Чем отличается стабилизированный блок питания от нестабилизированного
Перейти к содержимому

Чем отличается стабилизированный блок питания от нестабилизированного

  • автор:

Форум гитаристов

У нас самая большая гитарная тусовка

В связи с текущими событиями на форуме вводятся новые правила. Ознакомление обязательно.

  • Форум гитаристов »
  • Оборудование »
  • equipment.effects.amps (Модератор: hell) »
  • Тема: Чем отличаются блоки питания и какой «правильный»?

Страницы: [1] 2 [Дальше >>] Вниз

Автор Тема: Чем отличаются блоки питания и какой «правильный»? (Прочитано 19391 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Страницы: [1] 2 [Дальше >>] Вверх

Стабилизированный адаптер из нестабилизированного

В магазинах, киосках подземных переходов, на радиорынках можно купить так называемые адаптеры, оформленные в виде сетевой вилки. Большие пульсации выходного напряжения и его зависимость от тока нагрузки затрудняют питание от них какой-либо радиоэлектронной аппаратуры. Как стабилизировать выходное напряжение таких адаптеров и рассказывается в данной статье. Для фиксирования «круглых» значений выходного напряжения проще всего использовать микросхемы КР142ЕН5 и КР142ЕН8 с соответствующими буквенными индексами [1], устанавливая их на теплоотводе в корпус адаптера и дополняя выходным конденсатором емкостью не менее 10 мкФ. Если же необходимо «нестандартное» напряжение, следует применить микросхему КР142ЕН12А [2]. На рис.1 приведена схема зарядно-питающего устройства для портативного радиоприемника, в котором установлены четыре аккумулятора ЦНК-0,45. Конденсатор C1 устраняет высокочастотные помехи, возникающие в момент закрывания диодов выпрямительного моста. Выходное напряжение 5.6В устанавливают подстроечным резистором R3, а максимальный ток зарядки (примерно 150 мА) — подборкой резистора R1 при подключенной разряженной аккумуляторной батарее. Блок удобен тем, что зарядка аккумуляторов происходит быстро (4. 6 ч), и перезарядить их невозможно [3,4]. Устройство собрано на основе адаптера RW-900 [5]. Чертеж печатной платы приведен на рис.2, а внешний вид блока — на рис.3. Использованы резисторы МЛТ: они установлены на плате вертикально, R3 — СП3-19а. Диоды VD1-VD4 и конденсатор C2 — от адаптера, остальные — RV-6. Конденсатор C4 можно установить также и любой оксидный, но его емкость должна быть не менее 10 мкA. Диод VD5 — практически любой выпрямительный или импульсный. Микросхема DA1 установлена на ребристый теплоотвод размерами 10x18x38 мм от промышленного устройства. Для хорошего охлаждения в нижней и верхней стенках корпуса адаптера (ориентация при включении его в настенную розетку) просверлены по шесть отверстий диаметром 6 мм. Если ограничение выходного тока не требуется, резистор R1 и конденсатор C3 можно исключить. В таком варианте максимальный выходной ток составлял 0.5А при напряжении пульсаций около 1 мВ. Подобрав сопротивления резисторов R3 и R4, можно можно собрать стабилизатор на любое выходное напряжение в пределах, допустимых трансформатором адаптера. Используя универсальный адаптер, можно изготовить стабилизированный блок питания с переключаемым выходным напряжением. Схема доработанного адаптера «FIRST ITEM NO:57» приведена на рис.4. Вторичная обмотка трансформатора Т1 использована полностью, ее отводы заизолированы. Диоды VD5, VD6 — защитные [2]. Диоды VD1-VD4, конденсатор C2, светодиод HL1 и переключатели SA1 и SA2 — от адаптера. Резисторы R3-R8 не обязательно должны иметь указанные сопротивления, они могут отличаться в любую сторону в 1.5 раза. Важно, чтобы сопротивления R3-R7 были равны между собой с точностью 1. 2%, а сопротивление R8 было вдвое большим, поскольку ими определяется погрешность установки выходных напряжений. Все элементы, кроме трансформатора Т1, установлены на печатной плате, чертеж которой приведен на рис.5, а внешний вид устройства — на рис.6. Для сверления крепежных отверстий и отверстий для установки переключателей и светодиода удобно применить печатную плату от используемого адаптера как трафарет. Чтобы выпаять переключатель из платы и при этом не повредить ее, необходимо, прогревая одновременно несколько соседних контактов паяльником, изгибать плату. Переходя постепенно к другим контактам, можно выпаять переключатель целиком. Микросхема DA1 установлена на медную пластину размерами 52x38x1 мм, выполняющую роль теплоотвода. Пластина имеет отбортовку для крепления на плате, а по ее периметру просверлены отверстия диаметром 4 мм для обеспечения вентиляции. Для тех же целей в верхней и нижней стенках корпуса просверлено по восемь отверстий диаметром 6 мм. Налаживание устройства заключается в установке выходных напряжений без нагрузки подборкой резисторов R2 и R9. Резистор R9 можно сразу поставить указанного на схеме сопротивления, а параллельно ему и вместо R2 впаять переменные резисторы сопротивлением 10 кОм и 56 Ом соответственно. Резистором, подключенным параллельно R9, устанавливают выходное напряжение 12 В, резистором R2 — 1.5 В. Поскольку эти установки взаимосвязаны, их надо повторить несколько раз. После этого устанавливают постоянные резисторы с подобранными сопротивлениями, причем резистор параллельно R9 подпаивают со стороны печатных проводников. Стабилизированный адаптер обеспечивал выходной ток до 200 мА. При напряжении 12 В ток ограничен появлением пульсаций, при меньших — температурой микросхемы DA1. Увеличением поверхности теплоотвода можно существенно повысить выходной ток при малых выходных напряжениях. Литература:
1. Щербина А., Благий С. Микросхемные стабилизаторы серий 142, К142, КР142. — Радио, 1990, #8, с. 89, 90; #9, с. 73
2. Нефедов А., Головина В. Микросхемы КР142ЕН12. — Радио, 1993, #8, с. 41
3. Нечаев И. Ускоренная зарядка аккумуляторов. — Радио, 1995, #9, с. 52, 53
4. Алексеев С. Зарядные устройства для Ni-Cd аккумуляторов и батарей. — Радио, 1997, #1, с. 44-46; #2, с. 44-46
5. Бирюков С. Сетевые адаптеры. — Радио, 1998, #6, с. 66, 67

