Расчет крутящего момента электродвигателя
Крутящий момент электродвигателя – это сила вращения его вала. Именно момент вращения определяет мощность Вашего двигателя. Измеряется в ньютонах на метр Н*м или в килограмм-силах на метр кгс*м.
Виды крутящих моментов:
- Номинальный – значение момента при стандартном режиме работы и стандартной номинальной нагрузке на двигатель.
- Пусковой – это табличное значение. Сила вращения, которую в состоянии развивать электродвигатель при пуске. При подборе электродвигателя убедитесь, что данный параметр выше, чем статический момент Вашего оборудования — насоса, либо вентилятора и т.д. В противном случае электродвигатель не сможет запуститься, что чревато перегревом и перегоранием обмотки.
- Максимальный – предельное значение, по достижении которого нагрузка уравновесит двигатель и остановит его.
Таблица крутящих моментов электродвигателей
В данной таблице собраны крутящие моменты наиболее распространенных в Украине электродвигателей АИР, а также требуемый при пуске – пусковой, максимально допустимый для данного типа электродвигателя – максимальный крутящий момент и момент инерции двигателей АИР (усилие важное при подборе электромагнитного тормоза, например)
Мощности асинхронных электродвигателей:
Двигатель | кВт/об | Мном, Нм | Мпуск, Нм | Ммакс, Нм | Минн, Нм |
АИР56А2 | 0,18/2730 | 0,630 | 1,385 | 1,385 | 1,133 |
АИР56В2 | 0,25/2700 | 0,884 | 1,945 | 1,945 | 1,592 |
АИР56А4 | 0,12/1350 | 0,849 | 1,868 | 1,868 | 1,528 |
АИР56В4 | 0,18/1350 | 1,273 | 2,801 | 2,801 | 2,292 |
АИР63А2 | 0,37/2730 | 1,294 | 2,848 | 2,848 | 2,330 |
АИР63В2 | 0,55/2730 | 1,924 | 4,233 | 4,233 | 3,463 |
АИР63А4 | 0,25/1320 | 1,809 | 3,979 | 3,979 | 3,256 |
АИР63В4 | 0,37/1320 | 2,677 | 5,889 | 5,889 | 4,818 |
АИР63А6 | 0,18/860 | 1,999 | 4,397 | 4,397 | 3,198 |
АИР63В6 | 0,25/860 | 2,776 | 6,108 | 6,108 | 4,442 |
АИР71А2 | 0,75/2820 | 2,540 | 6,604 | 6,858 | 4,064 |
АИР71В2 | 1,1/2800 | 3,752 | 8,254 | 9,004 | 6,003 |
АИР71А4 | 0,55/1360 | 3,862 | 8,883 | 9,269 | 6,952 |
АИР71В4 | 0,75/1350 | 5,306 | 13,264 | 13,794 | 12,733 |
АИР71А6 | 0,37/900 | 3,926 | 8,245 | 8,637 | 6,282 |
АИР71В6 | 0,55/920 | 5,709 | 10,848 | 12,560 | 9,135 |
АИР71В8 | 0,25/680 | 3,511 | 5,618 | 6,671 | 4,915 |
АИР80А2 | 1,5/2880 | 4,974 | 10,943 | 12,932 | 8,953 |
АИР80В2 | 2,2/2860 | 7,346 | 15,427 | 19,100 | 13,223 |
АИР80А4 | 1,1/1420 | 7,398 | 16,275 | 17,755 | 12,576 |
АИР80В4 | 1,5/1410 | 10,160 | 22,351 | 24,383 | 17,271 |
АИР80А6 | 0,75/920 | 7,785 | 16,349 | 17,128 | 12,457 |
АИР80В6 | 1,1/920 | 11,418 | 25,121 | 26,263 | 20,553 |
АИР80А8 | 0,37/680 | 5,196 | 10,393 | 11,952 | 7,275 |
АИР80В8 | 0,55/680 | 7,724 | 15,449 | 16,221 | 10,814 |
АИР90L2 | 3/2860 | 10,017 | 23,040 | 26,045 | 17,030 |
АИР90L4 | 2,2/1430 | 14,692 | 29,385 | 35,262 | 29,385 |
АИР90L6 | 1,5/940 | 15,239 | 30,479 | 35,051 | 28,955 |
АИР90LА8 | 0,75/700 | 10,232 | 15,348 | 20,464 | 15,348 |
АИР90LВ8 | 1,1/710 | 14,796 | 22,194 | 32,551 | 22,194 |
АИР100S2 | 4/2850 | 13,404 | 26,807 | 32,168 | 21,446 |
АИР100L2 | 5,5/2850 | 18,430 | 38,703 | 44,232 | 29,488 |
АИР100S4 | 3/1410 | 20,319 | 40,638 | 44,702 | 32,511 |
АИР100L4 | 4/1410 | 27,092 | 56,894 | 65,021 | 43,348 |
АИР100L6 | 2,2/940 | 22,351 | 42,467 | 49,172 | 35,762 |
АИР100L8 | 1,5/710 | 20,176 | 32,282 | 40,352 | 30,264 |
АИР112М2 | 7,5/2900 | 24,698 | 49,397 | 54,336 | 39,517 |
АИР112М4 | 5,5/1430 | 36,731 | 73,462 | 91,827 | 58,769 |
АИР112МА6 | 3/950 | 30,158 | 60,316 | 66,347 | 48,253 |
АИР112МВ6 | 4/950 | 40,211 | 80,421 | 88,463 | 64,337 |
АИР112МА8 | 2,2/700 | 30,014 | 54,026 | 66,031 | 42,020 |
АИР112МВ8 | 3/700 | 40,929 | 73,671 | 90,043 | 57,300 |
АИР132М2 | 11/2910 | 36,100 | 57,759 | 79,419 | 43,320 |
АИР132S4 | 7,5/1440 | 49,740 | 99,479 | 124,349 | 79,583 |
АИР132М4 | 11/1450 | 72,448 | 173,876 | 210,100 | 159,386 |
АИР132S6 | 5,5/960 | 54,714 | 109,427 | 120,370 | 87,542 |
АИР132М6 | 7,5/950 | 75,395 | 150,789 | 165,868 | 120,632 |
АИР132S8 | 4/700 | 54,571 | 98,229 | 120,057 | 76,400 |
АИР132М8 | 5,5/700 | 75,036 | 135,064 | 165,079 | 105,050 |
АИР160S2 | 15/2940 | 48,724 | 97,449 | 155,918 | 2,046 |
АИР160М2 | 18,5/2940 | 60,094 | 120,187 | 192,299 | 2,884 |
АИР180S2 | 22/2940 | 71,463 | 150,071 | 250,119 | 4,288 |
АИР180М2 | 30/2940 | 97,449 | 214,388 | 341,071 | 6,821 |
АИР200М2 | 37/2950 | 119,780 | 275,493 | 383,295 | 16,769 |
АИР200L2 | 45/2940 | 146,173 | 380,051 | 584,694 | 19,003 |
АИР225М2 | 55/2955 | 177,750 | 408,824 | 710,998 | 35,550 |
АИР250S2 | 75/2965 | 241,568 | 628,078 | 966,273 | 84,549 |
АИР250М2 | 90/2960 | 290,372 | 784,003 | 1161,486 | 116,149 |
АИР280S2 | 110/2960 | 354,899 | 887,247 | 1171,166 | 212,939 |
АИР280М2 | 132/2964 | 425,304 | 1233,381 | 1488,563 | 297,713 |
АИР315S2 | 160/2977 | 513,268 | 1231,844 | 1693,786 | 590,259 |
АИР315М2 | 200/2978 | 641,370 | 1603,425 | 2116,521 | 962,055 |
АИР355SMA2 | 250/2980 | 801,174 | 1281,879 | 2403,523 | 2163,171 |
АИР160S4 | 15/1460 | 98,116 | 186,421 | 284,538 | 7,457 |
АИР160М4 | 18,5/1460 | 121,010 | 229,920 | 350,930 | 11,375 |
АИР180S4 | 22/1460 | 143,904 | 302,199 | 402,932 | 15,110 |
АИР180М2 | 30/1460 | 196,233 | 470,959 | 588,699 | 27,276 |
АИР200М4 | 37/1460 | 242,021 | 532,445 | 847,072 | 46,952 |
АИР200L4 | 45/1460 | 294,349 | 647,568 | 941,918 | 66,229 |
АИР225М4 | 55/1475 | 356,102 | 997,085 | 1317,576 | 145,289 |
