На чем основан принцип действия амперметра?
Амперметром называют прибор для измерения силы тока. Происходит он от названия единицы измерения – ампер, которой высчитывается электрический ток. Как правило, они бывают двух видов: механический или как его еще называют стрелочный, а также цифровой. Остановимся подробнее на втором варианте, чему и будет посвящена наша статья.
Общие характеристики и преимущества цифрового амперметра
На сегодняшний день цифровой амперметр все стремительнее вытесняет из употребления своего давнего механического предшественника, благодаря переходу многих изобретений на электронику. В отличие от механики, он работает и заряжается от батареи, но при этом использоваться может даже на открытом воздухе, а не только в закрытых помещениях.
Для его бесперебойной работы, сопротивление у него должно быть также низким, как и у механического, только в таком случае происходит измерение тока. Показатель его составляет обычно менее 0,1 Ом. Измеряет он как постоянный ток, так и переменный. Постоянный ток может иметь две полярности: отрицательную и положительную. На приборе амперметра отображается точка, находящаяся в правом разряде.
Весьма удобен цифровой амперметр тем, что необходимость подключения к нему шунта отпадает. Обычно такой прибор применяют для контроля работы двигателей, инверторов или источников питания. Встроенного литиевого аккумулятора хватает на двадцать дней. Внешняя батарея может служить также в качестве источника питания, постоянный ток которого равен 3В (Вольт).
Преимущества цифрового амперметра:
- Невосприимчивый к вибрациям
- Наличие микропроцессорного устройства, позволяющего с точностью определить показания амперметра
- Им не страшны механические удары, когда например рядом функционирует какое-то другое оборудование или прибор
Область применения цифрового амперметра
Цифровые амперметры используют в разных промышленных отраслях и народном хозяйстве, строительстве или автомобилях. Однако широкое распространение они получили в радиоэлектронике и электротехнике. Прибор амперметра применяется людьми в бытовых целях, особенно в нем нуждается водители, когда требуется выявить какие-то возникшие неполадки электрооборудования, поэтому под рукой он пригодится, как нельзя кстати.
Как выбрать амперметр?
Прибор амперметр следует выбирать с сопротивлением ниже 0,5 Ом. А если зажимы контактов покрыты антикоррозийным слоем, то это вообще замечательно. Выбирать желательно с прочным и герметичным корпусом, чтобы влага никоим образом не проникала внутрь, ведь так он прослужит намного дольше, а точность показаний будет гораздо выше. Будьте всегда внимательны и осторожны при работе с амперметром, чтобы избежать риска удара электрическим током. Для этого старайтесь не дотрагиваться до неизолированных токоведущих элементов.
Принцип действия и устройство электродвигателя постоянного тока
Сейчас невозможно представить нашу жизнь без электродвигателей. Они приводят в действие станки, бытовую технику и инструменты, поезда, трамваи и троллейбусы, компьютеры, игрушки и разные подвижные механизмы, устанавливаются на производственных станках, если частоту вращения рабочего вала требуется регулировать в широком диапазоне. Агрегаты для преобразования электрической энергии в механическую представлены множеством видов и моделей (синхронные, асинхронные, коллекторные и т.д.). Из этой статьи вы узнаете, что такое электродвигатель постоянного тока, его устройство и принцип действия.
Краткая история создания
Разные ученые пытались создать экономичный и мощный двигатель еще с первой половины 19 века. Основой послужило открытие М.Фарадея, сделанное в 1821 г. Он обнаружил, что помещенный в магнитное поле проводник вращается. Отталкиваясь от этого, в 1833 г изобретатель Томас Дэвенпорт смог сконструировать двигатель постоянного тока, а позже, в 1834 г, ученый Б.С.Якоби придумал прообраз современной модели двигателя с вращающимся валом. Устройство, более похожее на современные агрегаты, появилось в 1886 г, и до сегодняшнего дня электродвигатель продолжает совершенствоваться.
Принцип действия электродвигателя постоянного тока
На мысль о создании двигателя ученых натолкнуто следующее открытие. Помещенная в магнитное поле проволочная рамка с пропущенным по ней током начинает вращаться, создавая механическую энергию. Принцип действия электродвигателя постоянного тока основывается на взаимодействии магнитных полей рамки и самого магнита. Но одна рамка после определенного количества вращений замирает в положении, параллельном внешнему магнитному полю. Для продолжения движения необходимо добавить вторую рамку и в определенный момент переключить направление тока.
Вместо рамок в двигателе используется набор проводников, на которые подается ток, и якорь. При запуске вокруг него возбуждается магнитное поле, взаимодействующее с полем обмотки. Это заставляет якорь повернуться на определенный угол. Подача тока на следующие проводники приводит к следующему повороту якоря, и далее процесс продолжается.
Магнитное поле создается либо с помощью постоянного магнита (в маломощных агрегатах), либо с помощью индуктора/обмотки возбуждения (в более мощных устройствах).
Попеременную зарядку проводников якоря обеспечивают щетки, сделанные из графита или сплава графита и меди. Они служат контактами, замыкающими электрическую сеть на выводы пар проводников. Изолированные друг от друга выводы представляют собой кольцо из нескольких ламелей, которое находится на оси вала якоря и называется коллекторным узлом. Благодаря поочередному замыканию ламелей щетками двигатель вращается равномерно. Степень равномерности работы двигателя зависит от количества проводников (чем больше, тем равномернее).
Устройство электродвигателя постоянного тока
Теперь, когда вы знаете, как работает электродвигатель постоянного тока, пора ознакомиться с его конструкцией.
Как и у других моделей, основу двигателя составляют статор (индуктор) – неподвижная часть, и якорь вкупе с щеточноколлекторным узлом – подвижная часть. Обе части разделены воздушным зазором.
В состав статора входят станина, являющаяся элементом магнитной цепи, а также главные и добавочные полюса. Обмотки возбуждения, необходимые для создания магнитного поля, находятся на главных полюсах. Специальная обмотка, улучшающая условия коммутации, расположена на добавочных полюсах.
Якорь представляет собой узел, состоящий из магнитной системы (она собрана из нескольких листов), набора обмоток (проводников), уложенных в пазы, и коллектора, который подводит постоянный ток к рабочей обмотке.
Коллектор имеет вид цилиндра, собранного из изолированных медных пластин. Он насажен на вал двигателя и имеет выступы, к которым подходят концы секций обмотки якоря. Щетки снимают ток с коллектора, входя с ним в скользящий контакт. Удержание щеток в нужном положении и обеспечение их нажатия на коллектор с определенной силой осуществляется щеткодержателями.
Многие модели двигателей оснащены вентилятором, задача которого – охлаждение агрегата и увеличение продолжительности рабочего периода.
Особенности и характеристики электродвигателя постоянного тока
Эксплуатационные характеристики электродвигателя постоянного тока позволяют широко использовать это устройство в самых разных сферах – от бытовых приборов до транспорта. К его преимуществам можно отнести:
- Экологичность. При работе не выделяются вредные вещества и отходы.
- Надежность. Благодаря довольно простой конструкции он редко ломается и служит долго.
- Универсальность. Он может использоваться в качестве как двигателя, так и генератора.
- Простота управления.
- Возможность регулирования частоты и скорости вращения вала – достаточно подключить агрегат в цепь переменного сопротивления.
- Легкость запуска.
- Небольшие размеры.
- Возможность менять направление вращения вала. В двигателе с последовательным возбуждением нужно изменить направление тока в обмотке возбуждения, во всех остальных типах – в якоре.
Как и любое устройство, электродвигатели постоянного тока имеют и «слабые стороны»:
- Их себестоимость, следовательно, и цена достаточно высока.
- Для подключения к сети необходим выпрямитель тока.
- Самая уязвимая и быстроизнашивающаяся деталь – щетки – требует периодической замены.
- При сильной перегрузке может случиться возгорание. Если соблюдать правила эксплуатации, такая возможность исключена.
Но, как видите, достоинства явно перевешивают, поэтому на данный момент электродвигатель является одним из наиболее экономичных и эффективных устройств. Зная устройство и принцип работы электродвигателя постоянного тока, вы сможете самостоятельно собрать и разобрать его для техосмотра, чистки или устранения неисправностей.
Принцип действия устройства защитного отключения
Устройство защитного отключения — это электрический аппарат, предназначенный для защиты человека от поражения электрическим током, а также от возникновения пожара по причине возникновения утечки тока из-за нарушения изоляции элементов электрической цепи, в частности электропроводки и бытовых электроприборов, которые включены в сеть. Следовательно, использование устройства защитного отключения в схеме электропроводки квартиры или дома особенно актуально. Для того чтобы осуществить правильный выбор устройства защитного отключения, необходимо знать его принцип действия. Принцип действия УЗО основан на измерении значения дифференциального тока. Данную функцию в аппарате выполняет дифференциальный трансформатор тока. При включении в сеть бытового электроприбора по цепи идет ток нагрузки. УЗО осуществляет замер токов, которые идут по нулевому и фазному (фазных) проводниках. В нормальном режиме данные токи равны по значению, но противоположны по направлению. Простыми словами — соблюдается баланс, так как сумма токов равна нулю. При повреждении изоляции и возникновении тока утечки, баланс токов нарушается – исходящий и входящий ток не равны. В дифференциальном трансформаторе тока устройства защитного отключения возникает ток небаланса – дифференциальный ток. При достижении установленного значения дифференциального тока УЗО размыкает электрическую цепь.
Принцип действия УЗО (Устройства Защитного Отключения)
Принцип действия УЗО Значение дифференциального тока устройства защитного отключения выбирается в соответствии с назначением данного аппарата. Для защиты человека от поражения электрическим током выбирается, как правило, УЗО с дифференциальным током срабатывания не более 10 мА. Это обусловлено тем, что ток большего значения оказывает негативное воздействие на организм человека. К примеру, ток величиной 15 мА вызывает у человека ярко выраженные судороги мышц, сопровождающие сильной болью, а ток в 25 мА приводит к тому, что человек начинает задыхаться. Дальнейшее увеличение тока приводит к необратимым изменениям в организме человека, а ток величиной около 100 мА является смертельным. Если УЗО планируется использовать исключительно для защиты электрического оборудования, то значение дифференциального тока, при котором устройство будет размыкать цепь, может быть большего значения, например, 30 мА. В некоторых случаях, например, для защиты больших участков сети, используются аппараты с уставкой дифференциального тока 100 мА. Это обусловлено тем, что использование аппарата с меньшим значением тока уставки приведет к ложным срабатываниям. Следует учесть, что в данном случае цепь будет защищена только от возникновения пожара. Человек при этом не будет в полной мере защищен от поражения электрическим током, так как УЗО не отключится при токе утечки менее 100 мА, а такой ток, как и упоминалось выше, может привести к возникновению необратимых последствий в организме человека, вплоть до летального исхода. На лицевой части корпуса устройства защитного отключения есть рычаг управления, предназначенный для включения и отключения устройства в ручном режиме. Кроме того, на корпусе есть кнопка «TEST», предназначенная для осуществления проверки работоспособности данного защитного аппарата. При нажатии на эту кнопку создается искусственный дифференциальный ток и УЗО должно отключиться и разомкнуть электрическую цепь. Если при нажатии на кнопку цепь не размыкается, то это свидетельствует о неисправности данного защитного аппарата. В данном случае вышедшее из строя устройство защитного отключения необходимо заменить. Рекомендуется периодически производить проверку работоспособности всех устройств защитного отключения, установленных в электрическом распределительном щитке. При проектировке схемы электропроводки квартиры (дома) следует учитывать тот факт, что устройство защитного отключения не защищает цепь от сверхтоков. Поэтому, помимо данных защитных аппаратов, следует использовать автоматические выключатели, осуществляющие защиту конструктивных элементов электропроводки от повреждения в результате перегрузки или короткого замыкания. Возможно также использование комплексных защитных аппаратов – дифавтоматов, которые выполняют функции обоих аппаратов – автоматического выключателя и устройства защитного отключения. Это особенно актуально при необходимости использования большого количества защитных аппаратов. Использование дифавтоматов значительно сокращает количество используемых модульных мест в распределительном квартирном щитке.
71. На каком физическом явлении основан принцип действия силового трансформатора? Что называется коэффициентом трансформации силового трансформатора?
Принцип действия трансформатора основан на явлении электромагнтной индукции. Если одну из обмоток трансформатора подключить к источнику переменного напряжения (рис. 1), то по этой обмотке потечет переменный ток, который создаст в магнитопроводе переменный магнитный поток Ф. Этот магнитный поток, сцепленный как с одной, так и с другой обмоткой, изменяясь, будет индуктировать в обмотках ЭДС. Так как в общем случае обмотки могут иметь различное число витков, то значения индуктируемых в них ЭДС будут неодинаковы. В той обмотке, которая имеет большее число витков, индуктируемая ЭДС будет больше, чем в обмотке, имеющей меньшее число витков.
Индуктируемая в первичной обмотке ЭДС примерно равна приложенному напряжению и будет почти полностью его уравновешивать. Ко вторичной обмотке подключаются различные потребители электроэнергии, которые будут являться нагрузкой для трансформатора. При подключении нагрузки в этой обмотке под действием индуктированной в ней ЭДС возникнет ток I2, а на ее выводах установится напряжение U2, которые будут отличаться от тока I1 и напряжения U1 первичной обмотки. Следовательно, в трансформаторе происходит изменение параметров энергии: подводимая к первичной обмотке из электрической сети электрическая энергия с напряжением U1 и током I1 преобразуется в электрическую энергию с напряжением U2 и током I2.
Трансформатор нельзя включать в сеть постоянного тока, так как при подключении трансформатора к сети постоянного тока магнитный поток в нем будет неизменным во времени и, следовательно, не будет индуктировать ЭДС в обмотках; вследствие этого в первичной обмотке будет протекать большой ток, так как при отсутствии ЭДС он будет ограничиваться только относительно небольшим активным сопротивлением обмотки. Этот ток может вызвать недопустимый нагрев обмотки и даже ее перегорание.
Отношение ЭДС Е1/Е2=W1/W2=К – коэффициент трансформации трансформатора. ЭДС, наводимая в первичн обмотке – ЭДС самоиндукции (Е1). ЭДС со вторичной обмотки – ЭДС взаимной индукции (Е2). Е1=W1, Е2=W2. При этом величина ЭДС пропорциональна кол-ву витков обмоток. В зависимости от величины К трансформаторы бывают повыш (<1), пониж (>1). Для определ К делают опыт холостого хода.
72. Каковы основные особенности электроэнергетической системы
Отличительные особенности электроэнергетики как технической системы:
• невозможность запасать электрическую энергию в значительных масштабах, в связи с чем имеет место постоянное единство производства и потребления;
• зависимость объемов производства энергии исключительно от потребителей;
• необходимость оценивать объемы производства и потребления энергии не только в расчете на год (квартал, месяц), но и текущие величины энергетических нагрузок (мощность);
• необходимость бесперебой -ности энергоснабжения потребителей, являющейся важнейшим условием работы всего национального хозяйства и жизнедеятельности населения;
• планирование энергопотре- бления на каждые сутки и каждый час в течение года, т.е. необходимость разработки графиков нагрузки на каждый день каждого месяца с учетом сезона, климатических условий, дня недели и других факторов;
• зависимость качества продукции не только от производителя и поставщика, но и от потребителя.