none Опубликована: 2002 г. 0 0

Вознаградить Я собрал 0 0

Оценить статью

  • Техническая грамотность

Оценить Сбросить

Средний балл статьи: 0 Проголосовало: 0 чел.

Комментарии (0) | Я собрал ( 0 ) | Подписаться

Для добавления Вашей сборки необходима регистрация

Статью еще никто не комментировал. Вы можете стать первым.

Регулятор мощности 2 кВт

Регулятор мощности 2 кВт

Модуль радиореле на 4 канала FM-модуль RDA5807M

1999-2024 Сайт-ПАЯЛЬНИК ‘cxem.net’
При использовании материалов сайта, обязательна
ссылка на сайт ПАЯЛЬНИК и первоисточник

Чем отличается стабилизированный блок питания от нестабилизированного

Выбор принципа стабилизации напряжения зависит, прежде всего, от конкретных условий применения данного блока питания

Стабилизаторы последовательного типа

Принципиальная схема стабилизатора последовательного типа

Стабилизаторы последовательного типа работают по обычному принципу. Они получают питание от сети 1- или 3-фазного переменного тока. С помощью трансформатора входное напряжение блока питания преобразуется в переменное напряжение требуемого уровня.

Это напряжение выпрямляется, сглаживается фильтром и поступает на вход электронного регулятора, формирующего выходное стабилизированное напряжение блока питания. Электронный регулятор включает в свой состав усилитель и регулирующий элемент, включенный последовательно с нагрузкой. Неизменность уровня выходного напряжения обеспечивается регулировкой степени открытия и падения напряжения на регулирующем элементе. При этом разность между напряжением на сглаживающем конденсаторе и падением напряжения на регулирующем элементе остается постоянной, равной заданному уровню Uвых. Возникающие тепловые потери пропорциональны произведению значения тока нагрузки и падение напряжения на регулирующем элементе.

Стабилизаторы последовательного типа хорошо адаптируются к различным условиям эксплуатации. Они позволяют создавать блоки питания с несколькими уровнями стабилизированных выходных напряжений. Для этого достаточно использовать трансформатор с несколькими вторичными обмотками с соответствующими выпрямителями, фильтрами и стабилизаторами. Некоторые решения могут базироваться только на этом принципе.

Стабилизаторы данного типа отличаются высоким быстродействием, высокой точностью стабилизации выходного напряжения, имеют низкий уровень пульсаций выходного напряжения. К их недостаткам следует отнести небольшой коэффициент полезного действия и значительные массогабаритные показатели. Поэтому стабилизаторы последовательного типа используются только в блоках питания небольшой мощности.

  • простая и надежная схема,
  • регулировочные характеристики в диапазоне от хороших до наилучших,
  • малое время установки выходного напряжения.
  • относительно большая масса и габариты из-за использования 50 Гц трансформатора,
  • низкий коэффициент полезного действия, проблемы с отводом тепла.
Магнитные стабилизаторы напряжения

Принципиальная схема магнитного стабилизаторы напряжения

Магнитные стабилизаторы состоят из ферромагнитного резонатора и дополнительного регулирующего блока. Ферромагнитный резонатор обеспечивает достаточно высокую точность стабилизации своего выходного напряжения переменного тока. Его входная и резонансная обмотки магнитного стабилизатора разделены большим воздушным зазором. Рабочей зоной резонатора является зона насыщения стали сердечника.

Для повышения точности стабилизации выходного напряжения к выходу ферромагнитного резонатора достаточно часто подключают стабилизатор последовательного типа или импульсный стабилизатор с коммутацией на вторичной стороне.

Магнитные стабилизаторы отличаются высокой надежностью, однако имеют относительно большие массогабаритные показатели и высокую стоимость.

  • регулирвочные характеристики при использовании со стабилизатором последовательного типа в диапазоне от хороших до наилучших,
  • значительно более высокий КПД по сравнению со стабилизаторами последовательного типа.
  • зависимость феррорезонатора от частоты питающего напряжения,
  • относительно большие габариты и масса.
Импульсные стабилизаторы с коммутацией на вторичной стороне:

Принципиальная схема импульсного стабилизатора с коммутацией на вторичной стороне

Гальваническое разделение с питающей сетью обеспечивается применением 50 или 60 Гц трансформатора. После выпрямления и сглаживания напряжение подается на выходную цепь фильтрации и накопления через транзисторный ключ, работающий в импульсном режиме. Входной трансформатор обладает свойствами фильтра, поэтому блок питания практически не оказывает влияния на работу питающей сети. КПД такого стабилизатора очень высок.

Конструкция стабилизатора имеет множество преимуществ и позволяет создавать блоки питания с несколькими уровнями стабилизированных выходных напряжений.

В импульсных стабилизаторах с коммутацией на вторичной стороне необходимо предпринимать меры для защиты нагрузки, поскольку при пробое транзисторного ключа к нагрузке может быть приложено нестабильное напряжение сглаживающего конденсатора. Подобная проблема существует и в стабилизаторах последовательного типа.

  • простота конструкции и высокий КПД,
  • возможность применения многообмоточных трансформаторов и построения блоков питания с несколькими гальванически разделенными выходами,
  • малая степень воздействия блока питания на работу питающей сети.
  • относительно большая масса и габариты из-за использования 50 Гц трансформатора,
  • относительно высокий уровень пульсаций и всплесков выходного напряжения.
Импульсные стабилизаторы с коммутацией на первичной стороне:

Для построения импульсных стабилизаторов с коммутацией на первичной стороне может использоваться большое количество схемотехнических решений. Хорошо известны схемы на основе 1- и 2-тактных, блокирующих, полумостовых и мостовых, а также резонансных преобразователей.

Принцип действия импульсных стабилизаторов с коммутацией на первичной стороне будет рассмотрен на примере схемы с 1-тактным преобразователем.

Принципиальная схема 1-тактного преобразователя

Входное напряжение сети сначала выпрямляется и сглаживается. Емкость конденсатора в промежуточном контуре определяет допустимое время исчезновения входного напряжения. При входном напряжении ~230 В напряжение на промежуточном контуре составляет =320 В. Это напряжение подается на вход 1-тактного преобразователя, который использует высокочастотную широтно-импульсную модуляцию для передачи электроэнергии через импульсный трансформатор. Коммутирующий транзистор работает в ключевом режиме. Потери мощности на нем незначительны. В зависимости от величины выходного напряжения и тока нагрузки КПД стабилизатора может находиться в пределах от 70 до 90%.

Импульсный трансформатор работает на высокой частоте, поэтому его размеры достаточно малы. Увеличение частоты ведет к уменьшению габаритов импульсного трансформатора, но увеличивает потери на коммутацию, поэтому данный параметр должен выбираться с учетом обеспечения требуемого значения КПД. В подавляющем большинстве импульсных преобразователей в зависимости от их выходной мощности используются тактовые частоты в диапазоне от 20 до 250 кГц.

Напряжение вторичной обмотки импульсного трансформатора выпрямляется, фильтруется и сглаживается. Отклонение Uвых от заданного значения передается через оптрон в первичную цепь. Через широтно-импульсный регулятор (проводящая фаза коммутирующего транзистора в первичном контуре) необходимая энергия передается во вторичную цепь, стабилизируя выходное напряжение. Во время непроводящей фазы коммутирующего транзистора трансформатор через вспомогательную обмотку снова размагничивается. Максимальная скважность импульсов в этих схемах не превышает 50%.

  • малые массогабаритные показатели высокочастотных магнитных компонентов,
  • высокий КПД,
  • компактная конструкция,
  • использование естественного охлаждения даже в блоках питания киловаттного диапазона мощностей,
  • большое время буферирования входного напряжения без нарушения питания нагрузки,
  • широкий диапазон допустимых отклонений входного напряжения.
  • высокая стоимость схемы, большое количество активных компонентов,
  • высокие затраты на защиту от помех,
  • исполнение, учитывающее требования к высокочастотным изделиям.

Благодаря своим небольшим массогабаритным показателям, высокому КПД и хорошему соотношению цена/ производительность импульсные блоки питания с коммутацией в первичной цепи получают все более широкое распространение по сравнению со стабилизаторами других типов.

Резюме

Тактирование в первичной цепи

стабилизированный и НЕстабилизированный адаптер, блок питания

как это можно понять в магазинах? что на коробке должно быть? мне нужен исключительно стабилизированный, но в наших Эльдорадах и М-видеах продавцы смотрят на меня как на инопланетянина с таким вопросом. И еще — если блок питания импульсный, то о чем это говорит, в плане стабилизации?

Дополнен 15 лет назад

понятно, что в Москве такого бы вопроса не возникло 😉 то что в М.Видео было «Ansmann AP312, 300мА — 300рэ» я уж в инете нарыл — они НЕстабилизированные. Те что в Эльдорадо «Касио АД-5, 850мА, импульсный, Россия — 400рэ» — в инете не засвечены. Неужели придётся через инет заказывать.

Лучший ответ

Нужно брать стабилизированный, потому как напряжение в сети скачет и скачет напряжение на выходе в зависимости от потрябляемой нагрузки.

Остальные ответы

. Не в тех магазинах Вы ищите. . Не в тех. . 🙂
Вам, скорее «Чип и Дип» с «Кварц»ем помогут.
Как вариант «Митинский» либо какой-нибудь другой радиорынок. .
Или по почте что-нибудь из «Мастер Кит» заказать. .

Вариантов много, но «Эльдорадо» с «М-Видео» среди них, точно, не числятся. . 🙂

ЗЫ. «Импульсный» не факт, что стабилизированный. .
ЗЫ. 2 Так, дабы упростить Вам поиск:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *