Каркасная модель представляет собой автокад
Перейти к содержимому

Каркасная модель представляет собой автокад

  • автор:

Каркасная модель представляет собой автокад

Каркасные модели состоят только из точек, отрезков и кривых, описывающих кромки объекта. Поскольку каждый из составляющих такую модель объектов должен рисоваться и размещаться независимо от других, затраты времени на моделирование часто бывают крайне велики.

Для создания каркасной геометрии на основе областей и 3D тел и поверхностей используется команда ИЗВЛРЕБРА. Команда ИЗВЛРЕБРА извлекает все ребра на выбранных объектах или подобъектах.

Советы по работе с каркасными моделями

Создание каркасных 3D моделей является более трудоемким процессом, чем построение их двумерных проекций. В связи с этим рекомендуется следовать следующим инструкциям, позволяющим повысить эффективность работы:

  • Спланировать послойную структуру создаваемой модели таким образом, чтобы можно было упрощать выводимую модель отключением тех или иных слоев. Использовать цвета для идентификации объектов на различных видах.
  • Использовать вспомогательные элементы для оценки формы модели.
  • Использовать несколько видов, особенно изометрические, для визуализации модели и упрощения выбора объектов.
  • Изучить управление ПСК в 3D пространстве. Плоскость XY текущей ПСК является плоскостью построений, которая задает ориентацию плоских объектов, таких как круги и дуги. ПСК также определяет плоскость для выполнения операций обрезки, удлинения, смещения и поворота объектов.
  • Использовать режимы объектной и шаговой привязки для обеспечения точности построения модели.
  • Использовать координатные фильтры для построения перпендикуляров и указания точек в трехмерном пространстве на основе координат точек имеющихся объектов.

Способы построения каркасных моделей

Имеется возможность создавать каркасные модели путем размещения плоских 2D объектов в любом месте 3D пространства. Для этого предлагаются следующие способы:

  • Ввод значений 3D точек. Ввод значений 3D точек (с координатами X, Y и Z) в ходе построения объекта.
  • Задание плоскости построений по умолчанию (т.е. плоскости XY ПСК) для рисования объекта.
  • Перемещение или копирование созданного 2D объекта для задания его пространственной ориентации.

Каркасное моделирование требует определенных навыков, приобретаемых в процессе практической работы. Для освоения каркасного моделирования лучше начинать с построения простых моделей с последующим переходом на более сложные.

Глава 16 Построение каркасных моделей

Создание трехмерных моделей – более трудоемкий процесс, чем построение их проекций на плоскости, но при этом трехмерное моделирование обладает рядом преимуществ, среди которых:

• возможность рассмотрения модели из любой точки;

• автоматическая генерация основных и дополнительных видов на плоскости;

• построение сечений на плоскости;

• подавление скрытых линий и реалистичное тонирование;

• экспорт модели в анимационные приложения;

• извлечение характеристик, необходимых для производства.

AutoCAD поддерживает три типа трехмерных моделей: каркасные, поверхностные и твердотельные . Каждый из них обладает определенными достоинствами и недостатками. Для моделей каждого типа существует своя технология создания и редактирования.

Поскольку перечисленным типам моделирования присущи собственные методы создания пространственных моделей и способы редактирования, не рекомендуется смешивать несколько типов в одном рисунке. AutoCAD предоставляет ограниченные возможности преобразования тел в поверхности и поверхностей в каркасные модели, однако обратные преобразования недопустимы.

Каркасная модель представляет собой скелетное описание трехмерного объекта. Она не имеет граней и состоит только из точек, отрезков и кривых, описывающих ребра объекта. AutoCAD дает возможность создавать каркасные модели путем размещения плоских объектов в любом месте трехмерного пространства. Имеется несколько способов такого размещения:

• ввод значений трехмерных точек (с координатами x , y и z ) в ходе построения объекта;

• указание плоскости построений (то есть плоскости XY ) для рисования двумерного объекта путем установки пользовательской системы координат;

• перемещение и определение пространственной ориентации созданного ранее плоского объекта.

Кроме того, AutoCAD позволяет непосредственно строить некоторые виды трехмерных объектов типа каркасных моделей, например трехмерные полилинии и сплайны.

Поскольку каждый объект, составляющий такую модель, должен рисоваться и размещаться независимо от других, моделирование часто занимает очень много времени.

Ниже описаны трехмерные примитивы, используемые в каркасных моделях.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

Глава 5 Построение графиков и диаграмм

Глава 5 Построение графиков и диаграмм • Оформление диаграмм• Построение графиков и диаграмм в Excel• Построение графиков и диаграмм в Word• Обмен данными между приложениями Microsoft OfficeИспользуя графики, вы сможете гораздо нагляднее представить данные, содержащиеся в

Глава 8 Построение линейных объектов

Глава 8 Построение линейных объектов Рисунки в AutoCAD строятся из набора геометрических примитивов. Под геометрическим примитивом понимается элемент чертежа, обрабатываемый системой как целое, а не как совокупность точек или объектов. Геометрические примитивы создаются

Глава 16 Построение трехмерных моделей

Глава 16 Построение трехмерных моделей Создание трехмерных моделей – более трудоемкий процесс, чем построение их проекций на плоскости, но при этом трехмерное моделирование обладает рядом преимуществ, среди которых:• возможность рассмотрения модели из любой точки;•

Глава 16 Построение трехмерных моделей

Глава 16 Построение трехмерных моделей Создание трехмерных моделей – более трудоемкий процесс, чем построение их проекций на плоскости, но при этом трехмерное моделирование обладает рядом преимуществ, среди которых:• возможность рассмотрения модели из любой

Глава 17 Построение поверхностей

Глава 17 Построение поверхностей Фигура Пространственные грани Стандартная трехмерная сеть Параллелепипед Конус Полусфера Полигональная сеть Пирамида Сфера Тор Клин Многоугольная сеть Сеть в виде поверхности вращения Сеть в виде поверхности сдвига Сеть в виде

Глава 18 Построение тел

Глава 18 Построение тел Политело Параллелепипед Клин Конус Шар Цилиндр Тор Пирамида Выдавленное тело Тело вращения Тело сдвига Тело, созданное с помощью сечения Вытянутое тело Объединение объектов Вычитание объектов Пересечение объектов Моделирование с помощью тел –

Глава 13 Построение трехмерных моделей

Глава 13 Построение трехмерных моделей Создание трехмерных моделей – более трудоемкий процесс, чем построение их проекций на плоскости, но при этом трехмерное моделирование обладает рядом преимуществ.AutoCAD поддерживает три типа трехмерных моделей: каркасные,

Глава 4 Создание трехмерных моделей и выполнение двумерных графических фрагментов

Глава 4 Создание трехмерных моделей и выполнение двумерных графических фрагментов Виды изделий всех отраслей промышленности при выполнении конструкторской документации устанавливает ГОСТ 2.101-68.Изделием называется любой предмет или набор предметов производства,

Глава 9 Создание и редактирование твердотельных моделей

Глава 9 Создание и редактирование твердотельных моделей Под геометрическим моделированием понимают изучение процессов и объектов, для которых наиболее естественным является графическое представление. В данной главе показано, что система КОМПАС-3D предоставляет

Глава 12 Создание 30-моделей элементарных геометрических тел

Глава 12 Создание 30-моделей элементарных геометрических тел Геометрическое тело — часть пространства, ограниченная со всех сторон поверхностью.Поверхность — это множество всех последовательных положений движущей линии. Эта линия, называемая образующей, при движении

12.6.2. Построение моделей по параметрам сечений

12.6.2. Построение моделей по параметрам сечений Построение 3D-моделей простых тел вращения по их параметрам не является для большинства очень увлекательной задачей из-за ее простоты. Рассмотрим примеры.Пример 12.10Условие. Построить модель сферы, у которой сечение, отстоящее

Урок 11. 3D модели. Каркасы. Поверхности.

Трехмерные объекты, в AutoCad можно представить каркасами, поверхностями и твердотельными моделями. Каркасные модели представлены только ребрами граней и представляют собой прозрачные объекты. Поверхности имеют непрозрачные грани но при этом пустые внутри и представлены лишь оболочкой без наполнения. Твердотельный объект — сплошной, имеет объем и массу.

Каркасные модели

Создается каркасная модель командами построения двумерных графических примитивов, к которым относятся отрезки, точки, круги, дуги и т.д., но задавать нужно трехмерные координаты точек X, Y, Z. Трехмерные координаты вводятся с клавиатуры или указываются курсором мыши с обязательным использованием объектной привязки.

Поверхности

  1. Команда 3DFACE строит трехмерную грань, задается тремя или четырьмя ребрами.
  2. Команда 3DMESH строит сетку из четырехугольников, вершины которых нужно задать.
  3. Команда PFACE строит многогранную сетку, для которой задаются вершины и указываются грани к которым они относятся.
  4. Команда EDGESURF строит поверхность Кунса, ограниченную четырьмя криволинейными или прямыми ребрами.
  5. Команда RULESURF образует сетку, соединяющий два криволинейные или прямые ребра.
  6. Команда REVSURF образует поверхность вращения путем вращения двумерного объекта вокруг оси.
  7. Команда TABSURF образует поверхность путем перемещения двумерного объекта в заданном направлении.
  8. Команда 3D открывает диалоговое окно, в котором выбирается один из стандартных трехмерных примитивов (параллелепипед, сфера, призма и т. др.).

Команды создания поверхностей находятся в меню Draw >Modeling> Surfaces или вызываются нажатием соответствующих кнопок панели инструментов Surfaces. Другой способ создания поверхностей сложной формы заключается в применении теоретико-множественных операций в области, образованных командой Region.

surf

Трехмерная грань (3DFACE)

Способы ввода команды:

  • Набрать с клавиатуры команду 3DFACE.
  • Вызов меню: Draw >Modeling> Meshes > 3DFace
  • Кнопка на панели инструментов.

Командой строится треугольная или четырехугольная грань, вершины которой могут не принадлежать одной плоскости. После введения, команда последовательно выдает запросы относительно координат четырех вершин. Какие указываются одним из известных способов — с клавиатуры в командной строке или курсором мыши с обязательным использованием объектной привязки. Координаты, указываемые курсором мыши без использования объектной привязки воспринимаются системой как двумерные координаты на плоскости построений XY. Диалог с системой имеет вид: Command : _3dface Specify first point or [ Invisible ] 100,50,100 Specify second point or [ Invisible ] 40,80,10 Specify third point or [ Invisible ] : 180,90,30 Specify fourth point or [ Invisible ] : 10,30,50 Если в ответ на запрос координат четвертой вершины грани, нажать ENTER, будет построена треугольная грань. Выбор опции Invisible означает, что дальше задаются две вершины, ребро между которыми должно быть невидимым. После построения грани система продолжит выдавать запросы на ввод координат третьей и четвертой вершин очередной грани. В качестве первых двух вершин воспринимается третья и четвертая точки предыдущей грани. Построенные таким образом грани можно позже редактировать с помощью ручек.

Кромка (EDGE)

Способы ввода команды:

  • Набрать с клавиатуры команду EDGE.
  • Вызов меню: Draw>Modeling> Meshes > EDGE.
  • Кнопка на панели инструментов.

Команда управляет видимостью ребер граней. Запросы команды: Specify edge of 3dface to toggle visibility or [Display] позволяют выбрать ребра, которые должны быть невидимыми, скрытыми. Для изменения видимости ребер служит опция Display, которая позволяет выполнить противоположное действие и выбрать ребра, для отображения на экране.

Трехмерная грань (3DMESH)

Способы ввода команды:

  • Набрать с клавиатуры команду 3DMESH.
  • Вызов меню: Draw>Modeling> Meshes > edge mesh.
  • Кнопка на панели инструментов.

Команда 3DMESH строит произвольную незамкнутую сетку с четырехугольников, вершины которых нужно задать. Использование команды позволяет построить сетку достаточно сложной конфигурации. Команда выдает запрос на размер сетки в направлениях М (Enter size of mesh in M ??direction), который ближе к горизонтальному направлении и N (Enter size of mesh in N direction), который ближе к вертикальному направлении. В ответ нужно ввести число в диапазоне от 2 до 256. Далее выдаются запросы относительно координат точек. Необходимо учитывать, что точки сетки имеют такую ??нумерацию и расположение:

00 01 02 …. 0n
10 11 12 …. 1n
20 21 22 …. 2n
30 31 32 …. 3n
…. …. …. ……
m0 m1 m2 …… mn

Фрагмент диалога с командой имеет вид: Enter size of mesh in M ??direction: 5 Enter size of mesh in N direction: 4 Specify location for vertex (0, 0): 50,0,0 Specify location for vertex (0, 1): 100,50,0 Specify location for vertex (0, 2): 150,50,0 Specify location for vertex (0, 3): 200,50,0 Specify location for vertex (1, 0): 60,100,10 ………………………………………….. ………………

Многогранная сетка (PMESH)

Способы ввода команды:

  • Набрать с клавиатуры команду PMESH

Команда строит многогранную сетку какого угодно вида с произвольным количеством вершин. Сначала вводятся координаты вершин: Command: PFACE Specify location for vertex 1: 40,50,0 Specify location for vertex 2 or : 100,150,60 Specify location for vertex 3 or : 80,50,150 Specify location for vertex 4 or : 400,70,90 Specify location for vertex 5 or : 120,50,70 Specify location for vertex 6 or : После нажатия клавиши ENTER команда предлагает определить какие вершины принадлежат каждой из граней: Face 1, vertex 1: Enter a vertex number or [Color / Layer] 1 Face 1, vertex 2: Enter a vertex number or [Color / Layer] * Cancel * Поверхность Кунса (EDGESURF) Способы ввода команды:

  • Набрать с клавиатуры команду EDGESURF.
  • Вызов меню: Draw> Surfaces> Edge Surface.
  • Кнопка на панели инструментов.

Поверхность образуется на четырехугольнике, стороны которого могут быть прямыми, дугами или полилиниями. Размер сетки определяется системными переменными SURFTAB1 и SURFTAB2, которые определяют количество прямолинейных сегментов, заменяющих криволинейные стороны. По умолчанию значение системных переменных равно 6.

edge surf

Поверхность соединения (RULESURF)

Способы ввода команды:

  • Набрать с клавиатуры команду RULESURF.
  • Вызов меню: Draw> Surfaces> Ruled Surface.
  • Кнопка на панели инструментов.

Команда RULESURF образует сетку, соединяющий две кромки. Кромками могут выступать отрезки, дуги, полилинии. Они должны быть одновременно незапертой или одновременно замкнутыми. Число прямолинейных сегментов вдоль криволинейных кромок определяется системной переменной SURFTAB1. Вид поверхности зависит от выбора точек, указывающих кромки. Выбор соответствующих точек на кромках приводит к созданию не само перекрывающей поверхности, а показав точки на противоположных концах, построим само перекрывающую поверхность.

ruled surf

Поверхность перемещения (TABSURF)

Способы ввода команды:

  • Набрать с клавиатуры команду TABSURF
  • Вызов меню: Draw> Surfaces> Tabulated Surface
  • Кнопка на панели инструментов.

Команда TABSURF образует поверхность путем перемещения двумерного объекта в заданном направлении. Объект перемещения задается отрезком, дугой, полиллинией. Направление перемещения задается отрезком или незамкнутой полилинией. Создание поверхности сопровождается диалогом:

Select object for path curve: Выбрать объект перемещения.
Select object for direction vector: Выбрать направление перемещения.

Зеленым цветом отмечена направляющая

Зеленым цветом отмечена направляющая

Поверхность вращения (REVSURF)

Способы ввода команды:

  • Набрать с клавиатуры команду REVSURF.
  • Вызов меню: Draw> Surfaces> Revolved Surface.
  • Кнопка на панели инструментов.

Поверхность образуется вращением выбранного объекта вокруг заданной оси. Объект вращения — отрезок, дуга, полилиния. Ось задается отрезком или конечными точками незапертой полилинии. Объект можно повернуть на полный угол – 360 о или на заданный угол. Команда позволяет выбрать начальное значение угла и задать значение угла поворота. Положительное значение угла задается против часовой стрелки. Размер сетки поверхностей вращения определяется значением системных переменных SURFTAB1 и SURFTAB2. Диалог с системой имеет вид:

Select object to revolve: Выбрать объект вращения.
Select object that defines the axis of revolution: Выбрать ось вращения.
Specify start angle : Задать начальное значение угла или нажать ENTER
Specify included angle (+ = ccw, — = cw)

Задать конечное значение угла или нажать ENTER

Объект вращения (сплайн) и ось вращения (прямой отрезок)

3D

Способы ввода команды:

  • Набрать с клавиатуры команду 3D
  • Вызов меню: Draw> Surfaces> 3D Surfaces

Команда 3D открывает диалоговое окно, в котором выбирается один из стандартных трехмерных примитивов (Параллелепипед, сфера, призма и т.д.). В зависимости от типа выбранного примитива система выдает запросы для уточнения исходных данных, необходимых для определения положения и размера примитива.

3d prim

В следующем уроке мы продолжим рассказывать о методах построения 3D примитивов, а конкретно о построении твердых тел.

Просмотр 3D-объектов

Чертеж, отображаемый на текущем видовом экране, может быть фиксированным или интерактивным.

С помощью инструментов 3D просмотра и навигации пользователь может перемещаться по чертежу, настраивать камеру на определенный вид и создавать анимации для обеспечения параллельного доступа к своему проекту другим пользователям. Можно перемещаться по всей 3D модели в режиме движения по кругу, разворота, обхода или облета, настраивать камеру, создавать файл предварительного просмотра анимации и записывать анимации траектории перемещения, которые можно передавать другим пользователям для визуального ознакомления с целями своего проекта.

С помощью инструментов 3D просмотра и навигации можно перемещаться по чертежу. Можно масштабировать и повернуть 3D модель и задать ее орбиту.

  • Чтобы повысить производительность 3D-графики, вместо визуального стиля «2D-каркас» выберите визуальный стиль «Каркас», «Реалистичный» или «Тонированный».
  • 3D-модели можно открывать в AutoCAD LT. Однако 3D-инструменты просмотра и навигации недоступны.

Способы задания видов при работе с 3D-моделями

Для интерактивного 3D-просмотра можно использовать команду 3DОРБИТА. Доступ к стандартным видам можно получить в подразделе «Презентационные виды» контекстного меню. (Эта функция недоступна в AutoCAD LT.)

  • Для точной настройки 3D-вида, в том числе для указания точки расположения камеры и целевой точки, можно использовать команды КАМЕРА и ДВИД.
  • Для вида в перспективе с заданным фокусным расстоянием можно использовать системные переменные PERSPECTIVE и LENSLENGTH.

Для отображения стандартных видов 3D-моделей также можно использовать следующие команды:

  • Изометрический вид: -ТЗРЕНИЯ 1,-1,1
  • Вид сверху: -ТЗРЕНИЯ 0,0,1 или ПЛАН
  • Вид спереди: -ТЗРЕНИЯ 0,-1,0
  • Вид справа: 1,0,0

Важное замечание: Для определений видов в AutoCAD используются принятые в архитектуре правила: плоскость XY ПСК представляет собой вид сверху или вид в плане.

Понятия, связанные с данным
  • Использование инструментов 3D-навигации
  • Обход и облет чертежа
  • Создание динамического 3D-вида
  • А вы пробовали: Просмотр 3D-моделей

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *