Основной магнитный поток машин постоянного тока регулируется изменением
Перейти к содержимому

Основной магнитный поток машин постоянного тока регулируется изменением

  • автор:

Большая Энциклопедия Нефти и Газа

Наибольшие напряженная на валу обусловлены переменным магнитным потоком с частотой сети, возникающим из-за несимметрии основного магнитного потока машины . В турбогенераторах 50 — 300 МВт эти напряжения достигают 5 — 10 В, а иногда и больше. У гидрогенераторов со сборными сердечниками эти напряжения достигают иногда 20 — 30 В. [9]

Наибольшие напряжения на валу обусловлены переменным магнитным потоком с частотой сети, возникающим из-за несимметрии двух параллельных ветвей основного магнитного потока машины . В турбогенераторах 50 — 300 МВт эти напряжения достигают 6 В, а иногда и больше. У гидрогенераторов со сборными сердечниками эти напряжения достигают иногда 20 — 30 В. [10]

FB, что ведет к ослаблению основного потока машины; если же щетки сместить против вращения якоря ( генератора), то продольная составляющая Fad будет действовать согласно с FB, что приведет к некотором увеличению основного магнитного потока машины . [12]

Основные магнитные потери в стальных сердечниках электрических машин, вызываемые основным магнитным потоком машины , возникают в частях сердечников, подверженных перемагничиванию — в статоре, ( в зубцах и спинке) машин переменного тока и в якоре ( в зубцах и спинке) машин постоянного тока. Потерями в стали сердечников ротора асинхронного двигателя пренебрегают вследствие малой частоты перемагничивания при номинальном режиме работы и соответственно незначительных потерь. [13]

Основные магнитные потери в стальных сердечниках электрических машин, вызываемые основным магнитным потоком машины , возникают в частях сердечников, подверженных перемагничиванию — в статоре ( в зубцах и спинке) машин переменного тока и в якоре ( в зубцах и спинке) ма-шин постоянного тока. Потерями в стали сердечников ротора асинхронного двигателя пренебрегают вследствие малой частоты перемагничивания при номинальном режиме работы и соответственно незначительных потерь. [14]

Fad действует согласованно с F0, что ведет к некоторому увеличению основного магнитного потока машины . [15]

11. Электрические машины постоянного тока

11.1. Устройство электрической машины постоянного тока

Электрическая машина постоянного тока состоит из двух основных частей: неподвижной части ( индуктора ) и вращающейся части ( якоря с барабанной обмоткой).
На рис. 11.1 изображена конструктивная схема машины постоянного тока

Индуктор состоит из станины 1 цилиндрической формы, изготовленной из ферромагнитного материала, и полюсов с обмоткой возбуждения 2, закрепленных на станине. Обмотка возбуждения создает основной магнитный поток.
Магнитный поток может создаваться постоянными магнитами, укрепленными на станине.
Якорь состоит из следующих элементов: сердечника 3, обмотки 4, уложенной в пазы сердечника, коллектора 5.
Рис. 11.1
Сердечник якоря для уменьшения потерь на вихревые точки набирается из изолированных друг от друга листов электротехнической стали.

11.2. Принцип действия машины постоянного тока

Рассмотрим работу машины постоянного тока на модели рис.11.2,

где 1 — полюсы индуктора, 2 — якорь, 3 — проводники, 4 — контактные щетки.
Проводники якорной обмотки расположены на поверхности якоря. Очистим внешние поверхности проводников от изоляции и наложим на проводники неподвижные контактные щетки.
Контактные щетки размещены на линии геометрической нейтрали, проведенной посредине между полюсами.
Приведем якорь машины во вращение в направлении, указанном стрелкой.
Рис. 11.2
Определим направление ЭДС, индуктированных в проводниках якорной обмотки по правилу правой руки.

На рис.11.2 крестиком обозначены ЭДС, направленные от нас, точками — ЭДС, направленные к нам. Соединим проводники между собой так, чтобы ЭДС в них складывались. Для этого соединяют последовательно конец проводника, расположенного в зоне одного полюса с концом проводника, расположенного в зоне полюса противоположной полярности (рис. 11.3)

Два проводника, соединенные последовательно, образуют один виток или одну катушку. ЭДС проводников, расположенных в зоне одного полюса, различны по величине. Наибольшая ЭДС индуктируется в проводнике, расположенном под срединой полюса, ЭДС, равная нулю, — в проводнике, расположенном на линии геометрической нейтрали.
Рис. 11.3
Если соединить все проводники обмотки по определенному правилу последовательно, то результирующая ЭДС якорной обмотки равна нулю, ток в обмотке отсутствует. Контактные щетки делят якорную обмотку на две параллельные ветви. В верхней параллельной ветви индуктируется ЭДС одного направления, в нижней параллельной ветви — противоположного направления. ЭДС, снимаемая контактными щетками, равна сумме электродвижущих сил проводников, расположенных между щетками.
На рис. 11.4 представлена схема замещения якорной обмотки.

В параллельных ветвях действуют одинаковые ЭДС, направленные встречно друг другу. При подключении к якорной обмотке сопротивления в параллельных ветвях возникают одинаковые токи , через сопротивление RH протекает ток IЯ.
Рис. 11.4
ЭДС якорной обмотки пропорциональна частоте вращения якоря n2 и магнитному потоку индуктора Ф

где Се — константа.
В реальных электрических машинах постоянного тока используется специальное контактное устройство — коллектор. Коллектор устанавливается на одном валу с сердечником якоря и состоит из отдельных изолированных друг от друга и от вала якоря медных пластин. Каждая из пластин соединена с одним или несколькими проводниками якорной обмотки. На коллектор накладываются неподвижные контактные щетки. С помощью контактных щеток вращающаяся якорная обмотка соединяется с сетью постоянного тока или с нагрузкой.

11.3. Работа электрической машины постоянного тока
в режиме генератора

Любая электрическая машина обладает свойством обратимости, т.е. может работать в режиме генератора или двигателя. Если к зажимам приведенного во вращение якоря генератора присоединить сопротивление нагрузки, то под действием ЭДС якорной обмотки в цепи возникает ток

где U — напряжение на зажимах генератора;
Rя — сопротивление обмотки якоря.

Уравнение (11.2) называется основным уравнением генератора. С появлением тока в проводниках обмотки возникнут электромагнитные силы.
На рис. 11.5 схематично изображен генератор постоянного тока, показаны направления токов в проводниках якорной обмотки.

Воспользовавшись правилом левой руки, видим, что электромагнитные силы создают электромагнитный момент Мэм, препятствующий вращению якоря генератора.
Чтобы машина работала в качестве генератора, необходимо первичным двигателем вращать ее якорь, преодолевая тормозной электромагнитный момент.

11 .4. Генераторы с независимым возбуждением.
Характеристики генераторов

Магнитное поле генератора с независимым возбуждением создается током, подаваемым от постороннего источника энергии в обмотку возбуждения полюсов.
Схема генератора с независимым возбуждением показана на рис. 11.6.
Магнитное поле генераторов с независимым возбуждением может создаваться
от постоянных магнитов (рис. 11.7).

Рис. 11.6 Рис. 11.7

Зависимость ЭДС генератора от тока возбуждения называется характеристикой холостого хода E = Uхх = f (Iв).
Характеристику холостого хода получают при разомкнутой внешней цепи (Iя) и при постоянной частоте вращения (n2 = const)
Характеристика холостого хода генератора показана на рис. 11.8.
Из-за остаточного магнитного потока ЭДС генератора не равна нулю при токе возбуждения, равном нулю.
При увеличении тока возбуждения ЭДС генератора сначала возрастает пропорционально.
Соответствующая часть характеристики холостого хода будет прямолинейна. Но при дальнейшем увеличении тока возбуждения происходит магнитное насыщение машины, отчего кривая будет иметь изгиб. При последующем возрастании тока возбуждения ЭДС генератора почти не меняется. Если уменьшать ток возбуждения, кривая размагничивания не совпадает с кривой намагничивания из-за явления гистерезиса.
Зависимость напряжения на внешних зажимах машины от величины тока нагрузки
U = f (I) при токе возбуждения Iв = const называют внешней характеристикой генератора.

Внешняя характеристика генератора изображена на рис. 11.9.

Рис. 11.8 Рис. 11.9

С ростом тока нагрузки напряжение на зажимах генератора уменьшается из-за увеличения падения напряжения в якорной обмотке.

11.5. Генераторы с самовозбуждением.
Принцип самовозбуждения генератора
с параллельным возбуждением

Недостатком генератора с независимым возбуждением является необходимость иметь отдельный источник питания. Но при определенных условиях обмотку возбуждения можно питать током якоря генератора.
Самовозбуждающиеся генераторы имеют одну из трех схем: с параллельным, последовательным и смешанным возбуждением. На рис. 11.10 изображен генератор с параллельным возбуждением.

Обмотка возбуждения подключена параллельно якорной обмотке. В цепь возбуждения включен реостат Rв. Генератор работает в режиме холостого хода.
Чтобы генератор самовозбудился, необходимо выполнение определенных условий.
Первым из этих условий является наличие остаточного магнитного потока между полюсами. При вращении якоря остаточный магнитный поток индуцирует в якорной обмотке небольшую остаточную ЭДС.
Рис. 11.10
Вторым условием является согласное включение обмотки возбуждения. Обмотки возбуждения и якоря должны быть соединены таким образом, чтобы ЭДС якоря создавала ток, усиливающий остаточный магнитный поток. Усиление магнитного потока приведет к увеличению ЭДС. Машина самовозбуждается и начинает устойчиво работать с каким-то током возбуждения Iв = const и ЭДС Е = const, зависящими от сопротивления Rв в цепи возбуждения.
Третьим условием является то, что сопротивление цепи возбуждения при данной частоте вращения должно быть меньше критического. Изобразим на рис. 11.11 характеристику холостого хода генератора E = f (Iв) (кривая 1) и вольт — амперную характеристику сопротивления цепи возбуждения Uв = Rв·Iв, где Uв — падение напряжения в цепи возбуждения. Эта характеристика представляет собой прямую линию 2, наклоненную к оси абсцисс под углом γ (tg γ ~ Rв).

Ток обмотки возбуждения увеличивает магнитный поток полюсов при согласном включении обмотки возбуждения. ЭДС, индуцированная в якоре, возрастает, что приводит к дальнейшему увеличению тока обмотки возбуждения, магнитного потока и ЭДС. Рост ЭДС от тока возбуждения замедляется при насыщении магнитной цепи машины.
Рис. 11.11

Падение напряжения в цепи возбуждения пропорционально росту тока. В точке пересечения характеристики холостого хода машины 1 с прямой 2 процесс самовозбуждения заканчивается. Машина работает в устойчивом режиме.
Если увеличим сопротивление цепи обмотки возбуждения, угол наклона прямой 2 к оси тока возрастает. Точка пересечения прямой с характеристикой холостого хода смещается к началу координат. При некотором значении сопротивления цепи возбуждения Rкр, когда
γ = γкр, самовозбуждение становится невозможным. При критическом сопротивлении вольт — амперная характеристика цепи возбуждения становится касательной к прямолинейной части характеристики холостого хода, а в якоре появляется небольшая ЭДС.

11.6. Работа электрической машины постоянного тока
в режиме двигателя. Основные уравнения

Под действием напряжения, подведенного к якорю двигателя, в обмотке якоря появится ток Iя. При взаимодействии тока с магнитным полем индуктора возникает электромагнитный вращающий момент

где CM — коэффициент, зависящий от конструкции двигателя.
На рис. 11.12 изображен схематично двигатель постоянного тока, выделен проводник якорной обмотки.

Ток в проводнике направлен от нас. Направление электромагнитного вращающего момента определится по правилу левой руки. Якорь вращается против часовой стрелки. В проводниках якорной обмотки индуцируется ЭДС, направление которой определяется правилом правой руки. Эта ЭДС направлена встречно току якоря, ее называют противо-ЭДС.
Рис. 11.12

В установившемся режиме электромагнитный вращающий момент Мэм уравновешивается противодействующим тормозным моментом М2 механизма, приводимого во вращение.

На рис. 11.13 показана схема замещения якорной обмотки двигателя. ЭДС направлена встречно току якоря. В соответствии со вторым законом Кирхгофа , откуда

Рис.11.13 Уравнение (11.3) называется основным уравнением двигателя.

Из уравнения (11.3) можно получить формулы:

Магнитный поток Ф зависит от тока возбуждения Iв, создаваемого в обмотке возбуждения. Из формулы (11.5) видно, что частоту вращения двигателя постоянного тока n2 можно регулировать следующими способами:

  1. изменением тока возбуждения с помощью реостата в цепи обмотки возбуждения;
  2. изменением тока возбуждения с помощью реостата в цепи обмотки возбуждения;
  3. изменением напряжения U на зажимах якорной обмотки.

Чтобы изменить направление вращения двигателя на обратное (реверсировать двигатель), необходимо изменить направление тока в обмотке якоря или индуктора.

11.7. Механические характеристики электродвигателей
постоянного тока

Рассмотрим двигатель с параллельным возбуждением в установившемся режиме работы (рис. 11.14). Обмотка возбуждения подключена параллельно якорной обмотке.

Механической характеристикой двигателя называется зависимость частоты вращения якоря n2 от момента на валу M2 при U = const и Iв = const.
Уравнение (11.6) является уравнением механической характеристики двигателя с параллельным возбуждением.
Рис. 11.14

Эта характеристика является жесткой. С увеличением нагрузки частота вращения
такого двигателя уменьшается в небольшой степени (рис. 11.15).

На рисунке 11.16 изображен двигатель последовательного возбуждения. Якорная обмотка и обмотка возбуждения включены последовательно.

Ток возбуждения двигателя одновременно является током якоря. Магнитный поток индуктора пропорционален току якоря.

где k — коэффициент пропорциональности.
Момент на валу двигателя пропорционален квадрату тока якоря.

Механическая характеристика двигателя последовательного возбуждения является мягкой (рис. 11.17).

С увеличением нагрузки скорость двигателя резко падает.
С уменьшением нагрузки на валу двигатель развивает очень большую частоту вращения. Говорят, что двигатель идет вразнос. Работа двигателя последовательного возбуждения без нагрузки недопустима.
Двигатель смешанного возбуждения имеет механическую характеристику, представляющую собой нечто среднее между механическими характеристиками двигателя параллельного и последовательного возбуждения.
Двигатели с параллельным возбуждением применяются для привода станков и различных механизмов, требующих широкой регулировки скорости.
Двигатели с последовательным возбуждением применяются в качестве тяговых двигателей электровозов, трамваев и т.д.

Машины постоянного тока. Электродвигатели и генераторы.

www.motors33.ru

Коллекторные машины — это в основном машины постоянного тока. Они выпускаются мощностью от долей ватта до десятков тысяч киловатт. Коллекторные машины переменного тока находят применение в качестве приводных двигателей лишь для узкого круга специальных механизмов небольшой мощности, например как приводы некоторых бытовых приборов, электрифицированного ручного инструмента, медицинского оборудования, т. е. в тех случаях, когда для питания двигателей используется однофазный и реже трехфазный переменный ток, а характеристики асинхронных машин не удовлетворяют требованиям приводного механизма.
Коллекторные машины постоянного тока используются как двигатели и как генераторы. В промышленности более распространены двигатели, что объясняется все возрастающим применением различных статических выпрямителей, обеспечивающих промышленные установки энергией постоянного тока.
Широкое распространение электродвигателей постоянного тока несмотря на их более высокую стоимость и сложность эксплуатации по сравнению с асинхронными двигателями, объясняется в первую очередь простыми и надежными способами регулирования частоты вращения, большими пусковыми моментами и перегрузочной способностью, чем у двигателей переменного тока. Наибольшее распространение двигатели постоянного тока получили в приводах, требующих глубокого регулирования частоты вращения (металлургическая промышленность, транспорт и т. п.).

2. Основные элементы конструкции машин постоянного тока^

Рис. 1. Двигатель постоянного тока серии 2П:
1 — тахогенератор; 2 — траверса; 3 — коллектор; 4 — станина; 5 — якорь; 6 — главный полюс; 7 — добавочный полюс;

Основными конструктивными элементами машин постоянного тока (рис. 1) являются станина с закрепленными на ней главными и добавочными полюсами, вращающийся якорь с обмоткой и коллектором и щеточный аппарат. В машинах малой и средней мощностей станина одновременно служит и корпусом, к которому крепятся лапы для установки машины, и частью магнитопровода. По ней замыкается магнитный поток. В большинстве машин станина выполнена массивной, из стальных труб, либо сварной из листов конструкционной стали. В ряде машин станину выполняют шихтованной.
К внутренней поверхности станины крепят главные и добавочные полюсы. Сердечники главных полюсов массивные либо набраны из листов стали толщиной 1 — 2 мм. Сердечники добавочных полюсов, как правило, массивные. На главных полюсах располагаются обмотки возбуждения; их МДС создают рабочий поток машины. Обмотки добавочных полюсов, расположенных по поперечным осям машины, служат для обеспечения нормальной коммутации.
Магнитопровод якоря шихтуется из листов электротехнической стали. В машинах малой мощности сердечник якоря насаживается непосредственно на вал со шпонкой и фиксируется в осевом направлении буртиком вала и кольцевой шпонкой. С торцов якоря для предотвращения распушения листов во время работы установлены нажимные шайбы, совмещенные с обмоткодержателями.
Обмотки якорей двухслойные. В машинах мощностью до 15 — 20 кВт они выполнены из круглого провода и уложены в полузакрытые пазы. В пазовых частях обмотка крепится пазовыми клиньями, в лобовых — бандажами из стеклоленты или немагнитной стальной проволоки, которые прижимают их к обмоткодержателям. В машинах большой мощности катушки обмотки якоря наматывают из прямоугольного провода и укладывают в открытые пазы. Крепление обмотки либо такое же, как и в машинах малой мощности, т. е. клиньями в пазовой и бандажами в лобовой части, либо бандажами и в пазовой, и в лобовой части. Выводные концы каждой секции обмотки впаиваются в прорези коллекторных пластин.
Коллекторы в большинстве машин общего назначения цилиндрические. Торцевые коллекторы применяют лишь в некоторых машинах малой мощности специального назначения. Во всех цилиндрических коллекторах пластины имеют клиновидную форму с углом наклона, при котором пластины, собранные в кольцо, плотно прилегают друг к другу боковыми поверхностями и зажимают миканитовую изоляцию (рис. 2). Наибольшее распространение получили коллекторы, в которых пластины удерживаются в сжатом состоянии металлическими нажимными конусами (рис. 3) либо опрессовкой в пластмассу (рис. 4).

Рис. 2. Положение коллекторных пластин в цилиндрических коллекторах:
1 — пластины коллектора; 2 — изоляция между пластинами; Р — сила давления нажимных конусов; Р, — сила арочного распора

В коллекторах с нажимными конусами пластины закрепляются передвижением переднего нажимного конуса по втулке коллектора. При этом создается давление на нижнюю часть ласточкина хвоста пластин и возникает арочный распор (рис. 2). Такие коллекторы называют арочными. Пластины коллектора с расположенными между ними изоляционными прокладками образуют монолитное кольцо. Нажимные конусы изолируют от пластин миканитовыми фигурными прокладками — манжетами, имеющими большую механическую прочность.

Рис. 3. Коллектор с нажимными конусами:
1 — передний нажимной конус; 2 — пластины коллектора ; 3 — втулка коллектора; 4 — изоляционная манжета; 5 —задний нажимной конус

Коллекторы на пластмассе более просты в изготовлении, но в силу меньшей механической прочности и надежности не применяются в машинах большой мощности.
В некоторых быстроходных машинах, например в возбудителях турбогенераторов, из-за больших центробежных сил, действующих на пластины коллектора, прочность их крепления с помощью ласточкиных хвостов оказывается недостаточной и коллекторные пластины крепят на втулку с помощью внешних бандажных колец (рис. 5).

Рис. 5. Принципиальная конструкция коллектора с бандажными кольцами:
1 — изоляция под бандажными кольцами; 2 — бандажные кольца; 3 — пластины коллектора; 4 — втулка коллектора

Щетки коллекторных машин устанавливают в щеткодержатели, закрепленные на щеточных пальцах, причем на каждом щеточном пальце может быть установлено по нескольку щеткодержателей и щеток, соединенных между собой параллельно. Число щеток и их размеры определяются номинальным током машины. Число щеточных пальцев должно быть равно числу полюсов машины. Двигатели с волновой обмоткой на якоре при отсутствии места для установки полного комплекта щеточных пальцев допускают установку неполного числа щеточных пальцев, что используется в некоторых конструкциях тяговых двигателей. Щеточные пальцы укреплены на траверсе, которая допускает поворот на некоторый угол вокруг оси машины для регулирования положения щеток на коллекторе.
В последние годы получают распространение бесколлекторные двигатели постоянного тока, в которых механический преобразователь тока — коллектор со щеточным аппаратом — заменен вентильным коммутатором. Вентильные двигатели имеют широкий диапазон регулирования частоты вращения и не имеют недостатков, связанных с работой скользящих контактов коллектор—щетки, характерных для коллекторных машин постоянного тока.

3. Характеристики машин постоянного тока.
Машины постоянного тока по своим характеристикам определяются системой возбуждения: независимой, параллельной, последовательной или смешанной.

При независимой системе возбуждения обмотка возбуждения питается от постороннего источника постоянного тока и ток возбуждения не зависит от режима работы и нагрузки машины. Генераторы с независимой системой возбуждения допускают регулирование напряжения практически от нуля до номинального. Изменение напряжения при увеличении нагрузки определяется только размагничивающим действием реакции якоря и увеличением падения напряжения на сопротивлении якорной цепи.
Ток параллельной обмотки возбуждения генераторов с самовозбуждением меняется в зависимости от напряжения на выводах генератора и уменьшается с ростом нагрузки из-за размагничивающего действия реакции якоря, что в свою очередь приводит к добавочному увеличению падения напряжения. За счет этого номинальное падение напряжения генераторов с параллельным возбуждением больше, чем генераторов с независимым возбуждением.
В генераторах со смешанной системой возбуждения при согласном включении параллельной и последовательной обмоток поток стабилизируется, так как размагничивающее действие реакции якоря компенсируется изменением МДС последовательной обмотки, пропорциональным току нагрузки. Последовательную обмотку таких машин называют стабилизирующей. Номинальное падение напряжения генераторов со стабилизирующей обмоткой мало. Некоторые генераторы выполнены со стабилизирующей обмоткой, при которой обеспечивается равенство 7НОМ = (7Х|Х (где 1/Х]Х — напряжение холостого хода).

При встречном включении параллельной и последовательной обмоток возбуждения напряжение на выводах генератора резко падает с увеличением тока нагрузки. Такие системы возбуждения находят применение в сварочных генераторах постоянного тока.
В двигателях параллельного возбуждения размагничивающее действие реакции якоря может вызвать неустойчивую работу, так как уменьшение потока с ростом нагрузки из-за действия реакции якоря при малом суммарном сопротивлении якорной цепи приводит к увеличению частоты вращения двигателя. Поэтому в большинстве двигателей средней и во всех двигателях большой мощности помимо параллельной устанавливается последовательная обмотка возбуждения, стабилизирующая магнитный поток и придающая устойчивость механической характеристике (рис. 7, а).

Рис. 7. Механические характеристики двигателей постоянного тока:
а — смешанного возбуждения; б — последовательного возбуждения

Механические характеристики двигателей с последовательным возбуждением (рис. 7,б) имеют специфический «падающий» характер. Двигатели с последовательным возбуждением используются в приводах, требующих больших пусковых моментов и устойчивой работы при малых частотах вращения.

4. Регулирование частоты вращения машин постоянного тока.

Частота вращения двигателя при неизменной нагрузке может быть изменена регулированием питающего напряжения U, включением последовательно с якорем дополнительного регулировочного резистора и изменением магнитного потока машины (изменением тока возбуждения). В практике применяются все три способа регулирования.
Регулирование частоты вращения изменением подводимого напряжения встречает трудности, связанные со сложностью преобразования напряжения постоянного тока. Для этой цели либо применяют статические преобразователи напряжения, либо питают двигатель от отдельного генератора постоянного тока, допускающего плавное регулирование напряжения (система генератор — двигатель). Такие системы применяют лишь для отдельных специальных приводов, требующих регулирования частоты вращения по сложной программе, например для главных двигателей прокатных станов.
Регулирование частоты вращения потоком является наиболее экономичным способом, так как потери в регулировочных резисторах, включаемых для этой цели последовательно с обмоткой возбуждения, невелики из-за малого тока возбуждения.
Однако этот способ позволяет лишь увеличивать частоту вращения двигателей по сравнению с номинальной. Такой способ регулирования предусмотрен для всех серийных двигателей постоянного тока.
Включение добавочного резистора в цепь якоря дает возможность плавно регулировать частоту вращения, но сопряжено с большими потерями в регулировочном реостате, по которому проходит полный ток нагрузки. Этот способ используется, например, для регулирования частоты вращения тяговых двигателей.
В современных системах регулирования частоты вращения двигателей постоянного тока применяются тиристорные схемы, позволяющие осуществить регулирование частоты вращения в широких пределах по заданной программе. Датчиками частоты вращения для осуществления обратной связи при регулировании могут быть тахогенераторы, размещенные на валу якоря двигателя (рис. 1).

5. Коммутация машин постоянного тока

Коммутация машин постоянного тока, т. е. изменение направления тока в секциях обмотки якоря при переходе секций от одного полюсного деления к другому, происходит при кратковременном замыкании их щетками на пластинах коллектора. При коммутации в короткозамкнутых секциях возникают реактивная ЭДС и ЭДС вращения, наводимая потоком реакции якоря, магнитные силовые линии которого пронизывают замкнутые при коммутации секции. При движении коллектора в момент отхода пластины коллектора от замыкающей данную секцию щетки происходит разрыв цепи (замкнутой секции), имеющей индуктивное сопротивление, и возникает искрение между сбегающим краем щетки и коллекторной пластиной. При неудовлетворительной коммутации искрение может быть значительным и может привести к местному повреждению коллектора, что в свою очередь ухудшает переходный контакт щетка—коллектор и усиливает искрение. Качество коммутации машины постоянного тока оценивается по интенсивности искрения на коллекторе (табл. 1).
Для улучшения коммутации во всех машинах постоянного тока, кроме машин малой мощности, устанавливают добавочные полюсы, МДС которых компенсирует МДС реакции якоря по поперечной оси машины, т. е. в зоне расположения коммутируемых секций. Кроме того, поток, создаваемый обмоткой добавочных полюсов, наводит в замкнутых при коммутации секциях ЭДС, несколько превышающую реактивную ЭДС секций и направленную ей навстречу. Коммутация машины при этих условиях становится прямолинейной или даже ускоренной. Напряжение под сбегающим краем щеток уменьшается до весьма малых значений и искрение под щетками становится не опасным для работы машины.
В крупных машинах постоянного тока кроме добавочных полюсов в пазах на наконечниках главных полюсов располагают компенсационную обмотку . Компенсационная обмотка предназначена для компенсации воздействия реакции якоря на поток возбуждения по продольной оси. Уменьшение влияния реакции якоря позволяет выполнять машины с уменьшенным воздушным зазором и улучшить их коммутацию.

Таблица 1. Оценка степени искрения под сбегающим краем щеток по ГОСТ 183-74

Степень искрения Характеристика степени искрения Состояние коллектора и щеток
1 Отсутствие искрения Отсутствие почернения на коллекторе и следов нагара на щетках
ll 4 Слабое искрение под небольшой частью края щетки
‘i Слабое искрение под большей частью края щетки Появление следов почернения на кол-[ лекторе и следов нагара на щетках, легко устраняемых протиранием поверхности коллектора бензином
2 Искрение под всем краем щетки. Допускается только при кратковременных толчках нагрузки и перегрузки Появление следов почернения на коллекторе и следов нагара на щетках, не устраняемых протиранием поверхности коллектора бензином
3 Значительное искрение под всем краем щетки с появлением крупных и вылетающих искр. Допускается только при прямом включении или реверсировании машин, если при этом коллектор и щетки остаются в состоянии, пригодном для дальнейшей работы Значительное почернение на коллекторе, не устраняемое протиранием поверхности коллектора бензином, а также подгар и частичное разрушение щеток

Вопрос № 370830 — Электротехника и электроника

Другие вопросы по предмету Электротехника и электроника

Вопрос № 370832

Двигатель с независимым возбуждением представлен схемой…

Вопрос № 370833

Двигатель с параллельным возбуждением представлен схемой…

Вопрос № 370834

Двигатель с последовательным возбуждением представлен схемой…

Вопрос № 370835

Двигатель со смешанным возбуждением представлен схемой…

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *