Что такое магнитная проницаемость (мю)
Из многолетней технической практики нам известно, что индуктивность катушки сильно зависит от характеристик среды, где эта катушка находится. Если в катушку из медной проволоки, обладающую известной индуктивностью L0, добавить ферромагнитный сердечник, то при прочих прежних обстоятельствах токи самоиндукции (экстратоки замыкания и размыкания) в данной катушке многократно увеличатся, эксперимент это подтвердит, что и будет означать возросшую в несколько раз индуктивность, которая теперь станет равна L.
Допустим, что окружающая среда, вещество, заполняющее пространство внутри и вокруг описанной катушки, однородно, и порождаемое текущим по ее проводу током, магнитное поле локализовано только в этой обозначенной области, не выходя за ее границы.
Если катушка имеет тороидальную форму, форму замкнутого кольца, то данная среда вместе с полем окажется сосредоточена только внутри объема катушки, ибо снаружи тороида практически полностью магнитное поле отсутствует. Справедливо данное положение и для длинной катушки — соленоида, у которого все магнитные линии так же сосредоточены внутри — по оси.
Для примера допустим, что индуктивность некоторого контура или катушки без сердечника в вакууме равна L0. Тогда для такой же катушки, но уже в однородном веществе, которое заполняет пространство, где присутствуют магнитные силовые линии данной катушки, индуктивность пусть будет равна L. В этом случае получится, что отношение L/L0 – это есть не что иное, как относительная магнитная проницаемость названого вещества (иногда говорят просто «магнитная проницаемость»).
Становится очевидно: магнитная проницаемость — это величина, которая характеризует магнитные свойства данного вещества. Она зачастую зависит от состояния вещества (и от условий окружающей среды, таких как например температура и давление) и от его рода.
Введение термина «магнитная проницаемость», применительно к веществу, размещенному в поле магнитном, аналогично введению термина «диэлектрическая проницаемость» для вещества находящегося в поле электрическом.
Значение магнитной проницаемости, определяемое по приведенной выше формуле L/L0, может быть выражена и как отношение абсолютных магнитных проницаемостей данного вещества и абсолютной пустоты (вакуума).
Легко заметить: магнитная проницаемость относительная (она же — магнитная проницаемость) — это величина безразмерная. А вот абсолютная магнитная проницаемость — имеет размерность Гн/м, ту же самую, что у магнитной проницаемости (абсолютной!) вакуума (она же — магнитная постоянная).
Фактически видим, что среда (магнетик) влияет на индуктивность контура, и это однозначно свидетельствует о том, что изменение среды приводит к изменению магнитного потока Ф, пронизывающего контур, а значит и к изменению индукции В, применительно к любой точке магнитного поля.
Физический смысл данного наблюдения заключается в том, что при одном и том же токе катушки (при одной и той же магнитной напряженности H), индукция ее магнитного поля окажется в определенное количество раз больше (в некоторых случаях — меньше) в веществе с магнитной проницаемостью мю, чем в полном вакууме.
Это происходит потому, что среда намагничивается, и сама начинает обладать магнитным полем. Вещества, способные таким образом намагничиваться, называют магнетиками.
Единица измерения абсолютной магнитной проницаемости — 1 Гн/м (генри на метр или ньютон на ампер в квадрате), то есть это магнитная проницаемость такой среды, где при напряженности Н магнитного поля, равной 1 А/м — возникает магнитная индукция величиной 1 Тл.
Физическая картина явления
Из вышеизложенного становится ясно, что различные вещества (магнетики) под действием магнитного поля контура с током намагничиваются, и в результате получается магнитное поле, являющееся суммой магнитных полей — магнитного поля от намагниченной среды плюс от контура с током, потому оно отличается по величине от поля только контура с током без среды. Причина намагничивания магнетиков кроется в существовании мельчайших токов внутри каждого их атома.
По значению магнитной проницаемости, вещества классифицируются на диамагнетики (меньше единицы — намагничиваются против приложенного поля), парамагнетики (больше единицы — намагничиваются по направлению приложенного поля) и ферромагнетики (сильно больше единицы — намагничиваются, и обладают намагниченностью после отключения приложенного магнитного поля).
Ферромагнетикам свойственен гистерезис, поэтому понятие «магнитная проницаемость» в чистом виде к ферромагнетикам не применимо, но в некотором диапазоне намагничивания, в некотором приближении, можно выделить линейный участок кривой намагничивания, для которого получится оценить магнитную проницаемость.
У сверхпроводников магнитная проницаемость — 0 (поскольку магнитное поле полностью вытесняется из их объема), а абсолютная магнитная проницаемость воздуха почти равна мю вакуума (читай магнитной постоянной). У воздуха мю относительная чуть-чуть больше 1.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Мю в физике в чем измеряется
Материал из Википедии
(Древне)греческий алфавит | |||
---|---|---|---|
Αα | Альфа | Νν | Ню |
Ββ | Бета | Ξξ | Кси |
Γγ | Гамма | Οο | Омикрон |
Δδ | Дельта | Ππ | Пи |
Εε | Эпсилон | Ρρ | Ро |
Ζζ | Дзета | Σσς | Сигма |
Ηη | Эта | Ττ | Тау |
Θθ | Тета | Υυ | Ипсилон |
Ιι | Йота | Φφ | Фи |
Κκ | Каппа | Χχ | Хи |
Λλ | Лямбда | Ψψ | Пси |
Μμ | Мю | Ωω | Омега |
История | |||
Архаические локальные варианты Дигамма · Хета · Сан · Цан · Коппа · x18px |
|||
Лигатуры (ϛ, ϗ, ȣ) · Диакритики | |||
Цифры: x18px (6) · x18px (90) · x18px (900) | |||
В других языках | |||
Бактрийский · Коптский · Албанский | |||
Научные символы | |||
Category Категория • Commons |
У этого термина существуют и другие значения, см. Мю (значения).
Символы со сходным начертанием: M · М · Ⅿ · Ϻ
Μ , μ (название: мю, греч. μυ ) — 12-я буква греческого алфавита. В системе греческой алфавитной записи чисел имеет числовое значение 40. Происходит от финикийской буквы мем — мем. От буквы «мю» произошли латинская буква M и кириллическая М. Новогреческое название — ми ( μυ или μι ).
Синоглифы [ править ]
- Мим (буква арабского алфавита)
- Армянская мен
- Ма (тибетская буква)
Применение в обозначениях [ править ]
Строчная буква μ широко используется во многих отраслях науки, в отличие от заглавной Μ, которая совпадает по написанию с латинской или кириллической буквами.
В математике [ править ]
- Функция Мёбиуса μ(x) в теории целых чисел
- Интегрирующий множитель в обыкновенных дифференциальных уравнениях
- Математическое ожидание μX (также с помощью заглавной MX) в теории вероятностей
- Мера в теории меры
- Бифуркационный параметр в теории динамических систем
В физике [ править ]
- Коэффициент сухого трения;
- Магнетон Бора;
- Динамическая вязкость или коэффициент вязкого трения в гидрогазодинамике;
- Приведённая масса в задаче о столкновении двух тел;
- Магнитная проницаемость в электромагнетизме;
- Коэффициент Пуассона в теории упругости (см. также ν)
- Элементарная частица, называемая мюон;
- Химический потенциал системы или её части;
- Международное обозначение дольной приставки СИмикро-, означающей уменьшение единицы измерения в миллион раз.
Буква Я | Это заготовка статьи о письменности или букве. Вы можете помочь проекту, дополнив её. |
- Страницы с неработающими файловыми ссылками
- Греческие буквы
- Незавершённые статьи о письменности
Физики измерили сверхтонкое расщепление в мюонии
Физики из коллаборации Mu-MASS представили результаты второй части своего исследования, посвященного измерению частоты переходов в атоме мюония — связанной системе антимюона и электрона. По совокупности всей работы они не только уточнили лэмбовский сдвиг, но и впервые измерили сверхтонкое расщепление мюония в 2S-состоянии. Кроме того, физики увидели вклады от уровней с n = 3, что открывает дополнительные возможности для поиска Новой физики. Исследование опубликовано в Nature Communications.
История открытия и экспериментов с мюонами достаточно нетривиальная. Все началось с того, что обнаруженный в 1936 году мюон физики приняли за юкавовский пион — мезон-переносчик ядерного взаимодействия. По этой причине его какое-то время называли мю-мезоном. Ошибка окончательно была признана в 1947 году, когда Пауэлл с коллегами нашли настоящие пионы. Сейчас мы знаем, что мюоны — это бесструктурные частицы второго поколения лептонного семейства.
На этом роль мюонов в развитии физики не закончилась. В 2010 году они стали причиной возникновения кризиса, получившего название «загадка радиуса протона». Его сутью стали расхождения в значениях фундаментальных констант, а именно зарядового радиуса протона, полученные с помощью спектроскопии обычного и мюонного водорода. Подробнее об этой проблеме вы можете прочитать в материале «Щель в доспехах», а также в новостях, посвященных попыткам разрешения кризиса (1, 2, 3, 4, 5).
Другим существенным отклонением от Стандартной модели стали данные о мюонном магнитном моменте. Эта величина для всех элементарных частиц отличается от целочисленного значения, предписываемого квантовой механикой, из-за флуктуаций вакуума, поэтому точное значение магнитного момента принято называть аномальным. Измерения аномального магнитного момента мюона, проведенные в 2006 году в Брукхейвенской национальной лаборатории, дали результат, отличающийся от предсказаний теории на 3,7 стандартного отклонения (σ). В 2021 году благодаря усилиям физиков Фермилаба, разрыв усилился до 4,2 сигмы и до сих пор не объяснен.
К мюонной физике приковано внимание множества научных групп, включая коллаборацию Mu-MASS, в которую входят физики из Института Пауля Шерера, Швейцарской высшей технической школы Цюриха и Физического института имени Лебедева РАН (ФИАН). Чуть меньше года назад мы рассказывали, как они измерили лэмбовский сдвиг в мюонии с n = 2. Правда, в тот раз ученые задействовали всего один сверхтонкий подуровень 2S-состояния. В новом исследовании Mu-MASS не только вовлекли в эксперимент другой подуровень, но и возбудили мюоний в состояние с n = 3, что открывает дорогу к новому пласту измерений.
Мюонием называют связанное состояние положительного антимюона с отрицательным электроном. Он очень похож на атом водорода, но отличается от него конечным временем жизни, меньшей массой положительной частицы, а также отсутствием у антимюона структуры, что нивелирует поправки на конечный размер ядра и упрощает интерпретацию положений спектральных линий. Таким образом, разница между энергией уровней 2S и 2P в мюонии, известная как лэмбовский сдвиг, определяется исключительно поправками квантовой электродинамики, что делает эти экзотические атомы привлекательными для поиска Новой физики.
Прямой экспериментальный доступ к лэмбовскому сдвигу в атомах всегда затруднен из-за сверхтонкого расщепления уровней, который в случае мюония довольно существенен. Расстояние между синглетными и триплетными сверхтонкими подуровнями для 2S и 2P примерно равны 557,9 и 186,1 мегагерц, в то время как лэмбовский сдвиг составляет чуть более одного гигагерца. В прошлый раз физики из Mu-MASS исследовали переход из 2S F=1 подуровня в 2P подуровни. В этот раз они использовали 2S F=0 подуровень.
Работа установки подробно описана в предыдущей новости. Вкратце, авторы создавали экзотические атомы, бомбардируя фольгу антимюонами. Основной измеряемой величиной в эксперименте была интенсивность линии Лайман-альфа, которую испускало часть атомов мюония, родившаяся в возбужденном 2S состоянии. Но перед этим физики готовили атомы в нужном сверхтонком состоянии и облучали микроволновым импульсом с перестраиваемой частотой, чтобы резонансно перевести возбужденные атомы в 2P состояние и уменьшить интенсивность излучения линии Лайман-альфа.
Если в прошлый раз их интересовал диапазон от 800 до 1600 мегагерц, то для стимулирования новых переходов ученые сканировали частоту в диапазоне от 200 до 1000 мегагерц. Помимо искомого 2S F = 0 — 2P F = 1 перехода вклад в контур давала линия 3S − 3P, что, фактически, стало первым в истории измерением переходов в мюонии с участием уровней c n = 3.
Из результатов измерения физики извлекли значение лэмбовского сдвига, которое оказалось равным 1047,498 (1) мегагерца. Как и прошлое значение, оно находится в согласии с расчетами. Кроме того, комбинация обоих измерений позволила впервые экспериментально получить сверхтонкое расщепление 2S состояния — 559,6(7,2) мегагерца.
Ранее мы рассказывали про спектроскопические измерения другого атома с участием мюонов — мюонного гелия. В этом экзотическом атоме мюон заменяет один из электронов. Это позволило точно измерить размер альфа-частицы.
Еще кое-что
Слово «мезон» происходит от греческого μέσος, что значит «средний». Физик Хидэки Юкава, который предсказал такие частицы, ожидал, что их масса по порядку величины должна быть примерно по середине между массами протона и электрона. Именно поэтому мюон по ошибке приняли за мезон. А вот франкоговорящим ученым не нравилось слово «мезон», поскольку во французском языке похожим словом называют бордели.
Закон силы трения: объясняем сложную тему простыми словами
Почему звучит скрипка, когда по струнам проводят смычком? Почему на мокрой дороге автомобилю сложнее затормозить? Вы стоите на абсолютно гладкой поверхности ледяного озера. Как сдвинуться с места? Как снять тесное кольцо с пальца? Ответы на все эти вопросы можно получить, подробно изучив такую важную тему, как закон силы трения.
Время чтения:
Определение силы трения
Когда мы говорим «абсолютно гладкая поверхность» — это значит, что между ней и телом нет трения. Такая ситуация в реальной жизни практически невозможна. Избавиться от трения полностью невероятно трудно.
Чаще при слове «трение» нам приходит в голову его «тёмная» сторона — из-за трения скрипят и прекращают качаться качели, изнашиваются детали машин. Но представьте, что вы стоите на идеально гладкой поверхности, и вам надо идти или бежать. Вот тут трение бы, несомненно, пригодилось. Без него вы не сможете сделать ни шагу, ведь между ботинком и поверхностью нет сцепления, и вам не от чего оттолкнуться, чтобы двигаться вперёд.
Трение — это взаимодействие, которое возникает в плоскости контакта поверхностей соприкасающихся тел.
Сила трения — это величина, которая характеризует это взаимодействие по величине и направлению.
Основная особенность: сила трения приложена к обоим телам, поверхности которых соприкасаются, и направлена в сторону, противоположную мгновенной скорости движения тел друг относительно друга. Поэтому тела, свободно скользящие по какой-либо горизонтальной поверхности, в конце концов остановятся. Чтобы тело двигалось по горизонтальной поверхности без торможения, к нему надо прикладывать усилие, противоположное и хотя бы равное силе трения. В этом заключается суть силы трения.
Откуда берётся трение
Трение возникает по двум причинам:
- Все тела имеют шероховатости. Даже у очень хорошо отшлифованных металлов в электронный микроскоп видны неровности. Абсолютно гладкие поверхности бывают только в идеальном мире задач, в которых трением можно пренебречь. Именно упругие и неупругие деформации неровностей при контакте трущихся поверхностей формируют силу трения.
- Между атомами и молекулами поверхностей тел действуют электромагнитные силы притяжения и отталкивания. Таким образом, сила трения имеет электромагнитную природу.
Виды силы трения
В зависимости от вида трущихся поверхностей, различают сухое и вязкое трение. В свою очередь, оба подразделяются на другие виды силы трения.
- Сухое трение возникает в области контакта поверхностей твёрдых тел в отсутствие жидкой или газообразной прослойки. Этот вид трения может возникать даже в состоянии покоя или в результате перекатывания одного тела по другому, поэтому здесь выделяют три вида силы трения:
- трение скольжения,
- трение покоя,
- трение качения.
- Вязкое трение возникает при движении твёрдого тела в жидкости или газе. Оно препятствует движению лодки, которая скользит по реке, или воздействует на летящий самолёт со стороны воздуха. Интересная особенность вязкого трения в том, что отсутствует трение покоя. Попробуйте сдвинуть пальцем лежащий на земле деревянный брус и проделайте тот же эксперимент, опустив брус на воду. Чтобы сдвинуть брус с места в воде, будет достаточно сколь угодно малой силы. Однако по мере роста скорости силы вязкого трения сильно увеличиваются.
Обычная ситуация: на кухне имеется холодильник, его нужно переставить на другое место.
Когда никто не пытается двигать холодильник, стоящий на горизонтальном полу, трения между ним и полом нет. Но как только его начинают толкать, коварная сила трения покоя тут же возникает и полностью компенсирует усилие. Причина её возникновения — те самые неровности соприкасающихся поверхностей, которые деформируясь, препятствуют движению холодильника. Поднатужились, увеличили силу, приложенную к холодильнику, но он не поддался и остался на месте. Это означает, что сила трения покоя возрастает вместе с увеличением внешнего воздействия, оставаясь равной по модулю приложенной силе, ведь увеличиваются деформации неровностей.
Пока силы равны, холодильник остаётся на месте:
Сила трения, которая действует между поверхностями покоящихся тел и препятствует возникновению движения, называется силой трения покоя
Сила трения скольжения
Что же делать с холодильником и можно ли победить силу трения покоя? Не будет же она расти до бесконечности?
Зовём на помощь друга, и вдвоём уже удаётся передвинуть холодильник. Получается, чтобы тело двигалось, нужно приложить силу, большую, чем самая большая сила трения покоя:
Теперь на движущийся холодильник действует сила трения скольжения. Она возникает при относительном движении контактирующих твёрдых тел.
Итак, сила трения покоя может меняться от нуля до некоторого максимального значения — Fтр. пок. макс И если приложенная сила больше, чем Fтр. пок. макс, то у холодильника появляется шанс сдвинуться с места.
Теперь, после начала движения, можно прекратить наращивать усилие и ещё одного друга можно не звать. Чтобы холодильник продолжал двигаться равномерно, достаточно прикладывать силу, равную силе трения скольжения:
Как рассчитать и измерить силу трения
Чтобы понять, как измеряется сила трения, нужно понять, какие факторы влияют на величину силы трения. Почему так трудно двигать холодильник?
Самое очевидное — его масса играет первостепенную роль. Можно вытащить из него все продукты и тем самым уменьшить его массу, и, следовательно, силу давления холодильника на опору (пол). Пустой холодильник сдвинуть с места гораздо легче!
Следовательно, чем меньше сила нормального давления тела на поверхность опоры, тем меньше и сила трения. Опора действует на тело с точно такой же силой, что и тело на опору, только направленной в противоположную сторону.
Сила реакции опоры обозначается N. Можно сделать вывод
Второй фактор, влияющий на величину силы трения, — материал и степень обработки соприкасающихся поверхностей. Так, двигать холодильник по бетонному полу гораздо тяжелее, чем по ламинату. Зависимость силы трения от рода и качества обработки материала обеих соприкасающихся поверхностей выражают через коэффициент трения.
Коэффициент трения обозначается буквой μ (греческая буква «мю»). Коэффициент определяется отношением силы трения к силе нормального давления.
Он чаще всего попадает в интервал от нуля до единицы, не имеет размерности и определяется экспериментально.
Можно предположить, что сила трения зависит также от площади соприкасающихся поверхностей. Однако, положив холодильник набок, мы не облегчим себе задачу.
Ещё Леонардо да Винчи экспериментально доказал, что сила трения не зависит от площади соприкасающихся поверхностей при прочих равных условиях.
Сила трения скольжения, возникающая при контакте твёрдого тела с поверхностью другого твёрдого тела прямо пропорциональна силе нормального давления и не зависит от площади контакта.
Этот факт отражён в законе Амонтона-Кулона, который можно записать формулой:
где μ — коэффициент трения, N — сила нормальной реакции опоры.
Для тела, движущегося по горизонтальной поверхности, сила реакции опоры по модулю равна весу тела:
Сила трения качения
Ещё древние строители заметили, что если тяжёлый предмет водрузить на колёсики, то сдвинуть с места и затем катить его будет гораздо легче, чем тянуть волоком. Вот бы пригодилась эта древняя мудрость, когда мы тянули холодильник! Однако всё равно нужно толкать или тянуть тело, чтобы оно не остановилось. Значит, на него действует сила трения качения. Это сила сопротивления движению при перекатывании одного тела по поверхности другого.
Причина трения качения — деформация катка и опорной поверхности. Сила трения качения может быть в сотни раз меньше силы трения скольжения при той же силе давления на поверхность. Примерами уменьшения силы трения за счёт подмены трения скольжения на трение качения служат такие приспособления, как подшипники, колёсики у чемоданов и сумок, ролики на прокатных станах.
Направление силы трения
Сила трения скольжения всегда направлена противоположно скорости относительного движения соприкасающихся тел. Важно помнить, что на каждое из соприкасающихся тел действует своя сила трения.
Бывают ситуации, когда сила трения не препятствует движению, а совсем наоборот.
Представьте, что на ленте транспортёра лежит чемодан. Лента трогается с места, и чемодан движется вместе с ней. Сила трения между лентой и чемоданом оказалась достаточной, чтобы преодолеть инерцию чемодана, и эти тела движутся как одно целое. На чемодан действует сила трения покоя, возникающая при взаимодействии соприкасающихся поверхностей, которая направлена по ходу движения ленты транспортёра.
Если бы лента была абсолютно гладкой, то чемодан начал бы скользить по ней, стремясь сохранить своё состояние покоя. Напомним, что это явление называется инерцией.
Сила трения покоя, помогающая нам ходить и бегать, также направлена не против движения, а вперёд по ходу перемещения. При повороте же автомобиля сила трения покоя и вовсе направлена к центру окружности.
Для того чтобы понять, как направлена сила трения покоя, нужно предположить, в каком направлении стало бы двигаться тело, будь поверхность идеально гладкой. Сила трения покоя в этом случае будет направлена как раз в противоположную сторону. Пример, лестница у стены.
Подведём итоги
- Сила трения покоя меняется от нуля до максимального значения 0 < Fтр.покоя < Fтр.пок.макс в зависимости от внешнего воздействия.
- Максимальная сила трения покоя почти равна силе трения скольжения, лишь немного её превышая. Можно приближенно считать, что Fтр. = Fтр.пок.макс
- Силу трения скольжения можно рассчитать по формуле Fтр. = μ ⋅ N, где μ — коэффициент трения, N — сила нормальной реакции опоры.
- При равномерном прямолинейном скольжении по горизонтальной поверхности сила тяги равна силе трения скольжения Fтр. = Fтяги.
- Коэффициент трения μ зависит от рода и степени обработки поверхностей 0 < μ< 1 .
- При одинаковых силе нормального давления и коэффициенте трения сила трения качения всегда меньше силы трения скольжения.
Учите физику вместе с домашней онлайн-школой «Фоксфорда»! По промокоду PHYSICS72021 вы получите бесплатный доступ к курсу физики 7 класса, в котором изучается закон силы трения.
Задачи на силу трения
Проверьте, насколько хорошо вы разобрались в теме «Сила трения», — решите несколько задач. Решение — приведено ниже. Но чур не смотреть, пока не попробуете разобраться сами.
- Однажды в день открытия железной дороги произошёл конфуз: угодливый чиновник, желая выслужиться перед Николаем I, приказал выкрасить рельсы белой масляной краской. Какая возникла проблема и как её удалось решить с помощью сажи?
- В один зимний день бабушка Нюра катала внука Алексея по заснеженной горизонтальной дороге. Чему равен коэффициент трения полозьев о снег, если сила трения, действующая на санки, равна 250 Н, а их масса вместе с Алексеем составляет 50 кг?
- На брусок массой m = 5 кг, находящийся на горизонтальной шероховатой поверхности μ = 0,7, начинает действовать сила F = 25 Н, направленная вдоль плоскости. Чему при этом равна сила трения, действующая на брусок?
Решения
- Масляная краска снизила коэффициент трения между колёсами и рельсами, что привело к пробуксовке, поезд не смог двигаться вперёд. Посыпав рельсы сажей, удалось решить проблему, так как коэффициент трения увеличился, и колёса перестали буксовать.
- Санки находятся в движении, следовательно, на них будет действовать сила трения скольжения, численно равная Fтр. = μ ⋅ N, где N — сила реакции опоры, которая, при условии горизонтальной поверхности, равняется весу санок с мальчиком: N = m ⋅ g. Получаем формулу Fтр. = μ ⋅ m ⋅ g , откуда выразим искомую величину
Ответ задачи зависит от того, сдвинется ли брусок под действием внешнего воздействия. Поэтому вначале узнаем значение силы, которую нужно приложить к бруску для скольжения. Это будет максимально возможная сила трения покоя, определяющаяся по формуле Fтр. = μ ⋅ N , где N = m ⋅ g (при условии горизонтальной поверхности). Подставляя значения, получаем, что Fтр. = 35 Н. Данное значение больше прикладываемой силы, следовательно брусок не сдвинется с места. Тогда сила трения покоя будет равна внешней силе: Fтр. = F = 25 H .
Скоро перезвоним!
Или напишем на почту, если не получится дозвониться