д.34 стр.6, офис 7 111033 Москва
+7 499 707-13-68 info@fibertop.ru 8:30 — 18:00 (пн-пт) от 99 руб до 29 000 руб
В каком диапазоне частот находится видимый свет
3.5.6. Шкала электромагнитных волн
Рейтинг: 0
Шкала электромагнитных волн
Зависимости от частоты (или длины волны в вакууме c/v). а также способа излучения и регистрации различают несколько видов электромагнитных волн; радиоволны, оптическое излучение, рентгеновское излучение и гамма — излучение.
Радиоволнами называются электромагнитные волны, длина которых в вакууме больше 5.10 -5 (< 6.10 12 Гц).
В связи с особенностями распространения радиоволн весь диапазон делят на 9 поддиапазонов:
название поддиапазона длина волны м частота Гц
сверхдлинные более 10 4 менее 3
длинные 10 4 — 10 3 3 .10 4 — 3 .10 5
средние 10 3 — 10 2 3 .10 5 — 3 . 10 6
короткие 10 2 — 10 3.10 6 — 3 .10 7
метровые 10 — 1 3 . 10 7 — 3 . 10 8
дециметровые 1 — 0,1 3 .10 8 — 3 .10 9
сантиметровые 0,1 — 0, 01 3 . 10 9 — 3 . 10 10
миллиметровые 10 -2 -10 -3 3 . 10 10 — 3 . 10 11
субмиллиметровые 10 -3 — 5 10 -5 3. 10 11 — 6.10 13 ,
Оптическим излучением или светом называют электромагнитные волны (электромагнитное излучение), длина которых в вакууме лежит в диапазоне то 10 нм до 1 мм. К оптическому излучению относится инфракрасное, видимое и ультрафиолетовое излучения.
Инфракрасным изучением называется электромагнитное излучение, испускаемое нагретыми телами, длина которых лежит в пределах от 1 мм до 770 нм (1 нм = 10 -9 м).
Видимое излучение, или видимым светом, называют электромагнитное излучение с длиной волны от 770нм до 380 нм, которое вызывает зрительное ощущение в человеческом глазе.
Ультрафиолетовое излучение — излучение с длиной волны от 380 нм до 10 нм.
Рентгеновским излучением, рентгеновскими лучами, называется излучение , которое возникает при взаимодействии заряженных частиц и фотонов с атомами вещества и характеризуется длинами волн в вакууме то 10 — 100 нм до 0, 01 — 1 пм.
Гамма — излучением, или гамма — лучами, называется электромагнитное излучение с длинами волн в вакууме менее 0,1 нм, которое испускается возбужденными атомными ядрами при радиоактивных превращениях и ядерных реакциях, а также при распаде частиц, аннигиляции пар частица — античастица и других процессах.