АИР250S4 | 75/1470 | 487,245 | 1218,112 | 1559,184 | 301,605 |
АИР250М4 | 90/1470 | 584,694 | 1461,735 | 1871,020 | 467,755 |
АИР280S4 | 110/1470 | 714,626 | 2072,415 | 2429,728 | 578,847 |
АИР280М4 | 132/1485 | 848,889 | 1697,778 | 2886,222 | 1612,889 |
АИР315S4 | 160/1487 | 1027,572 | 2568,931 | 3802,017 | 2363,416 |
АИР315М4 | 200/1484 | 1287,062 | 3217,655 | 4247,305 | 3603,774 |
АИР355SMA4 | 250/1488 | 1604,503 | 3690,356 | 4492,608 | 8985,215 |
АИР355SMВ4 | 315/1488 | 2021,673 | 5054,183 | 5862,853 | 12534,375 |
АИР355SMС4 | 355/1488 | 2278,394 | 5012,466 | 6151,663 | 15493,078 |
АИР160S6 | 11/970 | 108,299 | 205,768 | 314,067 | 12,021 |
АИР160М6 | 15/970 | 147,680 | 339,665 | 443,041 | 20,675 |
АИР180М6 | 18,5/970 | 182,139 | 400,706 | 546,418 | 29,324 |
АИР200М6 | 22/975 | 215,487 | 517,169 | 711,108 | 50,209 |
АИР200L6 | 30/975 | 293,846 | 617,077 | 881,538 | 102,846 |
АИР225М6 | 37/980 | 360,561 | 721,122 | 1081,684 | 186,050 |
АИР250S6 | 45/986 | 435,852 | 784,533 | 1307,556 | 440,210 |
АИР250М6 | 55/986 | 532,708 | 1012,145 | 1811,207 | 633,922 |
АИР280S6 | 75/985 | 727,157 | 1454,315 | 2326,904 | 1090,736 |
АИР280М6 | 90/985 | 872,589 | 1745,178 | 2792,284 | 1657,919 |
АИР315S6 | 110/987 | 1064,336 | 1809,372 | 2873,708 | 4044,478 |
АИР315М6 | 132/989 | 1274,621 | 2166,855 | 3696,400 | 5735,794 |
АИР355МА6 | 160/993 | 1538,771 | 2923,666 | 3539,174 | 11848,540 |
АИР355МВ6 | 200/993 | 1923,464 | 3654,582 | 4423,968 | 17118,832 |
АИР355MLA6 | 250/993 | 2404,330 | 4568,228 | 5529,960 | 25485,901 |
AИР355MLB6 | 315/992 | 3032,510 | 6065,020 | 7278,024 | 40029,133 |
АИР160S8 | 7,5/730 | 98,116 | 156,986 | 235,479 | 13,246 |
АИР160М8 | 11/730 | 1007,329 | 1712,459 | 2417,589 | 181,319 |
АИР180М8 | 15/730 | 196,233 | 333,596 | 529,829 | 41,994 |
АИР200М8 | 18,5/728 | 242,685 | 509,639 | 606,714 | 67,952 |
АИР200L8 | 22/725 | 289,793 | 579,586 | 724,483 | 88,966 |
АИР225М8 | 30/735 | 389,796 | 701,633 | 1052,449 | 214,388 |
АИР250S8 | 37/738 | 478,794 | 861,829 | 1196,985 | 481,188 |
АИР250М8 | 45/735 | 584,694 | 1052,449 | 1520,204 | 695,786 |
АИР280S8 | 55/735 | 714,626 | 1357,789 | 2143,878 | 1071,939 |
АИР280М8 | 75/735 | 974,490 | 1754,082 | 2728,571 | 1851,531 |
АИР315S8 | 90/740 | 1161,486 | 1509,932 | 2671,419 | 4413,649 |
АИР315М8 | 110/742 | 1415,768 | 2265,229 | 3964,151 | 6370,957 |
АИР355SMA8 | 132/743 | 1696,635 | 2714,616 | 3902,261 | 12215,774 |
AИР355SMB8 | 160/743 | 2056,528 | 3496,097 | 4935,666 | 18097,443 |
AИР355MLA8 | 200/743 | 2570,659 | 4627,187 | 6940,781 | 26991,925 |
AИР355MLB8 | 250/743 | 4498,654 | 7647,712 | 10796,770 | 58032,638 |
Расчет крутящего момента – формула
Примечание: при расчете стоит учесть коэффициент проскальзывания асинхронного двигателя. Номинальное количество оборотов двигателя не совпадает с реальным. Точное количество оборотов вы сможете найти, зная маркировку, в таблице выше.
Где, Р — мощность электродвигателя в киловаттах (кВт). N — количество оборотов вала в минуту.
График мощности и крутящего момента
График мощности и крутящего момента — о чем он говорит?
Пример графика мощности и крутящего момента, полученный со стенда для испытания двигателей PowerTest.
Начнем с определений:
МОЩНОСТЬ (POWER, HORSEPOWER) — это работа, проделанная за единицу времени. Речь идет в данном случае о механической мощности, которая при вращении вала вокруг своей оси описывается выражением:
- ω — угловая скорость вращения вала
- M — крутящий момент
- π — число ~ 3.1416
- n — частота вращения, измеряемая в оборотах в единицу времени (в данном случае одна минута).
Важно отметить что мощность в этой формуле получается в ваттах, для получения результата в лошадиных силах мощность в кВт необходимо умножить на коэффициент 0,735499.
КРУТЯЩИЙ МОМЕНТ (TORQUE) — это произведение силы в Н, которая приложена к валу не напрямую, а через рычаг (плечо) длиной 1 м, прикрепленный к валу (точка измерения крутящего момента), отсюда и единица измерения Н*м. При такой нагрузке происходит деформация вала ,только не изгиб, который был бы при нулевой длине плеча, а скручивание, при котором отдельные сечения вала не повторяют друг друга, а оказываются повернутыми друг относительно друга на определённые углы, тем большие, чем больше приложенная сила, или чем больше рычаг при одной и той же силе. По этой причине момент называют крутящим. Не следует ожидать, что вы увидите эту закрутку стального вала диаметром, например, 20 мм, нанеся перед нагрузкой на поверхность вала линии, параллельные его оси. Величина закрутки будет в реальности настолько мала, что её непросто измерить даже с помощью специальных приборов, измерителей крутящего момента.
ОБОРОТЫ (RPM — Revolutions Per Minute) — здесь все еще проще, это число оборотов, которое совершает ВАЛ за одну минуту. Измеряется в об/мин.
Часто кажется, что люди не вполне понимают разницу между МОЩНОСТЬЮ и МОМЕНТОМ, тем более, последние связаны друг с другом через еще один ключевой параметр, как на стенде испытаний двигателя, так и в условиях реальной эксплуатации. Это угловая скорость вращения вала.
Например к нам часто приходят запросы «Нам нужно измерить параметры двигателя мощностью 200л.с.» или «какой гидротормоз вы посоветуете на 140 кВт?»
Ответить на этот вопрос можно, но это не гарантирует что заказчик получит желаемый результат. Потому что в вопросе отсутствует информация о скоростных режимах испытываемого на стенде двигателя.
И вопрос обычно задается так, как будто мощность и крутящий момент понятия если не взаимоисключающие, то по меньшей мере не связанные друг с другом.
- МОЩНОСТЬ (скорость выполнения РАБОТЫ) зависит от МОМЕНТА и СКОРОСТИ ВАЛА(ОБОРОТОВ В МИНУТУ).
- МОМЕНТ и ОБОРОТЫ В МИНУТУ — ИЗМЕРЕННЫЕ параметры, однозначно определяющие мощность двигателя.
- Мощность рассчитывается из крутящего момента и оборотов, по следующей формуле:
- МОЩНОСТЬ в Л.с. = КРУТЯЩИЙ МОМЕНТ х ОБОРОТЫ ÷ 5252
Почему это важно?
При выборе нагружающего устройства это критически важно, так как одну и ту же мощность двигатель может выдавать на стенде как при 1500 об/мин (дизельный двигатель), так и на 20 000 об/мин (двигатель гоночного мотоцикла). Для каждого типа двигателя необходимо подбирать соответствующее нагружающее устройство. А иногда даже не одно, а тандем из двух, первое из которых работает при низких оборотах, а второе при высоких. Если речь идет об испытаниях вновь создаваемых двигателей с широким скоростным диапазоном вращения вала.
Дизельный двигатель и двигатель гоночного мотоцикла.
Двигатель внутреннего сгорания (ДВС) превращает энергию, выделившуюся при сгорании топлива в работу движения поршня, тот в свою очередь передает ее на коленчатый вал, который может создавать определенный КРУТЯЩИЙ МОМЕНТ при заданных оборотах. Величина крутящего момента, который может создать двигатель, обычно существенно зависит от оборотов.
Для разных двигателей эти параметры будут разными в зависимости от геометрических параметров КШМ (кривошипно-шатунного механизма), типа топлива, массы деталей, формы распределительных валов, системы впрыска топлива и управления зажиганием и т.д.
Для маленьких и мощных двигателей необходимо использовать высокооборотистые гидротормоза и индуктивные тормоза
Ниже представлены графики различных гидротормозов для испытания двигателей.
Кривая нагружения для высокооборотистого гидротормоза.
А для больших дизельных двигателей используются гидротормоза, выдающие максимальное тормозное усилие и мощность на низких оборотах
Кривая нагружения гидротормоза для испытания мощных дизельных двигателей.
Что это означает на практике?
Если отойти от теории, то график мощности и крутящего момента — это основные характеристики двигателя. Когда вы въезжаете на своем автомобиле в горку и пытаетесь поддерживать одну и ту же скорость, вам приходится сильнее нажимать на педаль газа. Многим при этом кажется, что мощность останется та же, т.к. скорость не меняется. Но это не так!
При движении в горку двигатель выдает большую мощность при тех же оборотах.
(при неизменной передаче). Это легко проверить, взглянув на текущий расход топлива.
Также это объясняет, зачем двигателю нужна коробка передач, ведь для эффективного разгона и преодоления подъёмов нам необходимо поддерживать обороты в диапазоне максимальной мощности двигателя.
А вот электромобили обходятся без нее. Кривая крутящего момента и мощности у электродвигателя намного более линейна, и к тому же электродвигатель выдает куда большую мощность на низких оборотах.
Зачем измерять мощность и крутящий момент?
Во-первых это необходимая процедура при разработке и сертификации любого нового двигателя.
Во-вторых эти данные помогут при дальнейшей настройке и доработке двигателя, чтобы добиться наилучших эксплуатационных характеристик.
В третьих кривая мощности и крутящего момента, если её сравнить с паспортной — это прямой показатель технического состояния любого двигателя.
Графики мощности дизельного двигателя до ремонта и после ремонта, полученные с испытательного стенда на базе гидротормоза, который можно приобрести в нашей компании.
Крутящий момент и мощность
Моторкоппель:
Крутящий момент двигателя – это сила, с которой вращается коленчатый вал двигателя. Крутящий момент создается за счет комбинации силы сгорания на поршне и расстояния радиуса кривошипа. Усилие, действующее на поршень, зависит, среди прочего, от степени наполнения (количества воздуха) и количества топлива и варьируется, поскольку угол передачи мощности на шатунный палец постоянно меняется. По нему мы можем рассчитать среднее давление поршня. индикаторная диаграмма или получить фотодиаграмму.
На следующем рисунке мы видим, как поршень толкается вниз под действием силы сгорания (p). Это давление сгорания создает силу F, силу поршня. Усилие поршня передается на шейку коленчатого вала (r) через шатун (S). При этом создается так называемая тангенциальная сила (Ft).
Крутящий момент рассчитывается по формуле Ft xr (тангенциальная сила, умноженная на радиус кривошипа) и выражается в Нм (Ньютон-метрах).
Легенда:
p = давление на поршень.
F = сила, действующая на поршень
N = направляющая сила
S = усилие на шатуне
r = радиус кривошипа
Ft = Тангенциальная сила
Из-за изменяющегося давления сгорания и закручивания кривошипно-шатунного механизма тангенциальная сила также не является постоянной величиной. Поэтому мы работаем со средней касательной силой.
Мы можем определить касательную силу, разложив силу поршня (см. изображение ниже и страницу «растворить поршневую силу»).
Крутящий момент двигателя зависит исключительно от силы, действующей на поршень, поскольку все остальные переменные, такие как диаметр поршня и радиус кривошипа, являются фиксированными данными двигателя. Усилие на поршень (Fz) компенсируется давлением сгорания (p) и зависит от степени наполнения двигателя (при стехиометрическом соотношении смеси). В основном именно дросселирование во впускном коллекторе определяет уровень наполнения двигателя.
Наибольшее дросселирование обусловлено положением дроссельной заслонки. Положение дроссельной заслонки оказывает наибольшее влияние на крутящий момент двигателя: ведь мы влияем на работу двигателя, изменяя положение дроссельной заслонки. В ходе испытательной установки мы измеряем максимальный крутящий момент, развиваемый при полностью открытой дроссельной заслонке.
Крутящий момент не везде одинаков при разных скоростях и полностью открытом дросселе. Из-за изменяющихся скоростей газа и фиксированных углов открытия клапанов крутящий момент будет оптимальным только на определенной скорости.
На изображениях ниже мы видим диаграммы мощности и крутящего момента двух типов дизельных двигателей, используемых в BMW 3-й серии (E9x). У обоих двигателей крутящий момент достигается примерно при 1800 об/мин, но у 320d он явно выше, чем у 316d. Оба двигателя имеют объем цилиндров 2.0 литра. Более высокий крутящий момент становится возможным, в том числе, благодаря наддуву, клапанам во впускном коллекторе и настройке системы управления двигателем, которая помимо крутящего момента определяет расход и выбросы выхлопных газов.
Основные параметры электродвигателя
Мощность электродвигателя — это полезная механическая мощность на валу электродвигателя.
Механическая мощность
Мощность — физическая величина, показывающая какую работу механизм совершает в единицу времени.
Работа — скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы.
Для вращательного движения
- где θ – угол, рад
- где ω – углавая частота, рад/с,
Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя
Справка: Номинальное значение — значение параметра электротехнического изделия (устройства), указанное изготовителем, при котором оно должно работать, являющееся исходным для отсчета отклонений.
Частота вращения
- где n — частота вращения электродвигателя, об/мин
Момент инерции ротора
Момент инерции — скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси
- где J – момент инерции, кг∙м 2 ,
- m — масса, кг
Справка: В английской системе мер момент инерции измеряется в унция-сила-дюйм (oz∙in∙s 2 )
1 oz∙in∙s 2 = 0,007062 kg∙m 2 (кг∙м 2 )
Момент инерции связан с моментом силы следующим соотношением
- где ε – угловое ускорение, с -2
Справка: Определение момента инерции вращающейся части электродвигателя описано в ГОСТ 11828-86
Коэффициент полезного действия электродвигателя
Коэффициент полезного действия (КПД) электродвигателя — характеристика эффективности машины в отношении преобразования электрической энергии в механическую.
- где η – коэффициент полезного действия электродвигателя,
- P1 — подведенная мощность (электрическая), Вт,
- P2 — полезная мощность (механическая), Вт
- электрическими потерями — в виде тепла в результате нагрева проводников с током;
- магнитными потерями — потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
- механическими потерями — потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
- дополнительными потерями — потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.
- где – постоянная времени, с
- где M – вращающий момент, Нм;
- F – сила, Н;
- r – радиус-вектор, м
- где Pном – номинальная мощность двигателя, Вт,
- nном — номинальная частота вращения, мин -1
- промышленность: насосы, вентиляторы, компрессоры, конвейеры, движущая сила для других машин и др.
- строительство: насосы, вентиляторы, конвейеры, лифты, системы отопления, вентиляции и кондиционирование воздуха и др.
- потребительские устройства: холодильники, кондиционеры, персональные компьютеры и ноутбуки (жесткие диски, вентиляторы), пылесосы, стиральные машинки, миксеры и др.
- ЭД — электродвигатель
- ОВК — системы отопления, вентиляции и кондиционирование воздуха
-
При этом
потери в электродвигатели
-
обусловлены:
КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.
Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.
Номинальное напряжение
Номинальное напряжение (англ. rated voltage) — напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики.
Электрическая постоянная времени
Электрическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.
Момент электродвигателя
Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) — векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.
Справка: Номинальный вращающий момент Мном, Нм, определяют по формуле
Начальный пусковой момент — момент электродвигателя при пуске.
Справка: В английской системе мер сила измеряется в унция-сила (oz, ozf, ounce-force) или фунт-сила (lb, lbf, pound-force)
1 oz = 1/16 lb = 0,2780139 N (Н)
1 lb = 4,448222 N (Н)
момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)
1 oz∙in = 0,007062 Nm (Нм)
1 lb∙in = 0,112985 Nm (Нм)
Механическая характеристика
Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.
Области применения электродвигателей
Электродвигатели являются крупнейшими потребителями электроэнергии в мире, на них приходится около 45% от всей потребляемой электроэнергии.
-
Электродвигатели используются повсеместно, основные области применения:
ЭД 1 | Функции | Области применения |
---|---|---|
Вращающиеся электродвигатели | Насосы | Системы водоснабжения и водоотведения |
Системы перекачки охлажденной или нагретой воды, системы отопления, ОВК 2 , системы полива | ||
Системы канализации | ||
Перекачка нефтепродуктов | ||
Вентиляторы | Приточно-вытяжная вентиляция, ОВК 2 , вентиляторы | |
Компрессоры | Системы вентиляции, холодильные и морозильные установки, ОВК 2 | |
Накопление и распределение сжатого воздуха, пневматические системы | ||
Системы сжижения газа, системы перекачки природного газа | ||
Вращение, смешивание, движение | Прокатный стан, станки: обработка металла, камня, пластика | |
Прессовое оборудование: обработка алюминия, пластиков | ||
Обработка текстиля: ткачество, стирка, сушка | ||
Смешивание, взбалтывание: еда, краски, пластики | ||
Транспорт | Пассажирские лифты, эскалаторы, конвейеры | |
Грузовые лифты, подъемные краны, подъемники, конвейеры, лебедки | ||
Транспортные средства: поезда, трамваи, троллейбусы, автомобили, электромобили, автобусы, мотоциклы, велосипеды, зубчатая железная дорога, канатная дорога | ||
Угловые перемещения (шаговые двигатели, серводвигатели) |
Вентили (открыть/закрыть) | |
Серво (установка положения) | ||
Линейные электродвигатели | Открыть/закрыть | Вентили |
Сортировка | Производство | |
Хватать и перемещать | Роботы |
Примечание: