Оптоэлектронные датчики давления принцип работы
Перейти к содержимому

Оптоэлектронные датчики давления принцип работы

  • автор:

Волоконно-оптический датчик избыточного давления отражательного типа. Описание конструкции. Принцип действия Текст научной статьи по специальности «Прочие технологии»

Текст научной работы на тему «Волоконно-оптический датчик избыточного давления отражательного типа. Описание конструкции. Принцип действия»

Крупкина Т.Ю. ВОЛОКОННО-ОПТИЧЕСКИЙ ДАТЧИК ИЗБЫТОЧНОГО ДАВЛЕНИЯ ОТРАЖАТЕЛЬНОГО ТИПА. ОПИСАНИЕ КОНСТРУКЦИИ. ПРИНЦИП ДЕЙСТВИЯ

При финансовой поддержке в форме гранта Министерства образования и науки РФ

Предложена новая конструкция и процесс сборки волоконно-оптического датчика давления отражательного типа. Предлагаемый датчик может быть использован для измерения больших давлений в диапазоне температур ± 100 оС на изделиях ракетно-космической техники, не требует сложных технологических и измерительных операций при изготовлении.

По результатам анализа ранее разработанных конструкций и расчетов предложено конструктивное решение волоконно-оптического датчика избыточного давления (ВОДИД) отражательного типа. За основу была взята конструкция ВОДИД аттенюаторного типа. Недостатком устройства ВОДИД данного типа является низкая чувствительность преобразования из-за потерь светового потока в процессе передачи от подводящих оптических волокон к отводящим. Кроме того, расположение оптических волокон с двух сторон относительно аттенюатора требует точной юстировки волокон относительно друг друга и шторки, что снижает надежность устройства и усложняет технологию его изготовления. Выше приведенные недостатки устранены в ВОДИД отражательного типа.

На рисунке представлен общий вид ВОДИД.

ВОДИД состоит из блока мембранного 1, волоконно-оптического кабеля (ВОК) 2, штуцера 3, корпуса 4 и 5, фотоблока (фотодиоды 12 и светодиод 13) и розетки 14.

Блок мембранный 1 состоит из корпуса, упругого элемента — мембраны с жестким центром (в качестве жесткого центра — аттенюатор). Мембрана выполнена из сплава 36НХТЮ, корпус и аттенюатор — из стали 12Х18Н10Т. Аттенюатор (шторка) представляет собой пластину, имеющую поверхности с зеркальной и поглощающей частями. Отражающая поверхность имеет прямоугольную форму (горизонтальная полоска). Это объясняется тем, что технология изготовления прямоугольной формы отражающей поверхности аттенюатора по сравнению со всеми остальными значительно проще. Аттенюатор жестко крепится к мембране посредством импульсной сварки. Мембрана со шторкой устанавливается в корпус и соединяется с корпусом сваркой.

Волоконно-оптический кабель содержит подводящее оптическое волокно ПОВ, первое отводящее оптическое волокно ООВ 1, второе отводящее волокно ООВ 2. Оптические волокна жестко закреплены в штуцере датчика 3 на расстоянии Хо относительно рабочей поверхности аттенюатора.

Штуцер 3 устанавливается в корпусе датчика. Корпус датчика сборный, состоит из двух частей 4 и 5, соединенных между собой с помощью сварки. Наконечник 6 является предохранительным.

Фотоблок представляет собой держатель 11, в который вклеены светодиод 13, рабочий и компенсационный фотодиоды 12. Фотоблок соединен с кабелем посредством наконечника 8. Фотоблок присоединяется к блоку преобразования информации (БПИ) с помощью розетки 14 типа СНЦ 13-10/10 Р-11-В. К контактам розетки подпаиваются выводы светодиода и фотодиодов. Для исключения механический повреждений предусмотрен колпачок 15.

Принцип действия датчика заключается в преобразовании величины избыточного давления Р, воспринимаемого упругим элементом, в изменение интенсивности оптического излучения и дальнейшего преобразования выходного сигнала датчика в стандартный токовый сигнал. Световой поток Фо от подводящего оптического волокна ПОВ проходит в прямом направлении расстояние Хо до аттенюатора и расстояние Хо в обратном направлении до отводящих оптических волокон ООВ 1 и ООВ 2 под апертурным углом &ЫА к оптической оси волокна. При этом в плоскости приемных торцов отводящих оптических волокон ООВ 1 и ООВ 2 наблюдается освещенная кольцевая зона шириной Ь=2го, т.е. равная диаметр оптического волокна. В нейтральном положении, когда измеряемый параметр соответствует начальной точке диапазона измерения при 2=0 аттенюатор, установлен относительно общего торца оптических волокон таким образом, чтобы освещенная кольцевая зона полностью перекрывала поверхности отводящих оптических волокон.

Датчик работает следующим образом.

От источника излучения — светодиода 13 по подводящему оптическому волокну ПОВ световой поток Фо направляется в сторону аттенюатора. Под действием измеряемой физической величины мембрана прогибается, аттенюатор перемещается на величину 2 относительно торцов отводящих оптических волокон ООВ 1 и ООВ 2, что ведет к изменению интенсивности световых потоков Фг(2) и Ф2(2), поступающих по отводящим волокнам на светочувствительные площадки приемников излучения ПИ 1 и ПИ 2 (фотодиодов 12) первого и второго измерительных каналов соответственно. Приемники излучения преобразуют оптические сигналы в электрические Тг и Т^г поступающие на вход блока преобразования информации (БПИ). В БПИ осуществляется операция деления сигналов Тг и Т2, что позволяет компенсировать изменения мощности излучения светодиода и потери светового потока при изгибах оптических волокон, так как их отношение не зависит от указанных факторов, а также линеаризовать выходную зависимость. Для удвоения чувствительности преобразования можно сформировать отношение разности сигналов Тг и 12 к их сумме.

Предложенная конструкция волоконно-оптического датчика давления позволяет реализовать дифференциальную схему преобразования, что в два раза повышает чувствительность преобразования, позволяет добиться линейной функции преобразования, уменьшить погрешности, обусловленные изгибами оптических волокон под воздействием внешних дестабилизирующих факторов. Датчик имеет простую, надежную конструкцию, не требует сложных технологических, юстировочных и измерительных операций при изготовлении оптической части, имеет дешевую компонентную базу — многомодовые оптические волокна. Соответственно, предлагаемое техническое решение не ведет к лишним материальным затратам. Следует отме-

тить, что предложенный датчик может быть использован в условиях воздействия внешних дестабилизирующих факторов на изделиях ракетно-космической техники.

1 Бадеева Е.А., Мещеряков В.А., Мурашкина Т. И. Волоконно-оптические датчики давления аттеню-аторного типа для летательных аппаратов//Датчики и системы. — 2002;

2 Бусурин В. И., Носов Ю. Р. Волоконно-оптические датчики: Физические основы, вопросы расчета и применения. — М.: Энергоатомиздат, 1990. — с. 188;

3 Жилин В. Г. Волоконно-оптические измерительные преобразователи скорости и давления. — М.: Энергоатомиздат, 1987. — с. 11 — 12.

Датчики давления

Датчик давления является измерительным прибором, на исходящие параметры которого влияет давление исследуемого пространства (парового, газового или жидкостного). В современных инженерных системах использование датчиков давления является обязательным. Без них не могут существовать автоматические системы, используемые в энергетической, нефтяной, газовой, пищевой и других важных отраслях.

Датчик давления состоит из:

  1. Первичного преобразователя давления, имеющего чувствительный элемент.
  2. Корпусных элементов, имеющих разную конструкцию.
  3. Схем, позволяющих повторно обрабатывать сигнал.

В зависимости от принципа функционирования датчики давления могут быть:

  • оптическими;
  • волоконно-оптическими;
  • оптоэлектронными;
  • магнитными;
  • емкостными;
  • ртутными;
  • пьезоэлектрическими;
  • пьезорезонансными;
  • резистивными.

Оптические датчики

Для оптических датчиков давления существует оптоэлектронный и волоконно-оптический измерительные принципы.

Датчики давления

Оптические датчики давления

Оптоэлектронные датчики

В состав таких датчиков входят прозрачные структуры, уложенные в несколько слоев. Эта структура является проводником светового излучения. Давление пространства оказывает влияние на изменение характеристик одного из слоев. Так, изменение касается толщины слоя и показателя преломления.

Изменяющиеся характеристики напрямую влияют на изменение параметров транспортируемых световых слоев. Для регистрации подобных изменений служит фотоэлемент. Преимуществом оптоэлектронных датчиков является очень высокая точность.

Волоконно-оптические датчики

Отметим максимальную точность показаний волоконно-оптических датчиков. Их функционирование не подвержено температурным изменениям. За чувствительность данных приборов отвечает оптический волновод. Волоконно-оптические устройства измеряют давление на основании амплитудных колебаний и поляризации транспортируемого посредством чувствительного элемента светового потока.

Магнитные датчики

Магнитные датчики также называют индуктивными. В основе чувствительного компонента устройства заложена пластина Е-образной формы, центральная часть которой оснащена катушкой. Также в состав датчика входит проводящая мембрана, которая чувствительна к изменениям давления. Расположение мембраны предусмотрено почти в крайней части пластины. Подключение катушки является причиной создания магнитного потока, транспортируемого посредством пластины, мембраны и воздушного зазора. Величина магнитной проницаемости мембраны и пластины почти в тысячу раз превышает величину проницаемости зазора. В связи с этим индуктивность существенно изменяется в результате незначительного изменения величины зазора.

Датчики давления

Магнитные датчики давления

Ртутные датчики

Ртутный датчик также является простым измерительным прибором. Его принцип функционирования связан с сообщающимися сосудами. Один из сосудов находится под давлением измеряемой величины. Единицей измерения в данном случае выступает ртутный столбец.

Датчики давления

Ртутные датчики давления

Емкостные датчики

Емкостной датчик отличается очень простой конструкцией. В его состав заложены два плоских электрода с межэлектродным зазором. Один электрод исполнен в виде мембраны, находящейся под воздействием измеряемой величины. Это приводит к изменению величины зазора. Таким образом, емкостные датчики являются конденсаторами, которые характеризуются изменяющимся размером зазора. Соответственно величина зазора связана с емкостью конденсатора. Особенность емкостных датчиков заключается в фиксации незначительных колебаний давления.

Датчики давления

Резистивные датчики

Резистивные устройства также позиционируются как тензорезистивные. Понятие тензорезистора связано с элементом, сопротивление которого изменяется под воздействием деформации. Местом размещения тензорезисторов является мембрана, которая чувствительна к перепадам давления. Давление на мембрану приводит к ее изгибанию и следственному изгибанию расположенных на ней тензорезисторов. В результате происходит изменение сопротивления тензорезисторов, способствующее изменению значения силы электрического тока.

Датчики давления

Резистивный датчик давления

Пьезоэлектрические датчики

Подобные устройства базируются на чувствительном элементе, который называется пьезоэлементом. Последний является материалом, который, находясь под деформацией, способен выделять электрический сигнал. Такое явление называется прямым пьезоэффектом. Находясь в измеряемом пространстве, пьезоэлемент становится источником образования электрического тока, пропорционального изменению давления. В связи с тем что предпосылкой для выделения электрического сигнала в пьезоэлементе является деформация, а также учитывая, что постоянное давление не приводит к деформации, пьезоэлектрические датчики могут измерять только стремительно изменяющееся давление.

Датчики давления

Пьезоэлектрические датчики давления

Пьезорезонансные датчики

Данные приборы также основываются на пьезоэффекте, однако, по сравнению с пьезоэлектрическими датчиками, в них заложено явление обратного пьезоэффекта, которое заключается в изменении формы пьезоэлемента под воздействием электрического тока. Пьезорезонансные датчики оснащены резонатором (к примеру, пластиной) из пьезоматериала, который двустороннее оснащен электродами. Последние находятся под последовательным воздействием меняющегося напряжения. Это приводит к разностороннему изгибанию пластины с учетом частоты транспортируемого электричества. Однако если пластину подвергнуть силе, к примеру, поступающей от чувствительной к давлению мембраны, это приведет к изменению частоты колебаний резонатора. Частота резонатора демонстрирует величину давления на мембрану. Последняя, со своей стороны, оказывает давление на резонатор.

Датчики давления

Пьезорезонансный датчик давления

Что нужно знать о параметрах датчиков давления во время их приобретения

Тип давления

Важным является понимание типа давления, которое является предметом измерений. Так, давление может быть абсолютным, относительным, избыточным, вакуумным или барометрическим.

Термическая компенсация

Из-за температурных эффектов, одним из которых является физическое расширение, можно столкнуться с довольно-таки сильными погрешностями исходящего сигнала прибора. В случае наблюдения постоянных температурных колебаний окружающей среды необходимо прибегнуть к термической компенсации. Помимо этого, требуется учет температурного коридора.

Тип исходящего сигнала

Следует определиться с необходимым типом сигнала. Напомним, что он может быть цифровым или аналоговым. При выборе аналогового исходящего сигнала необходимо учитывать границы такого сигнала и количество проводов. К примеру, границами могут быть значения от четырех до двадцати миллиампер.

Уровень защиты датчика

Безопасность эксплуатации датчика давления зависит от сферы его применения. В некоторых случаях устройство должно быть пыле- и влагозащитным.

Материал изготовления прибора

В случае использования датчика в агрессивной среде потребуется выбор прочного материала его изготовления. Как результат, такое устройство должно иметь высокую коррозионную устойчивость.

Датчики и сенсоры онлайн журнал

Практика использования, теоретические основы и современные тенденции

ОПТОЭЛЕКТРОННЫЕ ДАТЧИКИ ДАВЛЕНИЯ

Диафрагма, сформированная методом травления в подложке из монокристаллического кремния, покрыта тонким слоем металла. На нижнюю сторону стеклянной пластины также нанесено металлическое покрытие. Между стеклянной пластиной и кремниевой подложкой существует зазор шириной w, получаемый при помощи двух прокладок. Два слоя металла формируют интерферометр Фабри-Перо с переменным воздушным зазором w, в состав того входят: подвижное зеркало, расположенное на мембране, меняющее свое положение при изменении давления, и параллельное ему стационарное полупрозрачное зеркало на стеклянной пластине. Поскольку величина w связана с внешним давлением линейной зависимостью, длина волны отраженного излучения меняется при изменении давления. Принцип действия датчика основан на измерении модуляции длины волны, получаемой от сложения падающих и отраженных излучений. При измерении низких давлений или когда для повышения динамического диапазона применяются толстые мембраны, для получения заданных значений разрешения и точности величина перемещения диафрагмы может оказаться недостаточной. В дополнение к этому рабочие характеристики большинства пьезорезистивных и некоторых емкостных сенсоров довольно сильно зависят от температуры, что требует использования дополнительных цепей температурной компенсации. Оптические методы измерений обладают рядом преимуществ над остальными способами детектирования давления: простотой, низкой температурной чувствительностью, высокой разрешающей способностью и высокой точностью. Частота периодического интерференционного сигнала определяется шириной рабочей полости интерферометра w, а его период равен l/2w.

Детектор работает как демодулятор, электрический выходной сигнал того пропорционален приложенному давлению. Он является оптическим компаратором, сравнивающим высоту рабочей камеры датчика давления и толщину виртуальной камеры, сформированной за счет разности высот двух фильтров Фабри-Перо. Когда размеры этих камер равны, ток фотодетектора будет максимальным. Особенно перспективными являются оптоэлектронные датчики, реализованные на основе явления интерференции света [11]. Такие преобразователи используют принцип измерения малых перемещений Фабри-Перо.

ДАТЧИКИ9

Рис. 10.13. Схема оптоэлектронного датчика давления, использующего принцип интерференции света [12]

В состав датчика входят следующие компоненты: пассивный кристалл оптического преобразователя давления с диафрагмой, вытравленной в кремниевой подложке; светоизлучающий диод (СИД) и кристалл детектора. Детектор состоит из трех р-n фотодиодов, к двум из которых пристроены оптические фильтры Фабри-Перо, имеющие небольшую разницу по толщине. Эти фильтры представляют собой кремниевые зеркала с отражением от передней поверхности, покрытые слоем из Si02, на поверхность которых нанесен тонкий слой А1. Оптический преобразователь похож на емкостной датчик давления, описанный в сайте

10.2, за исключением того, что в нем конденсатор заменен на интерферометр Фабри-Перо, используемый для измерения отклонения диафрагмы. При изменении давления происходит косинусная модуляция фототока с периодом, соответствующим половине средней длины волны источника излучения. Фотодиод без фильтра используется в качестве эталонного диода, отслеживающего полную интенсивность света, поступающего на детектор. Его выходное напряжение применяется при последующей обработке сигналов для получения нормированных результатов измерений. Поскольку рассматриваемый датчик давления является нелинейным, он обычно встраивается в микропроцессорную систему, на которую, в частности, возложены функции его линеаризации. Аналогичные оптические

датчики давления реализуются на основе оптоволоконных световодов. Такие датчики незаменимы при проведении измерений в труднодоступных зонах, где использование ВЧ интерферометров невозможно.

По вопросам размещения статей пишите на email:

Все о датчиках давления

Точные измерительные приборы – важная составляющая деятельности всех современных отраслей хозяйства. Они служат для своевременного учета расхода разных жидкостей, нужны в работе с газовыми смесями и паром. Кроме классических расходомеров, обладающих различными принципами действия, часто применяются еще и электронные приборы, измеряющие давление. Подобные устройства – обязательный элемент большей части измерительных комплексов и теплосчетчиков. Они часто входят в состав систем, служащих для осуществления автоматического контроля. Так называемые датчики давления востребованы на предприятиях энергетического комплекса, в производстве продуктов питания, нефтеперерабатывающей сфере и других отраслях, где требуется знать цифровое значение давления для обеспечения бесперебойной и безопасной работы оборудования.

Что такое датчик давления

  • абсолютное – полное значение по отношению к принятому нулю (точке перехода вакуума в давление),
  • дифференциальное – диапазон давления между двумя заданными точками,
  • избыточное – значение по отношению к атмосферному давлению.

Типы датчиков

Датчики давления используются преимущественно в пищевом или же химическом производстве. Особенно интересным вариантом можно назвать практичный и современный интеллектуальный датчик, служащий для измерения абсолютного давления, а также реализующий измерение относительно величины абсолютного вакуума. Данное измерение наиболее часто применяется там, где необходимо произвести быстрый учет давления газа, пара или же тепловой энергии.

По конструкции элементов чувствительности датчики делятся на волоконно-оптические и оптоэлектронные. Первые включают оптический волновод и определяют давление в результате поляризации света. Вторые проводят свет через многослойную конструкцию, каждый слой которой меняет его свойства в зависимости от давления среды.

По виду измерений для датчиков давления принята следующая классификация:

1. Датчик дифференциального давления помогает удачно решать задачи по учету расходования замеряемой среды. Принцип его действия заключается в замере разностей давления между двумя находящимися рядом полостями – плюсовой и минусовой. Он применяется для успешного учета расходов. Узкое устройство в коммуникациях является местным сопротивлением. В процессе прохождения через него происходит изменение характера скорости потока. Перед данным сужающим устройством давление в атмосферах значительно возрастет, а после него – снижается. Чем более высокого коэффициента достигает разница, имеющаяся на входе, а далее и на выходе сужающего устройства, тем выше будет расход той среды, которая протекает по данной трубе. Подобный датчик без особых проблем позволит произвести учет объема данной жидкости не только в самой трубе, но и в данной емкости. Это можно осуществить при помощи измерения давления в столбе жидкости, которая воздействует на плюсовую мембрану. Кроме того, в некоторых случаях производится измерение результатов в минусовой полости давления, которая находится непосредственно под куполом данной емкости. Это необходимо для того, чтобы надежно произвести исключение чрезмерного влияния большинства насыщенных паров. Этот способ называется гидростатическим.

2. Датчик избыточного давления нужен для успешной регулировки и дальнейшего управления всеми техническими процессами. Он может применяться в составе большинства водяных систем, используемых для дальнейшего теплоснабжения; входит в необходимую комплектацию узлов, служащих для коммерческого и полноценного технологического учета всех требуемых жидкостей, газов и пара.

3. Датчики абсолютного давления . Сюда относятся интеллектуальные преобразователи, способные справиться с непрерывным измерением величин абсолютного и избыточного давления. Такие приборы также являются незаменимыми помощниками в случаях, когда нужно одновременно узнать точное значение дифференциального или же гидростатического давления, определиться с величиной давления в разреженных, жидких или же газообразных средах, в которых находится насыщенный или перегретый пар.

Комплексное исполнение датчика давления позволяет использовать его по назначению. Такое устройство применяется в условиях низких и высоких температур, а также в наиболее агрессивных средах.

В каждой из отраслей хозяйства необходимость того или иного датчика определяется сугубо индивидуальным способом, а также реальной надобностью. Выбор прибора зависит от того, какие перед ним поставлены задачи, а также от текущих условий эксплуатации. Заказчик самостоятельно выбирает материал, требующийся для изготовления мембраны разделения, а также корпуса электронного блока.

Технические характеристики и преимущества

К ключевым техническим опциям интеллектуальных датчиков давления можно отнести следующие:

  • измерение абсолютного, избыточного, дифференциального, гидростатического давления;
  • универсальность использования – измеряемой средой может выступать морская вода, различные виды масел, дизельное топливо, керосин, газ, мазут;
  • максимальная температура измеряемой среды — 120 градусов;
  • диапазон температур окружающей среды – от -60 до +70;
  • абсолютное давление – от 2,5 КПа до 16 МПа;
  • избыточное давление – от 0,16 КПа до 100 МПа;
  • погрешность измерения — от 0,1 до 0,5%;
  • высокий уровень пыле- и влагозащищенности — IP54, IP67.
  • межповерочный интервал составляет 5 лет;
  • срок гарантии – 3 года.

Датчик давления имеет высокую точность измерений. Если осуществляется специальный заказ, погрешность не превышает 0,04%. Датчики хорошо показывают себя в широком диапазоне измерений, в процессе самодиагностики и перегрузки.

Интеллектуальный счётчик — это надежное средство измерения, которое отвечает заявленным метрологическим и технико-эксплуатационным параметрам, легко работает в агрессивной среде и при низких температурах. Дополнительные плюсы – высокий уровень визуализации, простота использования, комфортный вывод информации на дисплее. Своевременно узнав о превышении давления, можно спланировать действия для предотвращения серьезных проблем.

Устройство датчика давления

Датчик давления состоит из преобразующего элемента; элемента, воспринимающего давление; приемника давления; системы вторичной обработки цифрового сигнала и устройства вывода информации. Все это скрывается в общем корпусе, оснащенном цифровым дисплеем.

Методы измерения давления при помощи датчика:

  • тензометрический – чувствительные комплектующие измеряют давление за счет чуткости элементов, которые жестко припаиваются к мембране;
  • пьезорезистивный – основан на применении преобразователя давления (мембрана из монокристаллического кремния), находящегося в металло-стеклянном корпусе;
  • емкостные преобразователи применяют метод изменения емкости конденсатора;
  • резонансный – в основе лежат акустические или электромагнитные процессы;
  • индуктивный – основан на постоянных вихревых потоках.

Области применения

Датчики можно использовать в следующих областях:

  • медицинской сфере;
  • пищевой промышленности;
  • тепло- и водоснабжении;
  • машиностроительном производстве, а также автомобильной промышленности;
  • электронной промышленности, роботостроении.

Счетчики давления позволяют держать под контролем большинство производственных процессов, успешно применяются в важных социальных сферах. Без них невозможно представить нормальную жизнедеятельность.

Как выбрать

Для того чтобы избежать серьезных финансовых расходов и правильно подойти к выбору датчика давления, необходимо учесть несколько важных качественных характеристик:

  • диапазон давления – для разных целей использования диапазоны могут резко отличаться друг от друга;
  • точность осуществления измерений – в некоторых случаях требуется высочайший уровень точности, например, при разработке двигателей для гоночных автомобилей;
  • температура является крайне важным и серьезным показателем, ведь приборы широко востребованы для тех устройств, которые используются в различных температурных диапазонах;
  • качество выходного сигнала на данном приборе;
  • принцип передачи информации о текущем давлении;
  • удобство присоединения датчика давления к технологическому процессу;
  • материал изготовления датчика – это существенно, если планируется использовать его в условиях высоких нагрузок;
  • наличие сертификата качества, что делает применение датчика максимально безопасным;
  • сроки доставки.

Учитывая соответствующие факторы, можно найти подходящий датчик давления, который прослужит максимально долгое время без поломок и прочих проблем. Важно лишь подобрать достойного производителя, имеющего нужную документацию и положительные отзывы, а также правильно произвести установку и начальную настройку.

Цены, наличие и другие данные, указанные на сайте, не являются публичной офертой. Для уточнения информации свяжитесь с нашими специалистами любым удобным для Вас способом

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *