Как на схеме обозначается эдс
Перейти к содержимому

Как на схеме обозначается эдс

  • автор:

Идеальный источник — условное обозначение на схеме

Мне задали вопрос: К какому ГОСТу относится изображение источника тока с двумя стрелочками внутри, например как на схеме замещения:

Схема замещения в Visio

Схема замещения

На всякий случай, еще раз просмотрел ГОСТы и стандарты IEC — ничего подобного не нашел.

И в ГОСТ и в IEC, идеальные источники выглядят следующим образом:

Поэтому, в мои продукты, включены символы идеального источника тока и идеального источника напряжения, построенные в соответствии с ГОСТ.

Трафарет Visio с символами идеальных источников, применяемых в электротехнической литературе вы можете скачать ниже:

Схемы замещения источников энергии

Простейшая электрическая цепь и ее схема замещения, как указывалось, состоят из одного источника энергии с ЭДС Е и внутренним сопротивлением rвт и одного приемника с сопротивлением r (см. рис. 1.3). Ток во внешней по отношению к источнику энергии части цепи, т. е. в приемнике с сопротивлением r , принимается направленным от точки а с большим потенциалом к точке b с меньшим потенциалом .

Направление тока будем обозначать на схеме стрелкой с просветом или указывать двумя индексами у буквы I, такими же, как и у соответствующих точек схемы. Так, для схемы рис. 1.3 ток в приемнике I = Iab , где индексы а и b обозначают направление тока от точки а к точке b .
Покажем, что источник энергии с известными ЭДС E и внутренним сопротивлением rвт , может быть представлен двумя основными схемами замещения (эквивалентными схемами).
Как уже указывалось, с одной стороны, напряжение на выводах источника энергии меньше ЭДС на падение напряжения внутри источника:

с другой стороны, напряжение на сопротивлении r

Ввиду равенства из (1.5а) и (1.56) получается или

В частности, при холостом ходе (разомкнутых выводах а и b ) получается E=U x, т. е. ЭДС равна напряжению холостого хода. При коротком замыкании (выводов а и b ) ток

Из (1.7 б ) следует, что rвт источника энергии, так же как и сопротивление приемника, ограничивает ток.
На схеме замещения можно показать элемент схемы с rвт , соединенным последовательно с элементом, обозначающим ЭДС E (рис. 1.7, а). Напряжение U зависит от тока приемника и равно разности между ЭДС E источника энергии и падением напряжения rвт I (1.6а). Схема источника энергии, показанная на рис. 1.7, а, называется первой схемой замещения или схемой с источником ЭДС.
Если rвт вт < < U , т. е. источник электрической энергии находится в режиме, близком к холостому ходу, то можно практически пренебречь внутренним падением напряжения и принять U вт = rвт = 0 . В этом случае для источника энергии получается более простая эквивалентная схема только с источником ЭДС, у которого в отличие от реального источника исключается режим короткого замыкания (U =0). Такой источник энергии без внутреннего сопротивления (rвт = 0 ), обозначенный кружком со стрелкой внутри и буквой E (рис. 1.7, б), называют идеальным источником ЭДС или источником напряжения (источником с заданным напряжением). Напряжение на выводах такого источника не зависит от сопротивления приемника и всегда равно ЭДС E . Его внешняя характеристика — прямая, параллельная оси абсцисс (штриховая прямая a b на рис. 1.4).
Источник энергии может быть представлен и второй схемой замещения (рис. 1.8, а). Чтобы обосновать эту возможность, разделим правую и левую части уравнения (1.7а) на rвт . В результате получим

где g вт =1 /rвтвнутренняя проводимость источника энергии, или

где J = E / rвт — ток при коротком замыкании источника энергии (т. е. ток при сопротивлении r=0) ; I вт = U/rвт = g вт U — некоторый ток, равный отношению напряжения на выводах источника энергии к его внутреннему сопротивлению; I = U/r = gU — ток приемника; g = 1/ r — проводимость приемника.
Полученному уравнению (1.8) удовлетворяет схема замещения с источником тока, состоящая из источника с заданным током J = E / rвт (рис. 1.8, а) и соединенного с ним параллельно элемента r вт (общие выводы 1 и 2).
Если g вт вт >>r и при одном и том же напряжении U = U 12 = U ab ток I вт вт = g вт U = 0 . В этом случае для источника энергии получается более простая схема замещения только с источником тока (рис. 1.8,б). Такой источник с внутренней проводимостью g вт = 0 , обозначенный кружком с двойной стрелкой с разрывом внутри и буквой J, называют идеальным источником тока (источником с заданным током). Ток идеального источника тока J не зависит от сопротивления приемника r . Его внешняя характеристика — прямая, параллельная оси ординат (штриховая прямая cd на рис. 1.4). Для идеального источника тока исключается режим холостого хода (I = 0).
В дальнейшем, если нет специальных указаний, терминами «источник ЭДС (напряжения)» и «источник тока» обозначаются часто идеальные источники .
Источники ЭДС и источники тока называются активными элементами электрических схем, а резистивные элементы — пассивными .
При составлении электрической схемы замещения для той или иной реальной цепи стремятся по возможности учесть известные электрические свойства как каждого участка, так и в целом всей цепи.
В зависимости от электрических свойств цепи и условий поставленной задачи важно правильно выбирать схемы замещения и пользоваться ими для исследования режимов в реальных электрических цепях.

№1 Электрическая цепь и ее элементы.

Электрическая цепь представляет собой совокупность устройств, предназначенных для производства, передачи и потребления электрической энергии. Пример простейшей электрической цепи показан на рис. 1.1. Кружок со стрелкой внутри и стоящей рядом буквой Е (рис. 1.1, а) обозначает так называемый источник ЭДС (его еще называют источником напряжения). Это идеализированный источник энергии, внутреннее сопротивление которого равно нулю, а напряжение постоянно по величине, равно ЭДС реального источника и не зависит от протекающего по нему тока. Стрелка показывает направление возрастания потенциала внутри источника. Плюс находится у острия, минус – у хвоста стрелки. Ток во внешней цепи протекает по направлению стрелки ЭДС – от плюса источника к минусу. Внутреннее сопротивление реального источника R0 соединяется последовательно с ЭДС Е, и в совокупности они образуют схему замещения реального источника (на рис. 1.1, а обведена пунктиром).

Рис. 1.1 — Простейшая электрическая цепь

Другое представление схемы генератора осуществляется в виде параллельного соединения источника тока и сопротивления R0 (рис. 1.1, б). Под источником тока понимают также идеализированный источник энергии, внутреннее сопротивление которого бесконечно велико, и который вырабатывает ток J, не зависящий от величины нагрузки R и равный частному от деления ЭДС реального источника на его внутреннее сопротивление J = E/R0. На схеме он изображается кружком с двойной стрелкой, рядом с которым ставится буква J (рис. 1.1, б).

В схеме рис. 1.1, а ЭДС равна сумме напряжений на нагрузке и внутреннем сопротивлении источника:

Последнее выражение представляет так называемую внешнюю характеристику генератора. Оно говорит о том, что напряжение на его зажимах меньше ЭДС на величину падения напряжения на внутреннем сопротивлении (рис. 1.2). Чем больше ток и внутреннее сопротивление генератора, тем меньше выдаваемое им напряжение. При холостом ходе генератора (при I = 0) напряжение, измеренное на его разомкнутых зажимах равно ЭДС: U = E.

Рис. 1.2 — Внешняя характеристика генератора

На практике часто приходится сталкиваться с элементами схемы, показанными на рис. 1.3. Разница между ними заключается во взаимном направлении стрелок ЭДС и напряжения. В первом случае (рис. 1.3, а), когда эти стрелки направлены противоположно друг другу, напряжение определяется как разность потенциалов положительного и отрицательного зажимов источника и поэтому положительно. При одинаковых направлениях стрелок E и U (рис. 1.3, б) напряжение равно разности отрицательного и положительного потенциалов, а потому оно отрицательно: U = – E.

Рис. 1.3 — Напряжение на зажимах источника

Пример 1.1. Напряжение холостого хода батареи равно 16,4 В. Чему равно ее внутреннее сопротивление, если при токе во внешней цепи, равном 8 А, напряжение на ее зажимах равно 15,2 В?

Решение. В соответствии с уравнением из схумы (1.1), показанной на рис. 1.4 (а), следует:

Схема 1.4 (б) дает:

Рис. 1.4 — Разомкнутая(а) и замкнутая(б) цепи

При решении задачи мы полагали, что измерение проводилось идеальным вольтметром, имеющим бесконечно большое сопротивление. При конечной величине сопротивления вольтметра в измерение вносится погрешность.

Пример 1.2. ЭДС батареи измеряется вольтметром, имеющим сопротивление Rv. Чему равно показание вольтметра при трех различных значениях его сопротивления, если E = 80 В, R0 = 100 Ом?

Рис. 1.5 — Измерение ЭДС вольтметром

Решение. Показание вольтметра Uv равно падению напряжения на его сопротивление (рис. 1.5)

Чем больше сопротивление вольтметра, тем меньше погрешность измерения. Как следует из формулы (1.2), только при RV →∞ показание вольтметра равно ЭДС: UV = E.

Нагрузкой в схеме на рис. 1.1 служит сопротивление R. Напряжение на его зажимах связано с током законом Ома

где G – проводимость, величина, обратная сопротивлению R; единица измерения – cименс (См).

При G = const выражение (1.3) представляет собой уравнение прямой, проходящей через начало координат. Его график (рис. 1.6) называется вольтамперной характеристикой. Элементы электрической цепи, имеющие аналогичную (прямолинейную) вольтамперную характеристику, называются линейными. Электрическая цепь, состоящая только из линейных элементов, также называется линейной.

Рис. 1.6 — Вольтамперная характеристика линейного сопротивления

Полагая в уравнении G=1/R (1.3), получим U = IR. Последнее выражение справедливо, когда стрелки напряжения и тока у резистора направлены в одну сторону (рис. 1.7, а). При изменении на схеме направления любой из стрелок в правой части закона Ома следует ставить минус (рис. 1.7, б). Здесь при определении напряжения на элементе мы «идем по стрелке» напряжения против стрелки тока.

Рис. 1.6 — Напряжение и ток в сопротивлении

Рядом с буквой U можно ставить два индекса, обозначающие точки, между которыми определяется напряжение; например, Uab – напряжение между точками а и b. При этом направление стрелки напряжения на схеме определяется порядком следования индексов – от а к b (от первого индекса ко второму).

Источник ЭДС

Источник эдс (или идеальный источник напряжения ) — это активный элемент с двумя зажимами, напряжение на которых не зависит от тока, проходящего через источник. В таком идеальном источнике отсутствуют пассивные элементы, т.е. у источника нету сопротивления индуктивности и ёмкости.
В связи отсутствием пассивных элементов при прохождении тока через источник не создается падение напряжения. Упорядоченное перемещение от меньшего потенциала к большему возможно за счёт присущих источнику сторонних сил. Величина работы затрачиваемой на перемещение единицы положительного заряда от «-» к зажиму «+», называется электро движущей силой (ЭДС) источника и обозначается e(t).

В соответствии со сказанным выше напряжение на зажимах рассматриваемого источника равно его ЭДС. U(t) = e(t)

УГО(условно графическое обозначение)

Безымянный - копия (2)

УГО идеального источника напряжения Рис1. Здесь стрелкой или знаками «+» и «-» указанно направление ЭДС.

Величина тока в пассивной электрической цепи, подключенной к источнику напряжения, зависит от параметров этой цепи и эдс.

Если зажимы идеального источника напряжения замкнуть, то ток теориотически должен быть бесконечно велик.

формула i=e/r+R

  • r — внутреннее сопротивление источника (r=0)
  • R — сопротивление внешне электрической цепи (при коротком замыкании R=0)

Поэтому этот источник рассматривают как бесконечный источник мощности (Теоретическое понятие). В действительности при замыкании реального источника его ток будет ограничен, так как в реальном источнике (батарейка, генератор…) есть внутреннее сопротивление(L, r).

Реальный источник напряжения ( или источник конечной мощности ) изображается как идеальный источник с подключенным к нему последовательно пассивным элементом характеризующим внутренние параметры источника и ограничивающие мощность отдаваемую во внешнею электрическую цепь. Обычно внутренние параметры источников незначительны по сравнению с параметрами внешней цепи. Они могут отнесены к последней или вообще не учитываться (если не требуется большая точность).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *