Какой частоте ультрафиолета сильно ионизируется воздух
Перейти к содержимому

Какой частоте ультрафиолета сильно ионизируется воздух

  • автор:

Искусственная ионизация воздуха Текст научной статьи по специальности «Нанотехнологии»

Аннотация научной статьи по нанотехнологиям, автор научной работы — Курников А. С., Ширшин А. С.

Рассмотрены основные принципы искусственной ионизации воздуха, а так же влияние отрицательных ионов на здоровье человека. Предложен эффективный и современный метод получения ионизированного воздуха путем обработки его озоном. Приведена схема обработки воздуха озоном в циклонно-пенном аппарате.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по нанотехнологиям , автор научной работы — Курников А. С., Ширшин А. С.

Аэроионизация и эффективность её применения для ускорения сушки лакокрасочных покрытий на древесине
Ионизация воздуха в птичниках

Развитие методов оценки и коррекции аэроионного состава воздуха рабочей зоны в целях снижения психофизиологической нагрузки работников

Оптимизация микроклимата в телятнике с пмощью аэроионного генератора «э Лион- 132»
Аэроионотерапия в лечении больных хронической обструктивной болезнью легких
i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ARTIFICIAL IONIZATION OF AIR

Main principles of artificial ionization of air, the influence of negative ions on the health of the person are considered. The effective and modern method of reception of ionized air by its processing by ozone is offered. The circuit of the processing of air by ozone in the cyclone-foamy device is resulted.

Текст научной работы на тему «Искусственная ионизация воздуха»

натора на максимальную нагрузку и малое время переходного процесса. Что позволяет спроектировать озонатор с автоматической регулировкой производительности для различных систем.

[1] Герасимов Я.И. Современные проблемы физической химии. — М.: МГУ, 1968. — 211 с.

[2] Курников A.C. Исследование и разработка методики проектирования судовых систем приготовления озона. Автореферат диссертации канд. техн. наук. — Л.: ЛКИ, 1984. — 20 с.

[3] Матвеев H.A. Некоторые вопросы расчёта и конструирования озонаторов промышленного типа. Автореферат диссертации канд. ^им. наук. — М.: МИХИ, 1957. -23 с.

[4] Суда внутреннего и смешанного (река-море) плавания. Санитарные правила и нормы: Сан-ПиН 2.5.2-703-98. — М.: Минздрав России, 1998. — 144 с.

[5] Барац В.А., Николаев М.В., Эльпинер Л.И. Водоснабжение судов речного флота. — М.: Транспорт, 1974. — 144 с.

[6] Этин B.J1. Основы проектирования комплекса систем водоснабжения судов внутреннего и смешанного плавания: Автореф. дисс. докт. техн. наук. — JT.: 1985. — 44 с.

[7] Курников A.C. Совершенствование систем обеспечения обитаемости и повышения экологической безопасности судов на основе активированных окислительных технологий. Автореф. дисс. докт. техн. наук. — Н. Новгород, 2002. — 39 с.

[8] Самойлович В.Г., Филиппов Ю.В. Влияние частоты на электрические характеристики озонаторов.-Ж. Ф. X, 1961,т. 35,-С. 201-205.

[9] Вобликова В.А., Филиппов Ю.В., Вендилло В.И. Влияние частот 2000-10000 Гц на электросинтез озона в озонаторе с эмалированными электродами. — Ж.Ф.Х., 1981, т. LV, — С. 3068-3071

[10] Алмазов Г.К., Степанов В.В., Гуськов М.Г. Элементы общесудовых систем: Справочник. -J1.: Судостроение, 1982. — 328 с.

[11] Зубрилов С.П., Ищук Ю.Г., Косовский В.И. Охрана окружающей среды при эксплуатации судов. — JI.: Судостроение, 1989. — 256 с.

[12] Правила экологической безопасности судов внутреннего и смешанного плавания / Российский Речной Регистр. — М.: «Марин Инжиниринг Сервис», 1995. — 52 с.

[13] Губернский Ю.Д., Дмитриев М.Т. Озонно-ионный режим жилых и общественных зданий и его роль в обеспечении воздушного комфорта//Водоснабжение и санитарная техника, 1979. -№1.-С. 17-18.

SHIP SYSTEMS OF PROCESSING OF LIQUIDS WITH THE USE OF OZONIZATION

A. S. Kurnikov, V. N. Vlasov

Ship systems in which process of ozonization is applied are shown in the article. The analysis of operational parameters of existing ship stations of preparation of ozone is made. The way of the increase ofproductivity of ozonizers is shown.

А. С. Курников, д. т. н., профессор.

А. С. Ширшин, аспирант, ВГАВТ.

603600, Нижний Новгород, ул. Нестерова, 5.

ИСКУССТВЕННАЯ ИОНИЗАЦИЯ ВОЗДУХА

Рассмотрены основные принципы искусственной ионизации воздуха, а так же влияние отрицательных ионов на здоровье человека. Предложен эффективный и современный метод получения ионизированного воздуха путем обработки его озоном. Приведена схема обработки воздуха озоном в циклонно-пенном аппарате.

Атмосферный воздух, которым мы дышим, всегда несет на части своих молекул электрические заряды. Процесс возникновения заряда на молекуле называется ионизацией, а заряженная молекула — легким ионом или аэроионом. Если ионизированная молекула осела на частице жидкости или пылинке, то такой ион называется тяжелым. Ионы воздуха бывают двух зарядов — положительным и отрицательным. В деревенском или горном воздухе число легких аэроионов обоих зарядов в солнечный день доходит до 1 ООО в 1 см3, на некоторых курортах их число поднимается до нескольких тысяч. В воздухе городов число легких ионов может упасть до 50, а тяжелых — возрасти до десятков тысяч в 1 см3. Тяжелые ионы вредны для здоровья человека, а легкие, особенно отрицательные, обладают благотворным и целебным действием.

Автором основных работ в области воздействия на организм человека атмосферного электричества и аэроионов является русский ученый профессор А.Л. Чижевский. Ему принадлежат многочисленные труды о биологическом действии и медицинском применении аэроионизации, а также установление явления оживления кислорода воздуха при помощи аэроионов [35]. Наблюдения Чижевского установили влияние аэроионов на состояние крови, частоту пульса, давление крови, функции дыхания, на нервную систему, эндокринные железы, общую динамику организма и обмен веществ.

А.Л. Чижевский впервые установил, что животные в профильтрованном через ватный тампон воздухе заболевают и погибают именно вследствие отсутствия аэроионов (в таком воздухе животные испытывают аэроионное голодание). Если же после фильтрации воздух снабдить отрицательными аэроионами, то животные чувствуют себя удовлетворительно. Наружный воздух, проникая в помещение через вентиляционные установки, тоже теряет аэроионы, особенно легкие с отрицательным зарядом. Обработка воздуха в кондиционерах также искажает его электрическое состояние, а фильтрация через пористые, ватные, марлевые, масляные и прочие фильтры лишает воздух всех аэроионов. Другие исследователи как Российские [18, 23, 38, 39], так и зарубежные [40, 41] подтвердили эти выводы.

Ионизирование воздуха помещений приобрело особую важность после того, как было установлено, что сам человек является источником огромного количества тяжелых ионов (до 500 тыс. в 1 см3 выдохнутого воздуха). Следовательно, в каждом помещении в присутствии людей число отрицательных ионов кислорода стремится к нулю. А так как человек проводит до 90 % жизни в помещении, то он в течение этого периода жизни испытывает систематическое аэроионное голодание. Это обстоятельство приводит человека к отравлению продуктами неполного окисления, к дистрофии и атрофии его органов и тканей, способствует преждевременному одряхлению и предрасполагает к различным заболеваниям.

Ученые установили ряд замечательных фактов. Применение аэроионов отрицательной полярности позволяет снижать утомляемость, усталость, восстанавливать силы. Все это способствует улучшению работоспособности, усиливает иммунитет и резко сокращает заболеваемость. Благотворное влияние оказывают аэроионы как на растущий, так и на стареющий организм [6, 19, 32, 34].

Аэроионы вместе с вдыхаемым воздухом проникают в кровь, которая разносит их по всему организму. Для лечения некоторых заболеваний (бронхиальная астма, гипертония, болезни крови, легких, нервной системы и др.) аэроионы являются действенным средством.

Ионизированный воздух является также мощным профилактическим и стимулирующим фактором. Сделать воздух «живым» — это значит создать в воздухе ионы кислорода в такой концентрации, которая существует в воздухе горных или приморских курортов.

Также экспериментально установлено, [22, 23] что направленный поток аэроионов осаждает пыль и микроорганизмы воздуха, тем самым очищая его.

Аппараты, с помощью которых осуществляется искусственная ионизация воздуха для использования в практических целях, называются аэроионизаторами. Аэроионизатор предназначен для создания в помещении отрицательных аэроионов в концентрации, характерной для микроклимата горных, приморских и лесных районов; для очищения воздуха от пыли и токсичных паров, для нейтрализации вредного воздействия экранов дисплеев и телевизоров. Отрицательно ионизированный воздух нормализует функциональное состояние центральной и периферической нервной системы, а также состав и физико-химические свойства крови. Применение отрицательных аэроионов улучшает легочную вентиляцию, увеличивает потребление кислорода и выделение углекислоты, усиливает окислительно-восстановительные процессы в тканях. Отмечено стимулирующее действие аэроионов на белковый, углеводный и водный обмены, синтез витаминов (особенно группы В) стабилизирующее влияние на уровень кальция и фосфора в организме, на концентрацию сахара в крови.

При аэроионизации нормализуется артериальное давление, стимулируются защитные силы организма, повышается устойчивость к охлаждению, недостатку кислорода, инфекциям и аллергиям. Присутствие в воздухе аэроионов ускоряет заживление ран, ожогов. Ионизация воздуха улучшает общее самочувствие, снижает физическую и умственную усталость, оказывает успокаивающее действие.

В настоящее время проблема ионизации воздуха приобретает все более актуальный характер, как в России так и за рубежом. Появляется огромное количество аэроионизаторов различного типа, которые далеко не всегда обеспечивают надлежащее качество и количество легких отрицательных ионов, а зачастую являются даже опасными для здоровья человека. Поэтому необходим серьезный научный подход к данной проблеме.

1. Структура ионов и процесс их формирования

1.1. Структура ионов

Для газовых смесей, следовательно, и для атмосферного воздуха можно предполагать, что легкие ионы представляют собой смесь газов, состав которых в результате процессов обмена постоянно изменяется. Ионизированными центральными молекулами этих смесей могут быть ионы — НэО (Н20), О^, N0^ , N0^ > соответственно 02, N02, N0“ ионы, на которых ограниченное число других молекул воздуха Н20, N2, 02, и молекул СО 2,быстро сменяясь, временно напластовывается.

Положительные и отрицательные ионы имеют две существенно различные структуры.

Положительные легкие ионы состоят из положительно ионизированной центральной молекулы, окруженной относительно плотным слоем нейтральных поляризованных молекул. Однако эти молекулы не имеют прочной связи с центральной молекулой, а касаются ее только кратковременно и в результате процессов соударений непрерывно заменяются другими молекулами. Зона, в пределах которой происходит этот быстрый обмен молекулами, представляет собой примерно сферу, в центре которой находится ионизированная молекула, а радиус сферы примерно равен учетверенному радиусу ионизированной молекулы. Количество молекул, принимающих в каждый момент времени участие в процессе обмена, составляет дня положительных ионов максимум двенадцать. Отрицательные легкие ионы состоят из двух соприкасающихся молекул и обладая относительно большой энергией связи продолжительное время находятся в состоянии взаимного соприкосновения. Одна из них, благодаря захвату электрона, является отрицательно ионизированной центральной молекулой то время, как другая представляет собой нейтральную поляризованную молекулу. Эта пара окружена другими молекулами, которые однако не образуют с ней прочного соединения, а только кратковременно касаются молекулярной пары и в результате процессов соударений постоянно

заменяются другими молекулами. Зона, в пределах которой происходит этот обмен молекулами примерно имеет форму тора (кольца), средняя плоскость которого перпендикулярна оси молекулярной пары. Число молекул, принимающих в любой момент времени участие в процессах обмена, составляет для отрицательных ионов максимум пять. Отсюда находит свое объяснение постоянно получающаяся в процессе измерений при атмосферном давлении более высокая подвижность отрицательных ионов по сравнению с подвижностью положительных ионов.

Наряду с атмосферными легкими ионами в атмосферном воздухе присутствуют еще другие группы частиц: положительно или отрицательно заряженные ионы средних размеров, а также заряженные или незаряженные ядра конденсации. Заряженные ядра конденсации называются также тяжелыми ионами. Известно, что большие носители зарядов не образуются из легких ионов в результате постоянного наслоения молекул, а образуются исключительно в результате наслоения легких ионов на уже существующие (не заряженные) частицы, парящие в воздухе.

1.2. Малые, средние, большие и мультпимолекулярные аэроионы

Из физики незаряженных газов для больших времен известно, что в ионизированных газах при больших давлениях можно найти не только мономолекулярные, но и моноатомные ионы, а кроме того и сравнительно небольшое число более тяжелых («мультимолекулярных») ионов. Мобильность этих ионов значительно меньше, чем мобильность мономолекулярных ионов; кроме того, они наблюдались в разнообразных газах и смесях газов при измерении мобильности, а также посредством масс спектрографии.

Другие наблюдения мультимолекулярных («атмосферных») ионов имели место в метеорологии и климатологии. Была произведена классификация их на «малые», «средние» и «большие» мультимолекулярные ионы, причем «малые» мультимолеку-, лярные ионы были определены как ионы с мобильностью меньше, чем приблизительно 2 см2/(В сек), «средние» как ионы с мобильностью около 0,01 см2 /(В сек) и «большие» как ионы с мобильностью меньше 0,001 см2/(Всек).

«Средние» и «большие» мультимолекулярные ионы заряжаются ядром конденсации «ядра Аткина», которые также существуют как нейтральные частицы. По-видимому, малые ионы главным образом состоят из молекул Н2Ои 02, но при атмосферном давлении возможно также из С02.

Эксперименты [23] указывают на ионную структуру, в которой одна из нескольких нейтральных молекул воды или газа присоединена к одному положительно или отрицательно заряженному мономолекулярному иону как диполь или силами Ван-дер-Ваальса. В более ранней теории предполагалось, что существуют стабильные группы со статистически изменяющимся размером, который увеличивается только в том случае, если присоединяются новые молекулы. Последние теоретические предположения постулируют комплексы лабильных ионов, которые изменяют свое число молекул благодаря неустановившейся ассоциации и диссоциации при перемещении исходного иона.

Обычно предполагается, что «малые» мультимолекулярные ионы, концентрация которых может меняться от 50 до 4000 на см3 на открытом воздухе, биоклиматически являются более эффективными, чем «средние» и «большие» мультимолекулярные ионы. Это может быть обусловлено, например, тем фактом, что малые ионы могут проникать в альвеолы легких человека более просто, чем средние и большие ионы.

В климатологии часто делают различие между мультимолекулярными «естественными» и «искусственными» атмосферными ионами, причем первые создаются радиоактивным излучением почвы, ядрами в воздухе (например, излучением Яа и его продуктами распада) и космическими лучами, «искусственные ионы» могут быть соз-

даны радиоактивными источниками или электрическими разрядами. Нельзя не принять во внимание то, что им соответствует разница в физико-химических структурах и поэтому возможна разница в биологическом воздействии естественных и искусственных воздушных ионов.

1.3. Общие процессы формирования ионов воздуха

Ионы воздуха создаются главным образом ионизацией однокомпонентных молекул воздуха и последующими процессами взаимодействия между электронами, ионами и/или различными молекулами или атомами воздуха.

Присоединением электронов* к нейтральным молекулам высокого электронного подобия, таким как кислород, формируются отрицательные ионы. Ионы и возбужденные атомы могут вызывать химические реакции, например, два возбужденных атома могут объединиться в молекулу, которая, однако, будет немедленно ионизирована освобожденным возбуждением и связывающей энергией. Радиация также может создать новые химические компоненты в воздухе. Так, хорошо известен процесс формирования озона и различных азотных окислов.

Положительные и отрицательные мономолекулярные ионы получающиеся в результате этих процессов, являются объектом дальнейшего взаимодействия с нейтральными молекулами воздуха. Положительные ионы могут переносить свой заряд молекулам с более низким потенциалом ионизации. Аналогично молекулы более высокой электронной однородности могут забирать излишек электронов от отрицательных ионов. Более того, электрические силы между зарядом мономолекулярного иона и вводимыми дипольными моментами нейтральных молекул могут привести к присоединению таких молекул к ионам. Полярные молекулы или молекулы с высокой степенью возможности поляризации особенно удобны для такого «формирования групп». Из-за высокой скорости столкновения между ионами и нейтральными молекулами в воздухе (около 5×109 за секунду) и их низкой естественной концентрации (меньше чем один ион на 10 молекул воздуха), по-видимому, возможно также и то, что газы с очень низкой концентрацией в воздухе могут вносить свой вклад в композицию малых атмосферных ионов.

Результат действия малых ионов нейтрализуется некоторыми процессами аннигиляции: рекомбинацией на воздухе, разряжением на твердых поверхностях и присоединением к взвешенным частицам в среде, образующей воздух, их большим ионам. Отсюда среднее время жизни малых атмосферных ионов ограничено и оценивается в диапазоне от нескольких секунд до нескольких минут в зависимости от разницы в чистоте воздуха.

1.4. Длительность жизни легких и тяжелых аэроионов

Жизнь легкого аэроиона коротка. Различные авторы по-разному определяют длительность этой жизни — от долей секунды до нескольких минут. Сроки жизни легкого аэроиона зависят от чистоты газа или воздуха, в котором он находится. Чем чище воздух, тем меньше в нем ядер конденсации, пылинок и других грубо- или тонкодисперсных частиц и тем жизнь аэроиона продолжительней. В загрязненном воздухе жизнь легкого аэроиона резко сокращается, ибо он, осев на какую-либо частицу, превращается в тяжелый или медленно-подвижный аэроион. В виде тяжелого аэроиона он может продолжать жить далее, пока не соединится с аэроионом другой полярности.

Исследования показали, что тяжелые аэроионы в населенных помещениях живут часами, образуя устойчивую аэродисперсную систему. Легкие аэроионы кислорода воздуха, оседая на выдохнутых человеком частицах пара, превращаются в тяжелые аэроионы, которые образуют в дыхательной зоне человека ионное облако. Часть этого облака человек вдыхает обратно. Такое явление имеет место в закрытых помещениях

с более или менее застоявшимся воздухом. Во внешнем воздухе, где такого облака может не быть вследствие движения воздуха, легкие аэроионы кислорода утяжеляются в верхних дыхательных путях. Не исключена возможность того, что все же часть легких аэроионов при вдохе достигнет альвеолярной стенки.

2. Взаимоотношения температурно-влажностного

и электро-аэродинамического режимов в помещениях с кондиционированным воздухом

Оценивая состояние воздушной среды в закрытых помещениях с высокой ее чистотой по показателям температур^, относительной влажности, скорости движения воздушного потока и аэроионизации был отмечен интересный факт. В чистых комнатах, в условиях деионизации воздушной среды показатели температуры и относительной влажности в течение рабочего дня претерпевали значительные изменения (табл 1). Одновременно с этим, лица, работающие в этих помещениях, в ряде случаев отмечали температурно-влажностный дискомфорт.

Изменения относительной влажности и температуры в чистых комнатах

в условиях деионизации воздуха

Показатели микроклимата Время суток, час Амплитуда колебаний

08.00 11.00 13.00 15.30

Относительная влажность, % 38,50.2 48,00,7 45,50,4 55,01,0 16,5

Температура,°С 20,50,4 19,50,4 21,50,2 22,50,4 3,0

НПФ «Сапфир» было высказано предположение, что в закрытых помещениях с кондиционированным воздухом резкое уменьшение количества положительных и отрицательных аэроионов может приводить к изменению заданного температурновлажностного режима, так как нарушены взаимоотношения микроклиматической триады — «температура — влажность — аэроионизация», всегда существующей в естественных условиях.

Надо полагать, что именно в закрытых помещениях с деионизированным воздухом изменения взаимоотношений этой триады будут наиболее выражены, что отразилось на неустойчивости заданного температурно-влажностного режима.

После создания дополнительной ионизации, способствующей компенсации аэро-ионной недостаточности в помещениях, заданный температурно-влажностный режим в течение рабочего поддерживался более устойчиво (табл. 2).

Изменения относительной влажности и температуры в чистых комнатах в условиях компенсации аэроионной недостаточности.

Показатели микроклимата Время суток, час Амплитуда колебаний

08.00 11.00 13.00 15.30

Относительная влажность 48,00,7 52,00,1 51,00,1 55,00,1 7,0

Температура 20,50,2 21,00,1 21,00,1 22,00,3 2,0

Таким образом, в помещениях с кондиционированным воздухом при поддержании высокой чистоты его отмечается взаимосвязь температурно-влажностного и элек-тро-аэродинамического режимов.

Для обоснования отмеченного факта можно привести некоторые теоретические предпосылки о наличии электрических эффектов на границах раздела двух фаз «вода-воздух» с позиций двойного электрического слоя. В естественных условиях особенности строения двойного электрического слоя влияют на заряжение мелких облачных капель, растущих за счет конденсации. Если ограничиться электростатическим приближением в рассмотрении взаимодействия атмосферных ионов с поверхностным полем капли, то поле двойного электрического слоя можно трактовать как поле сферического конденсатора с разностью потенциалов между обкладками, равной поверхностному скачку потенциала. В этом случае, в область действия двойного электрического слоя с одинаковой вероятностью могут попадать как положительные, так и отрицательные ионы, но поле будет разделять ионы разных знаков. В случае положительного скачка потенциалов, направленного в глубь капли, отрицательные ионы будут затягиваться в глубь капли, а положительные — выталкиваться на поверхность. При обратной полярности соотношения для отрицательных и положительных ионов будут противоположны. Можно предположить, что в герметически закрытых помещениях при условии почти полного отсутствия аэроионов могут происходить изменения электрических эффектов двух фаз «вода-воздух», что в свою очередь, вероятно, и обусловливает наблюдаемые нами значительные колебания относительной влажности и связанной с нею температуры воздуха. В условиях компенсации аэроионной недостаточности, т.е., когда в воздушной среде имеются ионы, могут происходить электрические эффекты, характерные для фазовых взаимоотношений в системе «вода-воздух». При этом полное изменение химической энергии гидратации ионов определяется суммой всех эффектов.

Эффект поляризации Епол, и Еотт взаимно компенсируются, А составляет более 50 %, В — более 30 %, остальные от 1 до 10 % общей энергии. В присутствии ионов часть растворителя (в наших условиях молекулы или группы молекул) связываются в сольватную оболочку, т. е., при увеличении концентрации аэроионов происходит частичная десольватация.

Можно предположить, что в условиях дополнительной аэроионизации в помещениях с жестким режимом кондиционирования, в частности, в чистых комнатах, при соответствующей концентрации ионов происходит увеличение ассоциации, а затем при некотором повышенном содержании ионов влажность воздушной среды в определенной степени увеличивается, удерживается на более стабильном уровне. Соответственно устойчивость относительной влажности и температура окружающей среды будут более постоянны.

Отмеченный факт возможных изменений взаимоотношений постоянно существующей триады «температура — влажность — аэроионизация» при исключении последней представляет научный интерес и может иметь определенное практическое значение при проектировании систем кондиционирования воздуха с встроенными ионизаторами.

3. Механизмы физиологического действия аэроионов на организм человека

Исследования электрических компонентов внешней среды, в частности ионизация воздуха, имеют большое значение в плане оценки биологического влияния этих факторов, выявления их роли в эволюционном развитии животного мира, а также анализа механизмов действия с целью объяснения тех изменений в организме, которые могут наблюдаться в разнообразных помещениях с резким нарушением количественной и качественной характеристики электрических параметров.

Гигиенические и клинико-физиологические исследования, проведенные в производственных помещениях со сниженным уровнем аэроионизации, показали наличие выраженных изменений функционального состояния жизненно важных систем организма человека. В связи с этим возникла необходимость нормализации нарушенной микроэкологии, т.е. компенсация аэроионной недостаточности. Физиологогигиеническое обоснование оптимальных уровней аэроионизации можно было проводить только при условии знания основных путей и механизмов действия аэроионов. По вопросу биологического действия аэроионов существует гипотеза, выдвинутая Л.Л. Васильевым в 1934 году, [5] согласно которой, физиологическое действие аэроионов объясняется наличием электрГогуморального обмена, состоящего из двух фаз: фазы тканевого и легочного электрообмена

а) Фаза тканевого электрообмена

Поток аэроионов, бомбардируя кожу, может повышать ее газообмен и возбуждать рецепторы кожи. Однако на долю кожной поверхности человека приходится менее 1 % газообмена, поэтому поступление аэроионов кислорода в организм таким путем чрезвычайно мало. В то же время А.Л. Чижевский [34] установил влияние аэроионов на рецепторы кожного покрова: изменение тактильной и болевой чувствительности, диаметра капилляров, усиление роста волос. Влияние аэроионов на рецепторы кожи способно рефлекторно изменить тонус центральной нервной системы, а тем самым повлиять на метаболизм в организме. Действие аэроионов кислорода на кожу называется внешним электрообменом.

б) Фаза легочного электрообмена

Однако главным путем влияния аэроионов кислорода являются легкие, где осуществляется внутренний электрообмен между электрической аэросистемой и электростатической системой организма, т. е. осуществляется воздействие аэроионов кислорода на гидрозоль, каким является организм.

Поверхность альвеол легких у взрослого человека составляет около 100 м2, что в 50 раз превышает поверхность тела. По этой территории течет кровь, отделенная от альвеолярного воздуха всего 2 слоями клеток — эндотелия капилляров и клеток стенки альвеол. Ведущую роль в газообмене играют эритроциты, суммарная поверхность которых равна 3000 м2, т. е. в 1500 раз больше поверхности тела.

Еще в 1924 году А.Л. Чижевский установил, что некоторая часть отрицательных аэроионов при дыхании оседает на стенках верхних дыхательных путей, трахеи, бронхов и бронхиол. Однако около 80 % из них достигает альвеол, где совершается газообмен. Заряжая электроотрицательно стенки воздухоносных путей, они отталкиваются от них и легче достигают альвеолярных мешочков. Одновременно они раздражают рецепторы этих путей и благотворно влияют на тонус центральной нервной системы, в частности, на дыхательный центр, что проявляется углублением и уреже-нием дыхания, а также усилением газообмена в легких. Положительные аэроионы вызывают противоположный эффект.

Аэроионы поступают в кровь путём диффузии и электростатической индукции. Однако этот вопрос требует специальных исследований. Считается, что система «воздух-кровь» является самой ответственной за жизнь системой общения организма с окружающей средой, определяющей организменный электрообмен.

Все жидкости организма (цитоплазма клеток, межклеточная жидкость, лимфа и кровь) являются электростатическими коллоидами, т. к. их частицы несут отрицательный заряд. Такой же заряд имеют плазма и все форменные элементы крови, что создает электрораспор между ними и препятствует их сталкиванию друг с другом и агрегации, а это создает оптимальные условия для циркуляции и микроциркуляции крови.

Поступление в кровоток отрицательных аэроионов увеличивает отрицательные заряды элементов крови и электрораспор между форменными элементами крови и

белками плазмы. Кровь, обогащенная аэроионами кислорода, омывает все клетки организма, увеличивает их отрицательный заряд и поддерживает золеобразное состояние их цитоплазмы и оптимальный уровень метаболизма. Отрицательные аэроионы обеспечивают стабильное состояние клеток и предотвращают их электроразрядку, а следовательно, коагуляцию протоплазмы с переходом из золя в гель.

Положительные аэроионы уменьшают отрицательный заряд форменных элементов крови, белков плазмы и мембран всех клеток организма, что снижает устойчивость электростатических систем и способствует их коагуляции — изменению коллоидного состояния цитоплазмы в сторону геля, приводящему к ухудшению метаболизма.

А.Л. Чижевский и его последователи обнаружили [6, 34], что аэроионы кислорода благотворно влияют на состояние нервной системы, кровяное давление, тканевое дыхание, обмен веществ, на физико-химические свойства крови, соотношение белковых фракций плазмы, кроветворение, сахар крови, электрокинетический потенциал эритроцитов, митогенетический режим тканей, изоэлектрические точки тканевых коллоидов. Такую универсальность физиологического действия аэроионов кислорода А.Л. Чижевский объясняет тем, что они влияют на основные электрообменные и физико-химические процессы, нормализуя их интенсивность.

Вдыхание отрицательных аэроионов активирует ферменты, витамины, гормоны и прочие активаторы или катализаторы биохимических реакций. Обмен веществ возможен только при одном обязательном условии — ионизации обменивающихся веществ. Электрически нейтральные молекулы веществ никогда не вступают ни в какие биохимические соединения и не участвуют в обмене. Окисление в конечном итоге сводится к потере электронов окисляемым веществом, а восстановление — к их присоединению. Отсюда вытекает, что любая окислительно-восстановительная реакция представляет собой электронный процесс. Поэтому отсутствие или дефицит ионизированного кислорода во вдыхаемом воздухе может вызвать нарушение в работе дыхательных катализаторов.

Еще в своих первых экспериментах 1918-1924 годов А.Л. Чижевский подметил, что систематическое вдыхание отрицательных ионов замедляет старение подопытных крыс и продлевает их жизнь на 40 %. В 1934 году его ученик А.Л. Войнар подтвердил этот факт и обнаружил новые аргументы, говорящие о возможности с помощью аэроионов кислорода замедлять старение. Он доказал, что в ходе онтогенеза уменьшается гидрофильность коллоидов организма. Если у эмбриона человека мозг содержит 92 % воды, то у 60-летнего человека — только 80 %. Уменьшается в тканях и содержание «связанной» воды: мозг эмбриона содержит 30 % такой воды, а мозг пожилого человека — лишь 20%. Данное явление автор объясняет уменьшением «сродства» коллоидов тканей к воде в результате снижения их электрического заряда, что приводит к ухудшению тканевого электрообмена.

i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Возникает вопрос о способе замедления электроразрядки коллоидов, а тем самым замедления старения. Считается, что систематическое введение в организм оптимального количества аэроионов кислорода может защитить биоколлоиды, замедлив их прогрессирующую электроразрядку и старение. В 1934 году А.Л. Чижевский, Л.Л. Васильев, А.Л. Войнар выдвинули электрохимическую теорию омоложения и профилактики старения, которая и в наше время представляется весьма убедительной.

К настоящему времени доказано, что при старении действительно происходит разрядка электростатических систем организма (уменьшение величины мембранного потенциала), неуклонное снижение ионизации цитоплазмы, в результате чего укрупняются частицы биоколлоидов; падает их способность к набуханию, наступает дегидратация и уплотнение протоплазмы. Названные физико-химические изменения коллоидов характерны для старения. Доказано что отрицательные аэроионы продляют жизнь, а полностью дезионизированный воздух вызывает заболевания и гибель жи-

вотных. Активное улучшение дыхательной среды в жилых и рабочих помещениях путем обогащения воздуха аэроионами кислорода может существенно повысить работоспособность, уменьшить утомляемость, улучшить здоровье и подарить людям несколько дополнительных лет жизни.

4. Дозировки аэроионов отрицательной и положительной полярности при искусственной аэронизации воздуха На основании многих тысяч наблюдений [11, 39] во внешней атмосфере в большинстве точек земного шара концентрация аэроионов равна 1000 аэроионов обеих полярностей в 1 см3. Однако есть места, где количество аэроионов достигает 5000 и 10000 в 1см3.

Так как дыхательный аппарат является основным местом приложения аэроионов, можно рассчитать сколько в сутки вдохнет человек аэроионов, находясь все время в наружном воздухе. Получим: 350 • 16 • 60 • 24 • 1000 = 8,0 • 109, где 350 — число куб. см. воздуха в одном вдохе;

16 — число вдохов человека в спокойном состоянии в 1 мин.,

60 — число минут в 1 часе,

24 — число часов в сутки,

1000- количество аэроионов в 1 см3.

Это число было названо биоединицей аэроионизации и принято на Международном конгрессе по биологической физике (сентябрь 1939 г., Нью-Йорк).

Эффективность ионизации воздуха оценивается коэффициентом униполярности У, который определяется как отношение положительных ионов к отрицательным.

где *ё,д — коэффициент униполярности по легким и тяжелым ионам соответственно; пё — количество легких ионов, шт;

— количество тяжелых ионов, шт;

Гигиенические требования к аэроионному составу воздуха производственных и общественных помещений определяются СанПиН 2.2.4.1294-03 от 16 июня 2003 года [9].

Аэроионный состав воздуха устанавливается в зависимости от процессов ионизации и деионизации. Нормируемыми показателями аэроионного состава воздуха производственных и общественных помещений являются:

— концентрации аэроионов (минимально допустимая и максимально допустимая) обеих полярностей р+. р’, определяемые как количество аэроионов в одном кубическом сантиметре воздуха (ион/см3);

— коэффициент униполярности У (минимально допустимый и максимально допустимый) определяемый как отношение концентрации аэроионов положительной полярности к концентрации аэроионов отрицательной полярности.

Минимально и максимально допустимые значения нормируемых показателей определяют диапазоны концентраций аэроионов обеих полярностей и коэффициента униполярности, отклонения от которых могут привести к неблагоприятным последствиям для здоровья человека.

Значения нормируемых показателей концентраций аэроионов и коэффициента униполярности по СанПиН 2.2.4.1294-03 приведены в таблице 3.

Оптимальная концентрация легких положительных ионов — 1500-3000 ион/см Оптимальная концентрация легких отрицательных ионов — 3000.. .5000 ион/см

Нормируемые показатели концентраций аэроионов и коэффициента униполярности

по СанПиН 2.2.4.1294-03

Нормируемые показатели Концентрация п+ (ион/смЗ) Концентрация п‘ (ион/смЗ) Коэффициент униполярности У

Минимально допустимые п+ >= 400 п- >= 400 0,4. 1,0

Максимально допустимые п+ < 50000 >п-< 50000

5. Методы ионизации воздуха

Аппараты, с помощью которых осуществляется искусственная ионизация воздуха для использования в практических целях, называются аэроионизаторами или генераторами аэроионов. Их разделяют на аэроионизационные установки и портативные бытовые аэроионизиторы, они могут быть местные и общие, стационарные и переносные, регулируемые и нерегулируемые, генерирующие униполярные и биполярные легкие аэроионы.

В зависимости от физического явления, используемого в той или иной конструкции аэроионизатора для продуцирования аэроионов, различают следующие типы:

Плазменные ионизаторы — ионизация воздуха обеспечивается при горении винного спирта в изолированном металлическом сосуде, поверхность которого соединена с источником отрицательного напряжения (40 . 50) тыс. В. Недостатки очевидны — в воздухе содержится копоть и он имеет неприятный запах.

Ультрафиолетовые ионизаторы — ионизация воздуха достигается при его облучении ультрафиолетовым излучением кварцевой лампы. Эти излучения вредны для здоровья человека, а так же при данном способе ионизации выделяются вредные для здоровья человека газы, поэтому известные ультрафиолетовые генераторы аэроионов не получили широкого распространения.

Термические ионизаторы — ионизация воздуха накаленной проволокой. Такой ионизатор излучает только тяжелые отрицательные аэроионы, а в воздухе образуется металлическая пыль с концентрацией до 100 миллионов частиц в одном кубическом сантиметре.

В современных термоионизаторах, созданных на кафедре физики Тартуского государственного университета, источником ионизации служит нихромовая спираль, укрепленная в полусферическом отражателе. В ионизаторах данного типа достигается практически полная униполярность генерируемых ионов и достаточно высокая их концентрация. Они весьма эффективны в тех случаях, когда целесообразно сочетание аэроионотерапии с тепловым эффектом, но они не получили широкого распространения, т. к. при их работе образуются много вредных биологически активных газов.

Коронные ионизаторы — создают аэроионы на небольшом расстоянии от прибора (15 . 30 см) за счет коронного электрического разряда. Между проволочными корони-рующими и пластинчатыми заземленными электродами при подаче высокого напряжения возникает коронный разряд и происходит зарядка частиц на коронирующие электроды подается выпрямленное высокое напряжение положительной полярности (12 . 13) кВ. Одновременно вырабатывается большое количество озона и окислов азота.

Кроме положительных воздействий на организм при генерировании’ионов методами коронного разряда, нагревания тела, ультрафиолетового облучения, помимо ионов, называемых малыми, в воздухе образуется значительное количество побочных больших ионов, вторичных элементов, опасных концентраций окислов озона и азота, которые при определенных концентрациях оказывают вредное влияние. Так, атомы О

и N комбинируют с образованиями N0, К203, М205 и т.п., при последующем реагировании с парами воды образуют азотную кислоту. Озон при вдыхании раздражает ткани человека из-за окисления. Эти типы генераторов ионов не могут быть успешно использованы для ионизации воздуха в помещении, где присутствуют люди.

Радиевые ионизаторы — обеспечивают высокую ионизацию воздуха за счет испускания альфа-, бета- и гамма- лучей. Анализ применения радиоактивных изотопов в качестве ионизаторов воздуха не приводит к образованию побочных частиц, что способствует успешному применению и разработке устройств на основе различных изотопов и способствует улучшению качества ионизации воздуха и не оказывает вредных воздействий на человека. Одним из первых таких ионизаторов был ионизатор «Янтарь», разработанный в Казанском авиационном институте, имел коэффициент униполярности 0,7 и регулируемую концентрацию аэроионов от 20000 до 150000 на смЗ. Но ввиду того, что в гражданской отрасли использование изотопных ионизаторов невозможно, ионизаторы данного типа не нашли широкого применения.

Водяные ионизаторы — их принцип действия основан на механическом дроблении, распылении или пульверизации воды. Гидроион — электризованная частица воды

— является лишь средством переноса аэронов кислорода из внешней среды в дыхательные пути. Поскольку полярность создаваемых аэроионов зависит от химического состава воды, требуется ее постоянный контроль.

Е.А. Чернявским создан гидродинамический ионизатор воздуха, в котором для искусственной аэроионизации использован принцип баллоэлектрического эффекта. Одной из важнейших особенностей гидроаэроионизаторов является образование в процессе их работы не только легких газовых ионов, но и легких гидроионов. Чернявским было создано 11 моделей гидроаэроионизаторов, предназначенных для группового лечения. Наибольшее распространение в медицинских учреждениях получил ионизатор типа «Серпухов-1», обеспечивающий вблизи прибора довольно высокую ‘ концентрацию ионов до 500,000 в 1 см3 воздуха (на расстоянии 15 см от прибора) при коэффициенте униполярности (0,2 . 0,3). Преимуществом данной модели гидроионизатора является помимо простоты устройства и дешевизны, её экономичность. К недостаткам можно отнести повышение влажности в помещении.

Электроэффлювиальные ионизаторы. Данный метод тщательно исследован с точки зрения влияния на организм человека и считается наиболее «чистым» методов получения аэроионов. Под воздействием высокого напряжения, приложенного к металлическим иглам с диаметром острия (5 . 10) мкм происходит стекание электронов

— электрический эффлювий. Молекулы кислорода воздуха захватывают эти электроны, приобретают отрицательный заряд и становятся отрицательными аэроионами.

Рабочим органом установки для получения аэроионов отрицательной полярности по методу Чижевского является электроэффлювиальная люстра (рис. 1), соединенная с источником тока отрицательной полярности.

Электроэффлювиальная люстра представляет собой легкий металлический обод-кольцо, изготовленный из латунной трубки или стали, на котором натянуты по двум взаимно перпендикулярным осям никелиновые или нихромовые проволоки. Плотность расположения игл равна 474 острия на 1 м2 площади сетки. Одним из главных достоинств электроэффлювиального способа получения униполярных аэроионов является то, что он полностью свободен от озона и окислов азота при определенных физических параметрах электроэффлювиальной люстры и нормальной ее работе.

Трудность использования данного метода ионизации состоит в том, что для достижения результатов, описанных Чижевским, необходимо соблюсти предложенные им особенности конструкции ионизаторов, например плотность расположения игл должна быть равна не менее 474 острия на 1 м2 площади сетки, что существенно удорожает электроэффлювиальный ионизатор и увеличивает его массогабаритные пока-

затели. Появившиеся в последнее время портативные ионизаторы электроэффлюви-ального типа в большинстве своем вырабатывают аэроионы в недостаточном количестве, и практически не оказывают положительного действия на здоровье человека.

Рис. 1. Электроэффлювиальная люстра:

1 — высоковольтный изолятор; 2 — металлические иглы; 3 — кольцо; 4 — рама.

Аэронизация озоном — данный метод ионизации совмещен с кондиционированием воздуха и основан на обогащении обрабатываемого воздуха озоном, при этом происходит поддержание и сохранение легких аэроионов в основной отрицательной полярности за счет способности озона образовывать легкие ионы в процессе перезарядки и уменьшения количества тяжелых ионов. В помещении сначала ионизируются обычные компоненты воздуха — молекулы азота, кислорода, углекислого газа, паров воды и т.д. Образующиеся первичные ионы далее при взаимодействии перезаряжаются с второстепенными составляющими воздуха (озоном, окислами азота и др.), а также с частицами пыли, которые всегда содержаться в воздухе. При озонировании воздуха в нем происходит возрастание концентрации легких отрицательных ионов при почти неизменной концентрации тяжелых отрицательных ионов. Это объясняется тем что озон как сильный окислитель способен разрушать «посадочные» площадки (материальные частицы), составляющие основу тяжелых ионов, причем процесс перезарядки и рекомбинации ионов происходит быстрее по сравнению с естественными процессами рекомбинации ионов. Исследованиями установлено [16], что содержание первичных легких ионов снижается после прохождения через систему кондиционирования воздуха в (6 . 10) раз, что отрицательно сказывается на самочувствии и увеличивает заболеваемость людей. В связи с этим в настоящее время остро встал вопрос об оснащении систем кондиционирования воздуха ионизаторами различного типа, однако эти устройства нецелесообразно использовать при большом количестве кондиционируемых помещений, а установка ионизатора в общий воздуховод неэффективна, т.к сопряжена со значительными потерями ионов на их оседание и нейтрализацию вплоть до 80%. Наиболее современным и эффективным методом на сегодняшний день является обработка воздуха озоном. Причем данный метод помимо обогащения

воздуха аэроионами имеет целый ряд положительных эффектов: обезораживание воздуха, дезодорация, а так же микроконцентрации озона стимулируют биохимические превращения в организме человека, что положительно сказывается на его здоровье. Обработка воздуха озоном происходит в кондиционерах с контактными аппаратами -форсуночной камерой или ЦПА (рис. 2).

Ионизированный очищенный воздух

Рис. 2. Схема обработки воздуха озоном в циклонно-пенном аппарате:

1 — пенная камера; 2 — емкость с озонированной водой; 3 — элиминатор; 4 — завихритель.

Впервые озон в кондиционировании воздуха в России был внедрен ВНИИ «Кондиционер» в 1979 году. Немного раньше он был использован в ФРГ фирмой «Альфред Тевис», в Австрии — «Крист», во Франции — «Трелигаз». Основным препятствием на пути повсеместного внедрения данного метода является определение необходимой дозы озона, расходуемой на восстановление естественного фона озона и отрицательных ионов в кондиционированном воздухе. Эта Доза должна быть определена с высокой точностью, так как даже незначительная ошибка может привести к негативным последствиям — либо озона будет недостаточно для эффективной ионизации и обез-ораживания воздуха, либо его концентрация превысит допустимую концентрацию, что недопустимо, т.к. в больших концентрациях озон опасен для здоровья человека. (ПДК озона в воздухе составляет 100 • Ю-6«/ /’ 3)

Очевидно, что дальнейшее развитие устройств ионизации пойдет по пути совмещения аэроионизаторов с системами кондиционирования воздуха и на данном этапе наиболее предпочтительным методом для этой цели является получение ионизированного воздуха путем обработки его озоном. Следует отметить, что многочисленные ионизаторы, использующие данный метод, не соответствуют жестким критериям безопасности по содержанию в воздухе озона, что лишь компрометирует этот высокоперспективный метод. Для создания действительно безопасных и эффективных систем ионизации воздуха с помощью озона необходим серьезный научный подход, создание математических моделей процесса, а также экспериментальные и натурные исследования.

[1] Алексеев В.П. Творчество А.Л. Чижевского и современная наука // Природа. — № 10. — М.: АН СССР 1982.-С. 58-60.

[2] Богатых С.А. Исследование условий обитаемости судовых помещений при обработке воздуха в циклонно-пенных аппаратах // Судостроение, 1962. — № 5. — С. 22 — 27.

[3] Богатых С.А. Циклонно-пенные аппараты. — Л.: Машиностроение, 1978. — 225 с.

[4] Богословский В.Н., Кокорин О.Я., Петров Л.В. Кондиционирование воздуха и холодоснаб-жение. — М.: Стройиздат, 1985.

[5] Васильев Л.Л. Влияние атмосферных ионов на организм. — JL: Наука, 1960. — 100 с.

[6] Васильев Л.Л., Лепицкий Д.А. Влияние тяжелых и легких аэроионов на функцианальное состояние нервной системы // Тр. Института по изучению мозга. — Т. 18. — Л.: 1947. — С. 45-52.

[7] Васильев Л.Л., Чижевский А.Л. Проблема органического электрообмена // Проблемы иони-фикации. Труды ЦНИЛИ. — Т. III. — Воронеж: Коммуна, 1934. — С. 335-368.

[8] Виснапуу Л.Ю. Электрическое заражение частиц аэрозоля с применением коронного разряда // Уч. зап. ТГУ. — Тарту; 1975. — Вып. 348. — С. 56-85.

[9] Гигиенические требования к аэроионному составу воздуха производственных и общественных помещений: СанПиН 2.2.4.1294-03 — Введ. 22.04.2003. — М.: ИИЦ Минздрава России, 2003. — 3 с.

[10] Грудина А.И. Об ионизации атмосферы в условиях крупного промышленного города // Гигиена и санитария. — 1978. — № 1. — С. 107-108.

[11] Губернский Ю.Д., Дмитриев М.Т. Атмосферный озон и ионы — основные компоненты свежести воздуха// Природа. — 1976. — № 9. — С. 21-31.

[12] Губернский Ю.Д., Корневская Е.И. Гигиенические основы кондиционирования жилых и общественных зданий. — М.: Медицина, 1978. — 192 с.

[13] Иванов Б. “Люстра Чижевского”: вопросы и ответы // Радио. — 1997. — № 6. — С.ЗЗ.

[14] Истомин Н.И. Все ли аэроионизаторы можно называть “Люстрой Чижевского”? //Радио. -1998.-№ 11.-С. 42.

[15] Карпис Е.Е. Достижения науки и техники в кондиционеростро нении. — М.: ЦНИИТЭстройдормаш, 1979. — Вып. 2 — 5 с.

[16] Курников A.C. Создание математических моделей систем обеспечения обитаемости судов.

— Н. Новгород: ВГАВТ, 2002. — 155 с.

[17] Ленинджер А. Основы биохимии. Перевод с англ. — М.: Мир, 1985. — Т. 1. — 985 с.

[18] Лившиц М.Н. Аэроионификация: Практическое применение — М.: Стройиздат, 1990. — 168 с.

[19] Лившиц М.Н. Социальное значение аэроионификации жилых зданий // Жилище. — 2000. -М.: Стройиздат, 1988. — Ч. 2. — С. 109-113.

[20] Лившиц М.Н. Технические средства для искусственной ионизации воздуха и приборы для измерения концентрации ионов. — М.: 1964. — С. 40-41.

[21] Лившиц М.Н., Румянцев К.И. Аэроионификация промышленных и общественных зданий // Водоснабжение и санитарная техника* 1984. — № 10. — С. 14-16.

[22] Павлов С.Н. Искусственная ионизация чистого воздуха помещений // Водоснабжение и санитарная техника. — 1982. — № 6. — С. 19-21.

[23] Поляков В. Физика аэроионизации // Журнал «Радио». — № 3. — 2002. — С. 36.

[24] Рейнет Я.Ю. и др. Сравнительное исследование аэроионизаторов // Уч. зап. ТГУ. — Тарту, 1982.-Вып. 631.-С. 53-62.

[25] Санадзе Г.И. О нормализации ионизованности воздушной среды различных помещений // Безопасность труда: Сб. науч. тр. ин-тов охраны труда ВЦСПС. — М.: Профиздат, 1984. — С. 72-78.

[26] Секриеру В., Мунтяну Е. Автоматизация аэроионизатора / Журнал «Радио». — № 1. — 2004. -С. 38-39.

[27] Скипетров В.П. Аэроионы и жизнь. — Саранск: Тип. «Красный Октябрь», 1997. — 116 с.

[28] Скипетров В.П. Лечение аэроионами кислорода. — Мордовский ун-т: СВМО, 1995 — 55 с.

[29] Скипетров В.П., Беспалов H.H., Зорькина A.B. Лечение аэроионами кислорода. — Мордовский гос. Университет. — Саранск: СВМО, 2001 — 60 с.

[30] Скипетров В.П., Мартынова В.В. Влияние отрицательных аэроионов кислорода на гемостаз человека. — Мордовский ун-т. — Саранск: 1992, — С. 8.

[31] Скипетров В.П., Мартынова В.В. Влияние отрицательных аэроионов кислорода на свертывание крови. Кардиология, 1995 — 10 с.

[32] Тигринян Р.Я. и др. Влияние ионизированной воздушной среды на гормональные спектры организма человека// Космическая биология и авиакосмическая медицина. — 1980 — № 6 — С. 8.

[33] Физико-математические и биологические проблемы действия электромагнитных полей и ионизации воздуха// Материалы Всесоюзного научно-технического симпозиума. — М.: Наука, 1975.-Т. 1,2.

[34] Чижевский A.JI. Аэроионизация как физиологический, профилактический и терапевтический фактор и как новый санитарно-гигиенический метод кондиционированного воздуха. -1933.-200 с.

[35] Чижевский А.Л. Ионизация газов и атмосферного воздуха // Проблемы ионизации: Тр. ЦНИЛИ. — Воронеж: Коммуна, 1933.-Т. 1.-С. 1-38; С. 112-116; С. 167-218.

[36] Чижевский А.Л. Теоретические основы работы электроэффлювиапьного ионизатора. 1939

[37] Шилкин А.А., Губернский Ю.Д., Миронов А.М. Аэроионный режим в гражданских зданиях. — М.: Стройиздат, 1988. — 169 с.

i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

[38] Шилкин А.А., Соловьев С.П. и др. ,Аэроионный режим помещений при работе бытовых кондиционеров БК-1500 и БК-2500 // Электротехническая пром-сть. Сер. Бытовая электротехника. — 1981. — Вып. 3(64). — С. 1-3.

[39] Шилкин А.А., Соловьев С.П. Рекомендации по совершенствованию аэроионного режима внутренней среды общественных зданий / ЦНИИЭП учеб. зданий. — М.: 1982. — 36 с.

[40] Bachman С.Н., McDonald R.D., Lorenz P.J. Some effects of air ion the activity of rats-Int J Bio-meteorol, 1966, v.10, p. 39-46.

[41] K.T.Fomof,G.O. Gilbert. Stress and physiological, behavioral and performance patterns of children under varied air ion levels. — Int.J.of Biometeorol., 1988, 32: 260-270.

ARTIFICIAL IONIZATION OF AIR

A. S. Kurnikov, A. S. Shirshin

Main principles of artificial ionization of air, the influence of negative ions on the health of the person are considered. The effective and modern method of reception of ionized air by its processing by ozone is offered. The circuit of the processing of air by ozone in the cyclone-foamy device is resulted

УДК 629.122.456.2.011.51.- 691.83

A. E. Мазунин, аспирант.

М. X. Садеков, к. т. н., доцент, ВГАВТ/

603600, Нижний Новгород, ул. Нестерова, 5. E-mail: RedJHunter@mail.ru

ИСПОЛЬЗОВАНИЕ ЭКОЛОГИЧЕСКИ ЧИСТОГО МЕТОДА НАГРЕВА ВЫСОКОВЯЗКИХ НЕФТЕПРОДУКТОВ В РЕЧНЫХ НЕФТЕНАЛИВНЫХ СУДАХ, ВЗАМЕН НАГРЕВА ПАРОМ

Разработка нового, экологически чистого метода нагрева высоковязких топлив, в речных нефтеналивных судах, с использованием СВЧ-энергии. Исполнение и основные сравнительные показатели.

В настоящее время нефтеналивными судами перевозится около 140 млн. т нефтепродуктов, из которых 40 млн. т приходится на долю внутреннего транспорта. Из общего объема нефтегрузов около 55 % приходится на высоковязкие мазуты и нефти, потребляемые в основном крупными теплоэлектростанциями и заводами [1]. В связи с тем, что температуры застывания вязких нефтепродуктов находятся в пределах (+10)

— (36 °С), а в раде случаев и выше (для донных отложений), то при транспортировке нефтепродуктов в судах на днище и бортах происходит образование застывшего слоя, толщина которого может достигать 0,2 м и выше, сокращая тем самым грузовмести-

Кое-что из жизни атмосферных ионов

Кое-что из жизни атмосферных ионов

Здоровья всем, кому не лень или интересно читать нашу информацию!

У всех к всяческому чтиву свое отношение. Любую научно-техническую книгу или статью я вначале просматриваю на предмет: о чем в ней, на каком уровне написано и стоит ли смотреть еще раз. Во второй раз обычно ищется что-то конкретное, поэтому читаются отдельные места. В третий раз, если он наступит – другие отдельные места. У меня есть статьи и книги, зачитанные мною, как говорят, до дыр. И, тем не менее, редко какую работу прочитываешь «от корки до корки». Посему не удивительно, что в одной такой работе (3) с уже отлетевшими от частого употребления обложками на глаза впервые попался абзац, в котором говорится о наличии разницы между естественными и искусственно созданными ионами и делается предположение об их разном терапевтическом действии. Пришлось докапываться до сути процессов ионизации и изучать физико-химические особенности образования и гибели разных ионов.

Представьте себе, вроде бы разобрался в этих тонкостях и хотел даже предложить их вашему вниманию, но потом вспомнил бессмертные слова Козьмы Пруткова о том, что «многие вещи нам непонятны не потому, что они непонятны, а потому, что они не входят в круг наших понятий». Если в понятия, например, слепого не входит понятие о цвете, то ему не объяснить разницы между, например, красной и белой розами, как человеку без обоняния (а такие тоже есть) не объяснить разницы между запахами той же розы и сероводорода.

Конечно, среди читающих эту писульку найдутся и такие, для кого это звучит оскорбительно, поскольку они «и сами с усами». Для них я в конце дам ссылку, где можно найти весьма подробные сведения о том, что и как происходит при ионизации воздуха. Правда, должен оговориться, что эта информация достаточно «древняя», поскольку в круг моих интересов и возможностей теперь не входит такое понятие, как посещение научных библиотек, а книг на эту тему что-то весьма давно не встречал в продаже. Посему не удивляйтесь примитивизму моего изложения. И еще одно. Поскольку я это пишу для того, чтобы несколько повысит уровень знаний в области ионизации воздуха людей, мало знакомых с этим явлением, то тем, у кого волосы выпадают из головы, выпираемые избытком знаний, в том числе и в этой области, не рекомендую затевать спор по излагаемым мной вопросам. Не вижу смысла ввязываться в такой спор. Один мой хороший знакомый в таких случаях не спорил, а говорил: «Ну и помирай дураком».

В приземном слое атмосферы, в котором мы с вами обитаем, в естественных условиях ионизация воздуха производится остаточным радиоактивным излучением земли и горных пород, чаще всего продуктами распада радия, например, радоном, доходящим до земли космическим излучением, путем объемной фотоионизации воздуха ультрафиолетовыми лучами, в том числе и рентгеновскими лучами, стеканием зарядов с острых предметов, в том числе и с иголок хвойных деревьев. Иногда перед грозой или в море на кораблях явление стекания зарядов видно невооруженным глазом и получило название «Огни святого Эльма». (1) В процессе ионизации участвуют также грозы, пожары, распыляемые струи воды, например, водопады. Основным и наиболее стабильным источником ионизации атмосферного воздуха являются все же радиоактивное излучение земли и космические лучи, так как фотоионизация ультрафиолетовыми лучами Солнца происходит только днем, а остальные явления происходят эпизодически и не повсеместно.

Интенсивность образования ионов зависит прежде всего от места измерения, природных условий, времени суток и времени года, а также от температуры и давления воздуха, скорости ветра, осадков. А на спектр образуемых ионов существенно влияет наличие примесей в воздухе, то есть загрязнение воздуха, туман, дождь, снег. В достаточно сухом и чистом воздухе преобладают легкие ионы, а в загрязненном воздухе, при наличии осадков, тумана количество легких ионов может упасть до нуля, зато возрастет количество средних и тяжелых ионов (6) . По устоявшемуся среди специалистов мнению терапевтическую ценность представляют легкие ионы, а средние и тяжелые ионы либо бесполезны, либо, в некоторых условиях, вредны (3) .

Сам процесс ионизации достаточно сложен, чтобы забивать этими сведениями ваши мозги. При ионизации параллельно идет несколько процессов:

непосредственное образование пар ионов за счет того, что ионизирующая частица или гамма-квант срывает с внешней орбиты нейтральной молекулы электрон, создавая таким образом положительный ион, а оторванный электрон тут же прилипает к первой же молекуле, с которой он столкнется, и либо образует отрицательный ион, либо нейтрализует заряд, если молекула положительно заряжена (5) ;

возбуждение молекул без образования ионов, при котором какой-то электрон, может быть и не один, выталкивается на более высокую орбиту, но не отрывается; встреча двух таких молекул приводит к тому, что они весь запас своей энергии вкладывают в «пинок» одному из электронов на внешней орбите, возвращая за счет этого свои возбужденные электроны на прежние орбиты и превращаясь в положительный ион, а электрон, который «выпиннули», начнет передавать при столкновениях с другими молекулами часть своей энергии этим молекулам, создавая тем самым иногда очень большое количество пар ионов, пока, растеряв всю энергию, окончательно не прилипнет к какой-либо нейтральной молекуле, создав тем самым еще один, но уже отрицательный ион (1) ;

диссоциация молекул, при которой молекулы разбиваются на разнополярные ионы атомов или осколков молекулы, которые затем могут воссоединиться с подобной оторванной части другой частицей и нейтрализоваться, либо вступить в реакцию с какой-либо нейтральной молекулой и образовать ион нового вещества – подобным образом возникают молекулы озона, окислов азота и так называемый оксониум (в переводе – ион) – это молекула воды, к которой пристал положительно заряженный протон водорода, у которого содрали с орбиты единственный электрон (1) ;

перезаряд ионов при встрече иона какого-то вещества с нейтральной молекулой, имеющей более низкий потенциал ионизации, в результате чего нейтральная молекула станет ионом, а ион превратится в нейтральную молекулу (5) .

Все эти ионы называются первичными, так как они представляют собой заряженные атомы или молекулы и живут в таком состоянии не более 10 -7 секунды, то есть одну десятимиллионную долю секунды (5) .

Кто-то из не лишенных любопытства и терпения ученых мужей подсчитал (у ученых жен интересы лежат в других местах), а кто-то такой же проверил расчеты и подтвердил, что в кубическом сантиметре воздуха находится 10 19 молекул газов (эта цифра получится, если десять миллиардов умножить на один миллиард). Другой ученый муж установил, что каждый ион за одну секунду сталкивается с шестью миллиардами нейтральных молекул различных газов. Отсюда можно подсчитать, что за 10 -7 секунды первичный ион сталкивается с разными нейтральными молекулами шестьсот раз. В результате этих столкновений вся невообразимая каша первичных ионов за счет перезарядов, попутных химических реакций, дружеских соединений приобретает определенный порядок, и в воздухе остаются, преимущественно, положительные ионы O2 + (кислорода), NO2 + (двуокись азота), NO + (окись азота), H3O + (оксониум – молекулы воды H2O плюс протон водорода H + ) и H2O + (молекула воды с оторванным электроном), а также отрицательные ионы O2 — (кислорода), N2 — (азота) и NO — (окись азота) (5) . Азот, хотя и имеет высокий потенциал ионизации, не успевает весь перезарядиться, так как из-за высокого (78,09%) содержания его в воздухе он может иногда сталкиваться только с себе подобными молекулами без заряда. Если воздух загрязнен примесями, то в нем могут возникнуть различные ионы того и другого знака за счет примесей. Так весьма легко из-за низкого потенциала ионизации возникают ионы сероводорода (H2S) (помните школьную присказку: «Шла старушка через лес и пускала аш-два-эс»?), аммиака (NH3), хлора (Cl2). Содержанием H2S и NH3 богаты туалеты и квартиры с наличием грязных пеленок, а также квартиры, в которых жильцы страдают несварением желудка, недержанием мочи, бурлением в животе. А Cl2 всегда идет из водопроводной воды, если она хлорирована.

После описанной стадии образования первичных ионов начинается настоящая жизнь легких ионов, которая длится, как правило, от 10 -7 секунды до 100, а иногда и более секунд. В это время первичные ионы, сталкиваясь с нейтральными молекулами различных газов, способных хоть немного поляризоваться (наибольшей поляризуемостью обладают молекулы воды и углекислого газа, а наименьшей – молекулы кислорода и инертных газов), удерживают их вокруг себя некоторое время (от 10 -6 секунды для обычных газов до 10 -4 секунды для углекислого газа и до 10 -3 секунды – для воды). У положительного иона заряд в виде протона расположен в центре иона. Вокруг такого иона постоянно в соприкосновении находится от 13 до 20 молекул (в сухом воздухе) и от 11 до 15 молекул (во влажном воздухе). И вся эта штука выглядит в виде шара, у которого нейтральные молекулы, облепившие ион, непрерывно сменяются другими соседними молекулами при движении иона. Отрицательный ион имеет на своей внешней орбите лишний электрон, и к нему сначала намертво прилипает какая-либо поляризованная молекула, а затем вокруг этих двух молекул собираются в виде тора (кольца) 6-8 нейтральных молекул (в сухом воздухе) или 5-7 молекул (во влажном воздухе). Эти все молекулы все время соприкасаются с отрицательным ионом и так же непрерывно заменяются другими нейтральными молекулами (5) . Во время этой «настоящей» жизни вторичные ионы попадают прежде всего под действие электрического поля земли, образованного отрицательным зарядом земли. Принято считать, что у поверхности земли напряженность этого поля в среднем равна 130 Вольт/метр, хотя на самом деле она имеет большой разброс в зависимости от места измерения. Так в Павловске (Слуцке) под С.-Петербургом и в Вашингтоне она равна 179 В/м, Давосе (США) она равна 64 В/м, на станции КЬЮ (не знаю, где она) намеряно 317 В/м.

С ростом высоты над уровнем земли напряженность поля падает (1) . Под действием этого электрического поля положительные ионы движутся к земле, а отрицательные ионы – в верхние слои атмосферы. Поэтому у земли положительных ионов почти всегда несколько больше, чем отрицательных, а в верхних слоях атмосферы – наоборот. Всякие ветры и завихрения воздуха тоже перемещают ионы своими потоками. И, наконец, непрерывно идет процесс рекомбинации ионов, т.е. нейтрализация зарядов двух встретившихся разнополярных ионов (2) . Установлено, что самыми устойчивыми в смысле постоянства внешней оболочки являются ионы оксониума H3O + в окружении молекул воды, которые из-за наличия сил поляризации не расстаются с полюбившимся ионом до самой его смерти, то есть нейтрализации его заряда ионом другой полярности. Среди отрицательных ионов таких «крепеньких» ионов обнаружено не было (5) . Правда, это сведения примерно тридцатилетней давности, может за это время кто-то что-то и открыл. Если кому-либо из вас известно об этом, поделитесь новостью.

В ходе такой «жизни» и таких массовых столкновений с другими молекулами каждый «живой» ион, если он не рекомбинировал, встречается либо с крупным конгломератом молекул, не имеющим заряда, либо с твердой микрочастицей – взвешенным в воздухе ядром конденсации — и привет! Ион прилипает к такой частице, и, в зависимости от массы частицы, превращает ее либо в средний, либо в тяжелый, либо в сверхтяжелый ион (5) . Все! Это смерть легкого иона. У средних и тяжелых ионов своя жизнь и своя смерть. В терапевтическом смысле они не представляют для нас интереса. К тому же, электрическое поле земли очищает воздух от таких заряженных частиц, забирая себе положительно заряженные частицы и отсылая вверх отрицательно заряженные, где они становятся ядрами конденсации воды и вместе с дождями падают, опять же, на землю. скапливаться где-то в приземном слое таким ионам не удается – и хорошо.

Для выяснения качества искусственно ионизированного воздуха были исследованы все возможные виды ионизаторов. Исследователей интересовали спектрограммы ионов по подвижности, создаваемые разными ионизаторами. Есть очень удобная статья, где все эти спектрограммы нарисованы (4) . Любопытствующие могут туда заглянуть, если смогут добыть копии этой и других статей или найдут в библиотеках нужные журналы. Я же дам только короткие замечания по всем видам описанных спектрограмм.

Самые симпатичные спектрограммы у ионизаторов на базе альфа- или бета-активных препаратов [в статье описано использование, соответственно, Ро210 (полоний 210) и H33 или тритий)]. Эти спектрограммы идентичны природным. Такими штуками я тоже когда-то занимался, но с использованием других изотопов. К сожалению, ни в быту, ни на производстве их применять нельзя – техника безопасности при обращении с любыми радиоактивными изотопами не допускает вольного с ними обращения как при использовании, так и при сохранении от разрушения и при утилизации. То же самое относится к источникам гамма-излучения, да и спектрограмма у них хуже.

Очень симпатична спектрограмма при использовании рентгеновского излучения, но, сами понимаете, рентген – это то же, что и гамма-излучение, можно схлопотать и лейкемию, и рак. Никто таких ионизаторов нигде не применяет.

Ультрафиолетовые лампы дают, в основном, только отрицательные ионы и то за счет вторичного излучения от примесей в воздухе и разных предметов, так как исследованные УФ-лучи сами ионизацию не производят, но зато в обилии создают озон – кто в клиниках был под облучением УФ-ламп, тот должен помнить противный запах озона, который по весу ядовитее синильной кислоты. Для ионизаторов УФ-лампы не применимы.

При биполярной ионизации коронным разрядом спектрограмма вполне прилична, но здесь надо различать, с помощью какого напряжения производится ионизация. При использовании высоковольтного постоянного напряжения обильно создается озон и окислы азота, то же самое происходит при использовании пульсирующего напряжения после однополупериодного выпрямления переменного напряжения. Это было замечено еще в пятидесятые годы и тогда же стали применять, точнее – предложили применять, короткие высоковольтные импульсы, несимметричные по амплитуде или однополярные. Но распространение получили все же ионизаторы униполярные, то есть дающие ионы только одной полярности, обычно – отрицательной. А поскольку все ионы, как естественного, так и искусственного происхождения, живут по одним законам, то при униполярной ионизации из-за отсутствия процессов рекомбинации все ионы одной полярности доживают до стадии превращения в тяжелые ионы, накапливаются в разных местах, создавая электростатические поля, объемные заряды. Если короче, то униполярные ионизаторы любого типа, даже «люстры» и «псевдолюстры» Чижевского, пригодны лишь для кратковременного применения в течение 10-20 минут – не более. Если совсем коротко – дерьмо!

А вот грамотных биполярных коронных ионизаторов воздуха пока что маловато.

Нить накаливания создает только положительные ионы за счет ионной эмиссии, так как для получения электронной эмиссии проволоку надо раскалять до белого каления. Короче, энергии тратится много, а толку мало, да и опасно, и нить быстро сгорит.

При горении светильного газа и газа в плитке на кухне получаются ионы обоих знаков, но совсем не той, что надо, подвижности, так как они образованы из продуктов сгорания газа.

При разбрызгивании (барботаже) воды количество легких ионов незначительно, зато количество средних и тяжелых ионов огромно. При этом, отрицательных ионов несколько больше, чем положительных.

А теперь небольшие выводы.

При искусственной ионизации воздуха возможно получение ионного состава воздуха, близкого к природному, если в воздухе нет вредных примесей.

Там, где есть соответствующие службы, лучше всего использовать ионизаторы воздуха на базе альфа- или бета-активных изотопов. Лучше всего для этих целей подходят изотопы трития, углерода-14, никеля-63 – они приемлемы по цене и достаточно безопасны.

Широкого применения, в том числе и в быту, заслуживают только биполярные коронные ионизаторы воздуха, в которых используются короткие импульсы, как правило, управляемые по частоте и длительности. Использование таких ионизаторов позволяет получить нужное качество ионного состава воздуха, близкое к природному, с таким же терапевтическим действием.

Ниже перечислено то, что я использовал при написании этого опуса из чужих работ. Свои работы я никогда не публиковал, разве что в виде авторских свидетельств СССР, а теперь – еще и патентов.

Н.А.Капцов. Электрические явления в газах и вакууме. Гос. изд. техн.- теорит. литерат. М.-Л.,1950 г., 836 стр. (Хватит читать до конца жизни).

Дж. Кэй, Т. Лэби. Таблицы физических и химических постоянных. Гос. издат. физ.-мат. литерат., М.,1962 г., 247 стр.

Knoll M., Eichmeier J., Schon R. Properties, Measurement and Bioklimatik Aktion of “Small” Multimolekular Atmospherik Ions.-“Advances in Elektronics and Electron Physic”, 1964, Vol. 19, pp.177-254 (название статьи переводится: Свойства,измерение и биоклиматическое действие “малых” мультимолекулярных атмосферных ионов.).

Eichmeier J., Herden P. Beweglichkeitsspektren Knstlich erzeugter Atmospharischer Ionen im Klein-und Mittelionenbereich.-“Zeitschrift fur angewandte Physik’’, 1968, Vol. 24, Nr.6, S.360-364.(Здесь о спектрах подвижностей атмосферных ионов, полученных искусственным путем).

Eichmeier J. Beitrag zum Problem der Struktur der atmospharischen Kleinionen.-“Zeitschrift fur Geophysik”, 1968, Vol.34, S.297-322.(Здесь о структуре легких атмосферных ионов.).

Eichmeier J., Braun W. Beweglichkeitsspektrometrie atmospharischer Ionen.-“Meteorologische Rundschau”, 1972, Vol.25, №1, S.14-19. (Здесь о спектрометрии подвижностей атмосферных ионов в разных местах измерения в Германии).

Если кому-то этого мало, то в каждой вышеперечисленной работе есть своя библиография.

Так, в работе (1) — 2524 наименования;
в работе (2) — 128 наименований;
в работе (3) — 377 наименований.
В остальных работах — еще более 100 наименований.
Достаточно?

Автор статьи — В.П. Реута (26.06.2005 г.)
ПОЛНОЕ ИЛИ ЧАСТИЧНОЕ ЦИТИРОВАНИЕ ДАННОЙ СТАТЬИ ЗАПРЕЩЕНО

Какой частоте ультрафиолета сильно ионизируется воздух

Работаем
с 2002 года

Бесплатная доставка по Красноярску

Распродажа
26 890 руб.26 890 руб.
Распродажа
Площадь до 26 кв.м; Мощность охлаждения 2,64 кВт; Мощность обогрева 2,7 кВт.
23 390 руб.23 390 руб.
Спецпредложение
51 340 руб.48 773 руб.
Распродажа
Двухступенчатая система доочистки водопроводной воды от взвешенных веществ, ржавчины, а также для.
7 020 руб.5 220 руб.
Спецпредложение
47 490 руб.47 490 руб.
Спецпредложение
Мощность охлаждения 2,0 кВт; Мощность обогрева 2,5 кВт; Площадь 20 кв.м.
59 900 руб.51 790 руб.
Каталог товаров

Обеззараживание воздуха: бактерицидный рециркулятор и не только

С появлением коронавируса вопрос обеззараживания воздуха стал актуален не только для медицинских учреждений. Сегодня встала необходимость организовать обеззараживание в каждой квартире и офисе. С учетом того, что техника для уничтожения бактерий и вирусов никогда не была предметом первой необходимости, многие просто не знают, какие приборы можно использовать для обеззараживания, в том числе в присутствии людей.

На волне ажиотажного спроса многие стали продвигать приборы, которые никакого бактерицидного эффекта не имеют. Например, очистители с фильтром НЕРА (противопылевой фильтр). Более того, применение НЕРА-воздухоочистителей может даже навредить. В то время как озонирование и плазменная очистка воздуха способна обеспечить даже лучший эффект, чем бактерицидный рециркулятор.

Обеззараживание воздуха от коронавируса: озонирование, бактерицидный рециркулятор или очиститель воздуха?

Компания Чистый воздух уже более 17 лет занимается продажей воздухоочистителей, рециркуляторов и озонаторов воздуха. Мы хорошо знакомы с этой техникой, многие приборы используем сами. Поэтому мы решили рассказать правду о том, какие модели на самом деле можно использовать для борьбы с вирусами. И при каких условиях бактерицидный рециркулятор, озонирование и плазменная очистка воздуха будут более эффективны.

  1. Технологии бактерицидной и противовирусной обработки воздуха
  2. Обеззараживание в присутствии человека
  3. Озонирование как эффективное обеззараживание воздуха в помещении

Технологии обеззараживания воздуха

Ультрафиолетовое излучение

Самая известная технология — это обеззараживание с помощью ультрафиолета. О том, что УФ лампа уничтожает болезнетворные микроорганизмы, слышал практически каждый. Именно так работают бактерицидные рециркуляторы — единственные приборы из группы обеззараживателей, которые хороши знакомы многим.

Производители предлагают довольно много моделей рециркуляторов, но по сути все они представляют собой некий корпус со встроенным вентилятором и лампой ультрафиолетового излучения.

Ультрафиолетовые лучи (UV, УФ) — это электромагнитное излучение оптического (видимого) спектра с диапазоном длины волны от 100 до 400 нм. За счет того, что данный спектр является видимым для человеческого глаза, мы четко определяем работу УФ лампы как видимое бело-фиолетовое свечение.

В отличие от например, рентгеновского излучения, которое также относится к разряду электромагнитных. Но по длине волны располагается вне зоны восприятия человеческого глаза и потому является для нас невидимым.

В зависимости от длины волны ультрафиолетовый спектр разделяется на три группы:

  • Ультрафиолет А, длинноволновой диапазон — длина волны 315-400 нм;
  • Ультрафиолет В, средневолновой диапазон — длина волны 280-315 нм;
  • Ультрафиолет С, коротковолновой диапазон — длина волны 100-280 нм.

При этом ультрафилет разного спектра по-разному воздействует на живые микроорганизмы.

Например, наиболее сильным бактерицидным воздействием обладает коротковолновое УФ-С излучение диапазона 205-315 нм. Именно на этом основан бактерицидный эффект ультрафиолетовых ламп.

Дело в том, что лучи этого спектра повреждают ДНК клеточного ядра микроорганизма.

Чувствительность микроорганизмов к УФ лучам

Говоря научным языком, UV оказывает деструктивно-модифицирующее повреждение на РНК и ДНК клетки.

Эти изменения постепенно накапливаются и со временем поврежденные клетки оказываются неспособными к делению. Что приводит их к вымиранию в первом и последующих поколениях.

При этом разные виды микроорганизмов восприимчивы к разным диапазонам ультрафиолетового спектра.

Известно, что наиболее чувствительны к УФ свету бактерии. Для их уничтожения достаточно мягкого коротковолнового излучения УФ-С (200-300 нм). Затем в порядке убывания чувствительности идут грибы, дрожжи, бактериальные споры и вирусы.

Наиболее устойчивыми к ультрафиолету являются вирусы. Для нанесения заметных повреждений вирионам вирусов нужен ультрафиолет более жесткого диапазона — УФ-В или даже УФ-А.

Результаты исследований говорят о том, что чем больше длина волны, тем более губительное воздействие оказывает ультрафиолет на вирус. Большинство проведенных исследований сводится к тому, что наибольшим воздействием на вирусы обладает УФ с длиной волны от 295 до 340 нанометров.

Например, это подтверждает исследование эффективности импульсных ультрафиолетовых установок Альфа, проведенное в НИИ вирусологии им. Д.И. Ивановского Минздрава РФ.

В рамках данного исследования сравнивалось воздействие на вирусы обычных бактерицидных ламп диапазона 254 и более интенсивного ксенонового источника УФ с широким спектром излучения 190-400 нм. Результаты показали, что источник длинноволнового излучения значительно эффективнее широко используемых бактерицидных ламп.

Еще одна зависимость, которую обнаружили ученые — чем крупнее вирус, тем более он подвержен воздействию ультрафиолета.

При этом существует ряд вирусов, которые к UV вообще невосприимчивы. Например, РНК-содержащий вирус IPNV рода Aquabirnavirus и AHNV (семейство Nodaviridae). В первую очередь из-за их очень малых размеров (диаметр 60 нм и 30 нм соответственно).

В то время как самыми восприимчивыми к действию ультрафиолетового излучения являются крупные герпесвирусы, диаметр вириона которых вместе с оболочкой достигает 140-200 нм.

Так как размеры короновируса приближаются к 100 нм, то он достаточно хорошо подвержен разрушающему воздействию ультрафиолета.

Данная восприимчивость уже подтверждена учеными — по данным Википедии коронавирус хорошо подвержен воздействию ультрафиолета и температуры.

Кроме того, в июне 2020 года крупный производитель УФ ламп Signify провел исследования, которые продемонстрировали высокую эффективность UV лучей среднего диапазона 254 нм. на короновирус. Как утверждается на официальном заявлении на сайте Signify, 99% вирионов короновируса SARS-CoV-2, известного как COVID-19, погибает при воздействии UV-C (ультрафиолета диапазона С — длина волны от 100 до 280 nm).

Правда, такой эффект достигается при:

Исследование Бостонского Университета показало высокую чувствительность коронивируса к УФ излучению

  • достаточно высокой интенсивности излучения — 5 миллиджоулей на 1 кв. см. поверхности;
  • при непрерывном воздействии ультрафиолета на вирус в течение 6-25 секунд.

Ученые отметили, что после воздействия ультрафиолета UV-C в такой концентрации короновирус был полностью дезактивирован. И не определялся в тестовом материале уже через 6 секунд воздействия ультрафиолета в указанной дозировке.

Эти данные также подтверждает масштабное исследование Центра радиологических исследований Колумбийского университета, Нью-Йорк. Целью этого исследования было изучить влияние УФ диапазона более мягкого диапазона 222 нм. на вирусы. Так как длинноволновой диапазон более опасен и при прямом попадании на кожу человека может вызвать ожог.

И общий итог такой. Безусловно, излучение длинноволнового диапазона УФ-В оказывает более разрушительное воздействие на вирус. Тем не менее, даже мягкий ультрафиолет диапазона 222 нм. наносит повреждения РНК и ДНК вирусов. Поэтому при условии при высокой интенсивности излучения и длительном времени контакта коротковолновой ультрафиолет УФ-С также является разрушительным для вирусов.

Из этого следует, что обычные бактерицидные лампы диапазона 254 nm в принципе способны оказывать разрушающее воздействие, в том числе и на короновирус.

Также ясно, что чем выше суммарная мощность излучения UV ламп, тем выше их противовирусная активность.

Основная проблема заключается в том, что попадая внутрь рециркулятора, воздух подвергается УФ облучению всего 1-2 секунды. Какие точно повреждения вирус получает за столь короткое время контакта с UV лампой, остается неизвестным. По крайней мере, в общедоступных источниках нет ни одного упоминания о проведении подобного исследования.

Кроме того, все рециркуляторы воздуха относятся к приборам закрытого типа. То есть здесь УФ воздействие осуществляется только на воздух, проходящий непосредственно через прибор. Поэтому для хорошего эффекта обеззараживания помещения необходим прибор, которые бы обрабатывал весь объем воздуха в комнате 2-3 раза за час.

С учетом данных исследований, говорить о 100% эффективности УФ против вирусов можно лишь в случае применения облучателей открытого типа. В отличие от рециркулятора, в облучателе УФ лампа не спрятана внутри корпуса. Поэтому ее воздействие распространяется на большой объем. И, самое главное, УФ лучи воздействуют на воздух и поверхности не 1-2 секунды, а гораздо дольше.

Однако из-за высокой интенсивности УФ излучения такие обеззараживатели нельзя применять в присутствии людей. Поэтому облучатели открытого типа применяются в основном в медицине. И только при отсутствии людей.

Так что УФ облучатели и рециркуляторы не слишком хорошо подходят для обеззараживания помещений. Более подробно читайте об этом в статье «Обеззараживание воздуха помещений ультрафиолетом и озоном: сравнение эффективности.»

Кстати, в этой статье объясняется, почему очиститель-обеззараживатель ЭФФЕКТИВНЕЕ обеззараживает воздух, ЧЕМ РЕЦИРКУЛЯТОР. Причина этого — микроорганизмы гораздо проще уничтожить, задержав их на внутренних фильтрах.

Итак , давайте подведем итоги.

  1. Бактерицидная УФ лампа диапазона 254 нм способна оказать губительное воздействие не только на бактерии, но и вирусы.
  2. Максимальный противовирусный эффект достигается при применении облучателя воздуха открытого типа. За счет длительного воздействия ультрафиолетом.
  3. Рециркулятор воздуха закрытого типа также эффективен от вирусов. Но только при условии высокой интенсивности излучения (мощности ламп). А также производительности вентилятора, достаточной для 2-3 кратной обработки всего объема воздуха за 1 час.
  4. Кроме того, рециркулятор воздуха должен быть включен 24 часа в сутки.

Озонирование воздуха

Эта технология гораздо меньше знакома обычному человеку. Хотя обеззараживающий эффект озона в 3-5 раз выше, чем ультрафиолетового излучения.

Озон - мощное средство дезинфекции без побочных эффектов

Озон МГНОВЕННО уничтожает не только бактерии, но и ВСЕ ИЗВЕСТНЫЕ вирусы и грибки.

Причем делает он это НАМНОГО эффективнее хлора и любых других известных дезинфектантов.

За счет того, что озон оказывает разрушающе-окисляющее воздействие на стенки клетки и цитоплазму, полностью разрушая их структуру.

Поэтому устойчивых к воздействию озона форм микроорганизмов крайне мало. Взаимодействие озона с живой микрофлорой заканчивается механическим разрушением клетки, чтобы это ни было: вирусы, бактерии, споры, грибки, водоросли и пр.

Важно, что после обеззараживания озоном не возникает никаких соединений и запахов. Единственное, что остается после действия озона — это кислород. Ведь после окончания процесса окисления озон превращается обратно в кислород. Благодаря тому, что озон обладает столь ценным свойством самораспада, его передозировка невозможна.

Процесс образования озона

Озон — это газ, который образуется при действии электрического разряда, а также ультрафиолетового света на кислород.

Кстати, именно поэтому при работе ртутных УФ ламп (а это подавляющее их большинство) также образуется небольшое количество озона. Этот запах можно почувствовать при длительной работе УФ-обеззараживателя.

Озон хорошо знаком каждому из нас по запаху, который появляется после грозы.

Электростатический разряд, возникающий при молнии и образует этот газ, присутствие которого мы ощущаем по характерному «запаху грозы».

При введении в водную или воздушную среду, озон выполняет четыре действия:

  • бактерицидное;
  • дезодорирующее;
  • дезинфицирующее;
  • окислительное.

Благодаря очень высокой окислительной и дезинфицирующей способности его активно используют для очистки воды (озонация воды) и воздуха.

Преимущества дезинфекции озоном

Применение озона имеет важные преимущества по сравнению с хлором:

Преимущества озонации как средства дезинфекции

  • Из-за применения в малых дозах не дает побочных эффектов. Не загрязняет окружающую среду, но при этом является мощнейшим дезинфектором.
  • Позволяет организовать санитарную обработку и дезинфекцию любых поверхностей, материалов, в том числе воды и воздуха.
  • Одна молекула озона по своему действию эквивалентна от 3000 до 10000 молекулам хлора, она убивает патогенные микроорганизмы в 3500 раз быстрее, чем молекула хлора.

Например, вирус полиомиелита погибает при величине остаточного озона 0,45 лг/л через 2 мин, а при дозе хлора 1 лг/л только через 3 ч. Действие озона на споры, бактерии и вообще любые патогенные микроорганизмы в 300-600 раз сильнее, чем хлора. Также высока эффективность озонирования для очистки воды. Например, при уменьшения цветности воды (развитие в ней водорослей и фитопланктона) озона нужно в 2,5 раза меньше, чем хлора.

Важное преимущества озонации по сравнению с УФ излучением:
  • Полностью уничтожает любую микрофлору и загрязняющие вещества;
  • Обеспечивает мгновенный эффект. Не постепенное ослабление, как в УФ, а полное уничтожение молекул;
  • Обеззараживает не только воздух, но и поверхности;
  • Воздействует на все известные виды вирусов, спор грибков и бактерий без исключений.
Сложности применения озона для обеззараживания и дезинфекции:
  • Озон — ядовитый газ не только для микроорганизмов, но и для человека. Поэтому здесь важно соблюдать безопасные концентрации. Например, в бытовых электростатических и плазменных очистителях воздуха четко рассчитывается выделение озона, чтобы не допустить превышения ПДК в комнате определенной площади.
  • Большие концентрации озона (которые, например, генерируют озонаторы воздуха) допустимы для обеззараживания помещений только без присутствия людей.

Так что озон — это наиболее эффективный способ мгновенно обеззаразить любую среду. Существует 2 типа приборов, генерирующих озон:

  • Озонаторы воздуха, создающие большие концентрации этого газа. Поэтому в жилых комнатах они включаются только на короткое время;
  • Электростатические и плазменные очистители воздуха, которые выделяют безопасные концентрации озона. Такие приборы предназначены для постоянной работы в присутствии людей.

О том, как правильно применять приборы с выделением озона, читайте ниже.

Фотокатализ

Мало кому известный способ глубокой очистки воздуха от любых органических и неорганических загрязнителей. Фотокаталический фильтр состоит из 2 элементов: двуокись титана, нанесенный на поверхность и УФ лампа.

Принцип фотокаталической очистки воздуха

Ультрафиолетовое излучение лампы активирует двуокись титана, превращая ее в мощнейший катализатор процессов окисления. Окисление — естественный процесс, который всегда протекает в воздушной среде, содержащей кислород. Просто в данном случае интенсивность процессов окисления возрастает в сотни раз, приближаясь по своему воздействию к очищающим свойствам пламени огня.

Как фотокатализ уничтожает бактерии и химические загрязнители

Поэтому по своему эффекту фотокатализ напоминает озонацию. Так как здесь также происходит доокисление, т.е. разложение любого вещества, органического и неорганического на безвредные составляющие (вода, углекислый газ).

За счет этого клетка микрорганизма не просто теряет способность к размножению, как при воздействии ультрафиолета, а полностью разрушается.

Обращаем внимание, что УФ лампа здесь нужна, чтобы активировать катализатор в виде двуокиси титана. Поэтому здесь используются УФ лампы совершенного иного спектра, чем в бактерицидных излучателях — 320-400 нм.

Кстати, этот спектр обеспечивает дополнительный противовирусный эффект.

Поэтому фотокаталическая очистка позволяет уничтожать любые микроорганизмы и даже трудноуловимые загрязнители, представляющие собой летучие химические вещества. В том числе:

  • вирусы, бактерии, грибки, споры, плесень;
  • табачный дым, в т.ч.смолы, содержащиеся в табачном дыме;
  • фенол, формальдегид, и др. вредные испарения от мебели и отделочных материалов;
  • любые запахи;
  • экологические загрязнения от двигателей автомобилей, предприятий и пр.

Важное отличие фотокатализа от озонации заключается в области воздействия. За счет того, что озон — это летучий газ, его дезинфицирующее действие распространяется на весь объем воздуха, а также на все материалы и поверхности в комнате. В то время как окислительное воздействие фотокаталитического фильтра распространяется только на тот воздух, который проходит непосредственно через прибор — также, как и при воздействии УФ лампы.

Таким образом, для того чтобы гарантировать полное уничтожение микроорганизмов за счет УФ лучей или процесса фотокатализа, необходимо многократное прохождение воздуха через прибор.

Трудности применения фотокаталитической очистки

Кроме того, фотокаталические фильтры сложны в изготовлении и применении.

Процесс окисления при фотокатализе активируется УФ лампой

Во-первых, необходима большая площадь поверхности с двуокисью титана, которая будет контактировать с воздухом, проходящим через прибор.

Во-вторых, для запуска фотокатализа нужна УФ лампа правильного диапазона, желательно светодиодная, а не ртутная.

В-третьих, процесс фотокаталитической очистки протекает эффективно только при небольших объемах проходящих через фильтр воздуха.

Поэтому фотокаталические фильтры, встраиваемые в настенные кондиционеры, вообще лишены смысла. Так как сплит-система прокачивает 300-400 куб. м. в час.

И организовать эффективную очистку при таких объемах можно только с помощью плазменного (электростатического) фильтра, основанного на озонации.

Аэролайф - российский производитель фотокаталитических очистителей воздуха

В продаже есть 2 прибора, в которых фотокаталитическая очистка работает:

  • японские воздухоочистители Daikin;
  • российские очистители воздуха Аэролайф.

Первые приборы японского производства стоят очень дорого и доступны далеко не каждому.

Вторые хоть и имеют внутри очень качественный фотокаталитический фильтр, во всем остальном (внешний вид корпуса и встроенный вентилятор) далеки от совершенства.

При этом Аэролайф делает превосходные промышленные установки для дезинфекции в медицинских учреждениях, очистки в курительных комнатах, ресторанах. Просто до разработки современных бытовых моделей у них, видимо, руки не доходят.

В принципе заявленный фотокаталитический фильтр можно встретить во многих бытовых воздухоочистителях. Но площадь их настолько мала, что говорить о каком-либо заметном эффекте не приходится. Поэтому часто их называют не фотокаталитическими, а дезодорирующими.

Однако все индивидуально и надо смотреть, какие еще технологии использованы в приборе. Хорошо, если есть еще и плазменная (электростатическая) очистка. Тогда, даже если от фотокаталита толку будет немного, это скомпенсирует блок генерации плазмы.

Фильтр НЕРА — не обеззараживает воздух!

Фильтр НЕРА не обеззараживает воздух!

Раньше никому бы и в голову не пришло утверждать, что НЕРА фильтр способен очищать воздух от бактерий и вирусов. Это просто результат дикого ажиотажа, возникшего из-за эпидемии коронавируса.

Когда нормальные приборы стали в дефиците, недобросовестные продавцы пытаются втюхать то, что завалялось на складе.

Что такое фильтр НЕРА? Это просто нетканый материал, который задерживает механические частицы пыли из воздуха.

То есть НЕРА работает также, как и медицинская маска — при прохождении через фильтрующий материал микроорганизмы просто «застревают» в порах.

При этом они продолжают жить. Их деятельность никак не нарушается. Допустим, вирусы там погибнут естественным образом через некоторое время.

А вот бактерии и грибки, застрявшие в порах, вообще могут начать размножаться и в дальнейшем попадать в воздух еще в большем количестве. Это будет зависеть от самого НЕРА-фильтра (пористость, материал) и показателей воздушной среды (температура, влажность).

Другое дело, если НЕРА-фильтр работает в совокупности с электростатической или фотокаталической очисткой воздуха. В таком случае НЕРА задерживает загрязняющие частицы, а фотокаталит или озон обеззараживает его.

Итак, давайте перейдем к обзору приборов, которые могут использоваться для дезинфекции. Причем как в присутствии человека, так и в помещениях без людей.

Обеззараживание в присутствии людей

Рециркуляторы воздуха (бактерицидные лампы)

Рециркулятор бактерицидный - один из способов обеззараживания воздуха в присутствии людей

Рециркулятор воздуха бактерицидный- это некий корпус со встроенной УФ лампой, которая и обеспечивает обеззраживающий эффект. Плюс к этому вентилятор, который обеспечивает циркуляцию воздуха через прибор.

Так как процесс циркуляции многократно повторяется, отсюда и название — рециркулятор. Мы не будем останавливаться на сравнении бактерицидных рециркуляторов разных моделей.

Так как принципиальных отличий в устройстве моделей разных производителей нет. Отличаются они только количеством и мощностью установленных ламп.

Эффективность работы рециркулятора зависит:

Во-первых, от мощности УФ лампы. Чем мощнее излучение, тем более серьезные повреждения получают микробы при прохождении через прибор;

Во-вторых, от производительности вентилятора. Чем она выше, тем больший объем воздуха проходит через обеззараживатель за час.

При этом выбирая рециркулятор против вирусов, лучше выбрать модель с высокой интенсивностью облучения и высокой производительностью вентилятора.

Поэтому выбирая, какой рециркулятор воздуха купить, нужно обратить внимание только на 2 показателя:

  • интенсивность излучения (кол-во УФ ламп и их мощность);
  • производительность вентилятора;
  • рекомендованную площадь.

Важно придерживаться рекомендованной площади, так как в зависимости от мощности излучения каждая модель рассчитана на обработку помещения определенной площади. Если установить прибор на меньшую площадь — нужно эффекта не получить. Слишком же мощный прибор даст слишком много озона, который является неизбежным побочным продуктом ультрафиолетового излучения.

Плазменные очистители воздуха

Эффективный и безопасный способ обеззараживания воздуха в помещениях с постоянно присутствующими в них людьми. Первое поколение таких приборов известно как электростатические воздухоочистители. К их числу относятся в том числе и широко известный в России Супер Плюс Турбо.

Принцип электростатической очистки воздуха от пыли

Плазменные очистители — это следующая ступень развития данной технологии. Они генерируют намного более мощный электростатический разряд, очищающая способность которого в десятки и сотни раз превышает эффективность классического электростата.

Именно плазменная очистка является одной из наиболее эффективных технологий, которая позволяет мгновенно очистить воздух от любых примесей и уничтожить все известные микроорганизмы.

Обеззараживающий и очищающий эффект основан на уникальном по силе воздействия озоне. Как мы уже отмечали, этот газ является мощнейшим природным окислителем и дезинфектором, который по завершению очистки полностью распадается на кислород.

Коронный разряд при работе плазменного генератора

Блок плазменной очистки состоит из 2 частей:

1. Блок ионизации воздуха — это ионизирующий и озонирующий электрод отрицательной полярности. Важно, что в зависимости от материала, конструкции и подведенного к электроду напряжения количество генерируемого озона и концентрация образующихся ионов может быть разной.

2. Электростатический блок — металлические пластины, которые являются осадительными электродами положительной полярности. От площади этих пластин зависит очищающая способность прибора от крупной пыли, пыльцы, сажи и пр.

Механические загрязнители, содержащиеся в воздухе и проходящие через ионизирующий блок, приобретают отрицательный заряд. Из-за этого они прилипают к положительно заряженным металлическим пластинам. Так происходит процесс очистки воздуха от пыли, аллергенов и других механических загрязняющих веществ.

При этом обеззараживание и очистка воздуха от летучих химических соединений происходит за счет озонации, которая всегда образуется при работе ионизирующего блока.

Таким образом, плазменные очистители обеспечивают тройной эффект:

  1. Очистка воздуха от механических частиц за счет прилипания к осадительным пластинам;
  2. Очистка от летучих химических соединений за счет окисления озоном;
  3. Дезинфекция — также за счет действия озона.
Плазменные и электростатические очистители-ионизаторы AIrComfort

Большая группа очистителей воздуха, основанных на электростатической и фотокаталической очистке. Подробнее с моделями можно ознакомиться в разделе Очистители воздуха AirComfort.

AirComfort 2100

Это доступные приборы, многие из которых демонстрируют высокую эффективность как процессов очистки, так и обеззараживания воздуха.

Большинство моделей AirComfort — это электростатические и плазменные очистители с качественными блоками ионизации. Плюс к этому здесь присутствуют серьезные блоки осадительных пластин, а также стоят бесшумные вентиляторы.

В ассортименте этого производителя присутствуют как небольшие, максимально простые электростатические водухоочистители.

Так и современные плазменные очистители с хорошими блоками генерации плазмы, производительными вентиляторами и осадительными пластинами большой площади.

Плюс к этому AirComfort предлагает модели, основанные на фотокаталитической очистке: 8410, 8500, 8200, 8005. При этом оснащаются они светодиодными УФ лампами с диапазоном 365 нм, «заточенным» под уничтожение вирусов. Что важно для профилактики коронавируса.

AirInCom - новые приборы для очистки и дезинфекции жилых комнат

Дополнительным эффектом от данных приборов является хорошая ионизация воздуха — придание молекулам кислорода отрицательного заряда. Ионизированный воздух полезен для здоровья. Так как усвоение кислорода в этом случае увеличивается на 20%. То есть ионизация не увеличивает количество кислорода в воздухе, но на 20% улучшает его усвоение нашим организмом.

Поэтому нахождение в комнате с отрицательно заряженными ионами снижает утомляемость и ускоряет процессы восстановления. Другими словами, в ионизированном воздухе легче работать и лучше отдыхать. В природе этот эффект мы наблюдаем в хвойном лесу, в горах, рядом с водопадом. А использование бытового ионизатора воздуха позволяет создать похожие условия в замкнутом помещении.

Электростатические очистители Супер плюс

Супер Плюс Турбо - прибор, выполненный по классической технологии электростатической очистки

Недорогие приборы российского производства. Супер Плюс — это классический электростатический воздухоочиститель, основной эффект которого заключается в очистке воздуха от пылевых загрязнений.

Как и у любого электростата, побочным продуктом блока ионизации является выделение озона. Которые и обеспечивает дезинфицирующий и дополнительный очищающий эффект.

Супер Плюс Турбо — более мощная модель, Супер Плюс Эко — поменьше. Главным недостатком данных приборов является отсутствие вентилятора.

Поэтому здесь движение воздуха через прибор осуществляется только за счет эффекта «ионного ветра». Однако производительность по воздуху в любом случае невелика. Из-за этого эффективность работы даных приборов заметно уступает моделям со встроенными вентиляторами (например, AIC).

Плазменные очистители-увлажнители воздуха Sharp

Еще одни приборы из семейства плазменных воздухочистителей. Запатентованная технология Sharp Plasmaclaster представляет собой ничто иное, как хороший плазменный генератор. Отсюда и высокая эффективность прибора в очистке и дезинфекции воздуха.

Sharp Plasmaclaster - плазменный генератор с антибактериальным и противовирусным эффектом

Что касается ионизации воздуха, то данный прибор создает еще и хорошие концентрации легких отрицательных ионов. Легкие ионы кислорода — самые качественные и легкоусвояемые. То, генерирует ли ионизатор легкие ионы или нет, зависит от конкретного исполнения блока ионизации. И здесь он выполнен на высшем уровне.

Плюс к этому в очистителях-ионизаторах Sharp есть дополнительная функция увлажнения воздуха. Причем основанная на наиболее комфортном принципе холодного испарения. Внутри стоит увлажняющий диск, который вращается в поддоне с водой и оптимально увлажняет воздух естественным образом.

Плюс к этому датчики загрязнения воздуха, цифровой дисплей и современный дизайн корпуса. Так что за счет совокупности очистки, ионизации и увлажнения воздуха Sharp является хорошим прибором для квартиры.

Воздухоочистители Daikin

Это очистители воздуха, которые работают сразу на двух технологиях очистки и стерилизации воздуха: плазменная очистка и фотокатализ. Ключевой элемент — это блок стримерного разряда Flash Streamer. Несмотря на свое неординарное название, этот элемент представляет собой обычный гребенчатый ионизирующий блок, направленный на генерацию озона.

Плюс к этому, как и любой другой электростатический блок, Flash Streamer придает отрицательный заряд частицам пыли и другим механическим загрязнителям воздуха. За счет чего появляется возможность их отфильтровать, а точнее «прилепить» к положительно зараженной поверхности. В данном случае роль осадительной поверхности выполняет сменный рулонный или гофрированный фильтр.

Многоступенчатая очистка воздуха в Daikin

Дополнительная ступень очистки — фотокатализ. В старых моделях Daikin MC707 помимо рулонного фотокаталитического фильтра с нанесенным порошком двуокиси титана была УФ лампа, которая активировала процесс фотокатализа и дополнительно обеззараживала воздух.

В новых же моделях Daikin MC70 и MCK75 блок фотокаталитической очистки выполнен по другому. Вместо двуоокиси титана здесь использован титаново-апатитовый фотокаталический фильтр, которые работает без ультрафиолета. Соответственно, УФ лампы здесь нет. Вместо ультрафиолетовой лампы здесь процесс фотокатализа активирует блок плазменной генерации Flash Streamer.

Таким образом, в очистителях Дайкин есть 2 принципиальных блока:

Daikin MC70L

  • блок стримерного разряда Flash Streamer. Выделяет озон и за счет этого уничтожает микроорганизмы и летучие химические вещества;
  • сменный двухсторонний гофрированный фильтр. Первая сторона (белая) выполняет роль положительно заряженного осадителя для механических загрязнений, частицы которых после прохождения через ионизирующий блок получают отрицательный заряд, а затем прилипают к поверхности фильтра. Вторая сторона (голубая) является титаново-апатитовым фильтром, процесс фотокатализа в котором запускается ионами от Flash Streamer.

За счет комбинации этих двух технологий достигается высокая степень очистки и дезинфекции. Особенно с учетом очень большой производительности по воздуху — один такой очиститель способен пропускать через себя до 430 куб.м за час.

Правда, основную роль в процессе очистки и обеззараживания воздуха здесь все же выполняет блок плазменной генерации Flash Streamer. Фотокаталитическая ступень при таких высоких скоростях прохождения воздуха выполняет лишь дополнительную роль (удаление запахов).

Кстати, в качестве дополнительной дезинфицирующей ступени здесь заявлена обработка катехином — вытяжкой из листьев чайного дерева, а также иммуноглобулиновый фильтр. Но это просто маркетинговый ход, не более того. Рассчитывать на серьезный эффект от них не стоит.

Все рассмотренные выше приборы предназначены для круглосуточной работы в помещениях с людьми. И поэтому не имеют никаких ограничений для применения в квартире или офисе. Включайте — и получайте чистый и обеззараженный воздух без каких-либо ограничений.

Обеззараживание воздуха в помещениях: озонирование

Озонирование - отличный способ продезинфицировать помещение и удалить неприятные запахи

Однако есть и другие приборы, которые превосходно подходят для обеззараживания воздуха в помещениях. Но могут применяться только в отсутствие человека.

Это озонаторы воздуха, которые генерируют действительно серьезные, медицинские концентрации озона.

Из-за этого большинство озонаторов может применяться только если в помещении нет людей и других живых существ. Например, домашних животных.

Озонирование в быту применяется для:

  • уничтожения и профилактики образования грибка (плесени) в гаражах и подвалах. Озон — летучий газ, поэтому он проникает во все материалы, полости и поверхности. Что позволяет со временем уничтожить споры плесени даже в глубине кирпичной кладки или штукатурки;
  • повышения сохранности фруктов и овощей в овощехранилищах. Доказано, что в озонированном воздухе срок хранения продуктов многократно возрастает;
  • просушка помещений, склонных к образованию сырости. Озон помимо всего прекрасно подсушивает воздух, что особенно ценно для подвалов и овощехранилищей.

Как правило, генераторы озона предназначены в первую очередь для дезинфекции и очистки воздуха в помещениях без людей. Однако существуют озонаторы, которые можно применять и в обычной квартире.

Озонаторы воздуха Алтай и Байкал

Это качественные бытовое генераторы озона с таймером и функцией ионизации воздуха. Кстати, они может применяться для обеззараживания не только воздуха, но и воды.

За счет таймера, ограничивающего время выработки озона, прибор хорошо подходит для применения в бытовой сфере. за счет этого его можно включать для озонации в жилой комнате, офисе — то есть даже там, где есть люди.

Генератор озона Алтай может работать в 2 режимах:

  • Озонирование воздуха — режим запускает генерацию озона в больших концентрациях. Для запуска процесса озонации достаточно нажать клавишу на корпусе и установить время обработки — от 5 до 30 минут.
  • Ионизация — все время, пока прибор подключен к электросети, он работает как ионизатор воздуха. В этом режиме ионизирующий блок не выделяет озон, а просто придает молекулам кислорода отрицательный заряд.

Отрицательно заряженные молекулы кислорода намного легче усваиваются нашим организмом. За счет этого в ионизированном воздухе улучшается снабжение кислородом всех органов и снижается утомляемость.

Именно наличие таймера позволяет использовать данный прибор для дезинфекции и очистки воздуха в жилой комнате (спальне, детской, гостиной). Время озонации, достаточное для очистки и дезинфекции комнаты, зависит от ее площади:

  • для обеззараживания комнаты до 10 кв.м. — 15-30 минут;
  • для комнаты площадью 10-20 кв.м. — 30-60 минут.

Таким образом, можно проводить быструю и очень эффективную дезинфекцию жилых помещений.

Единственное условие — на время озонирования необходимо, что все люди покинули комнату. Плюс к этому после отключения таймера желательно не заходить в комнату еще 10-20 минут. Так как после отключения блока озонации в воздухе все еще остается озон в довольно большой концентрации. Поэтому нужно подождать некоторое время, чтобы процесс очистки и дезинфекции полностью завершился и озон превратился обратно в кислород.

После окончания обработки озоном можно совершенно спокойно находиться в комнате — чистой и продезинфицированной. Кстати, озонирование помещений можно проводить от одного до нескольких раз в сутки.

Если у Вас остались вопросы по обеззараживанию и озонированию воздуха помещений, задавайте их форме online консультации. Или просто позвоните нам по тел. 204-630-30!

Ультрафиолетовое излучение в природе и медицине

Ультрафиолетовое излучение в природе и медицине

06 мая 2019

История открытия. Природа ультрафиолетового излучения

Спектр лучей, видимых глазом человека, не имеет резкой, четко определенной границы. Верхней границей видимого спектра одни исследователи называют 400 нм, другие 380, третьи сдвигают ее до 350. 320 нм. Это объясняется различной световой чувствительностью зрения и указывает на наличие лучей не видимых глазом.
В 1801 г. И. Риттер (Германия) и У. Уоластон (Англия) используя фотопластинку доказали наличие ультрафиолетовых лучей. За фиолетовой границей спектра она чернеет быстрее, чем под влиянием видимых лучей. Поскольку почернение пластинки происходит в результате фотохимической реакции, ученые пришли к выводу, что ультрафиолетовые лучи весьма активны.
Ультрафиолетовые лучи охватывают широкий диапазон излучений: 400. 20 нм. Область излучения 180. 127 нм называется вакуумной. Посредством искусственных источников (ртутно-кварцевых, водородных и дуговых ламп), дающих как линейчатый, так и непрерывный спектр, получают ультрафиолетовые лучи с длиной волны до 180 нм. В 1914 г. Лайман исследовал диапазон до 50 нм.
Исследователи обнаружили тот факт, что спектр ультрафиолетовых лучей Солнца, достигающих земной поверхности, очень узок — 400. 290 нм. Неужели солнце не излучает свет с длиной волны короче 290 нм?
Ответ на этот вопрос нашел А. Корню (Франция). Он установил, что озон поглощает ультрафиолетовые лучи короче 295 нм, после чего выдвинул предположение: Солнце излучает коротковолновые ультрафиолетовое излучение, под его действием молекулы кислорода распадаются на отдельные атомы, образуя молекулы озона, поэтому в верхних слоях атмосферы озон должен покрывать землю защитным экраном. Гипотеза Корню получила подтверждение тогда, когда люди поднялись в верхние слои атмосферы. Таким образом, в земных условиях спектр солнца ограничен пропусканием озонового слоя.
Количество ультрафиолетовых лучей, достигающих земной поверхности, зависит от высоты Солнца над горизонтом. В течение периода нормального освещения освещенность изменяется на 20%, тогда как количество ультрафиолетовых лучей достигающих земной поверхности уменьшается в 20 раз.
Специальными экспериментами установлено, что при подъеме вверх на каждые 100 м интенсивность ультрафиолетового излучения возрастает на 3. 4%. На долю рассеянного ультрафиолета в летний полдень приходится 45. 70% излучения, а достигающего земной поверхности — 30. 55%. В пасмурные дни, когда диск Солнца закрыт тучами, поверхности Земли достигает главным образом рассеянная радиация. Поэтому можно хорошо загореть не только под прямыми лучами солнца, но и в тени, и в пасмурные дни.
Когда Солнце стоит в зените, в экваториальной области поверхности земли достигают лучи длиной 290. 289 нм. В средних широтах коротковолновая граница, в летние месяцы, составляет примерно 297 нм. В период эффективного освещения верхняя граница спектра составляет порядка 300 нм. За полярным кругом земной поверхности достигают лучи с длиной волны 350. 380 нм.

Влияние ультрафиолетового излучения на биосферу

Выше диапазона вакуумной радиации ультрафиолетовые лучи легко поглощаются водой, воздухом, стеклом, кварцем и не достигают биосферы Земли. В диапазоне 400. 180 нм влияние на живые организмы лучей различной длины волны не одинакова. Наиболее богатые энергией коротковолновые лучи сыграли существенную роль в образовании первых сложных органических соединений на Земле. Однако эти лучи способствуют не только образованию, но и распаду органических веществ. Поэтому прогресс жизненных форм на Земле наступил лишь после того, когда благодаря деятельности зеленых растений атмосфера обогатилась кислородом и, под действием ультрафиолетовых лучей, образовался защитный озоновый слой.
Для нас представляют интерес ультрафиолетовое излучение Солнца и искусственных источников ультрафиолетового излучения в диапазоне 400. 180 нм. Внутри этого диапазона выделены три области:

А — 400. 320 нм;
В — 320. 275 нм;
С — 275. 180нм.

В действии каждого из этих диапазонов на живой организм есть существенные различия. Ультрафиолетовые лучи действуют на вещество, в том числе и живое, по тем же законам, что и видимый свет. Часть поглощаемой энергии превращается в тепло, но тепловое действие ультрафиолетовых лучей не оказывает на организм заметного влияния. Другой способ передачи энергии — люминесценция.
Фотохимические реакции под действием ультрафиолетовых лучей проходят наиболее интенсивно. Энергия фотонов ультрафиолетового света очень велика, поэтому при их поглощении молекула ионизируется и распадается на части. Иногда фотон выбивает электрон за пределы атома. Чаще всего происходит возбуждение атомов и молекул. При поглощении одного кванта света с длиной волны 254 нм энергия молекулы возрастает до уровня, соответствующего энергии теплового движения при температуре 38000°С.
Основная часть солнечной энергии достигает земли в качестве видимого света и инфракрасного излучения и лишь незначительная часть — в виде ультрафиолета. Максимальных значений поток УФ достигает в середине лета на Южном полушарии (Земля на 5% ближе к Солнцу) и 50% от суточного количества УФ поступает в течение 4-х полуденных часов. Diffey установил, что для географических широт с температурой 20-60° человек, загорающий с 10:30 до 11:30 и затем с 16:30 до заката, получит только 19% от суточной дозы УФ. В полдень, интенсивность УФ (300 нм) в 10 раз выше, чем тремя часами раньше или позже: незагорелому человеку достаточно 25 минут для получения легкого загара в полдень, однако для достижения этого же эффекта после 15:00, ему понадобится лежать на солнце не менее 2-х часов.
Ультрафиолетовый спектр в свою очередь разделяют на ультрафиолет-А (UV-A) с длиной волны 315-400 nm, ультрафиолет-В (UV-B) -280-315 nm и ультрафиолет-С (UV-С)- 100-280 nm которые отличаются по проникающей способности и биологическому воздействию на организм.
UV-A не задерживается озоновым слоем, проходит сквозь стекло и роговой слой кожи. Поток UV-A (среднее значение в полдень) в два раза выше на уровне Полярного Круга, чем на экваторе, так что абсолютное его значение больше в высоких широтах. Не отмечается и существенных колебаний в интенсивности UV-A в разные времена года. За счет поглощения, отражения и рассеивания при прохождении через эпидермис, в дерму проникает только 20-30% UV-A и около 1% от общей его энергии достигает подкожной клетчатки.
Большая часть UV-B поглощается озоновым слоем, который «прозрачен» для UV-A. Так что доля UV-B во всей энергии ультрафиолетового излучения в летний полдень составляет всего около 3%. Он практически не проникает сквозь стекло, на 70% отражается роговым слоем, на 20% ослабляется при прохождении через эпидермис — в дерму проникает менее 10%.
Однако длительное время считалось, что доля UV-В в повреждающем действии ультрафиолета составляет 80%, поскольку именно этот спектр отвечает за возникновение эритемы солнечного ожога.
Необходимо учитывать и тот факт, что UV-В сильнее (меньшая длина волны) чем UV-А рассеивается при прохождении через атмосферу, что приводит и к изменению соотношения между этими фракциями с увеличением географической широты (в северных странах) и временем суток.
UV-С (200-280 нм) поглощается озоновым слоем. В случае использования искусственного источника ультрафиолета, он задерживается эпидермисом и не проникает в дерму.

Действие ультрафиолетового излучения на клетку

В действии коротковолнового излучения на живой организм наибольший интерес представляет влияние ультрафиолетовых лучей на биополимеры — белки и нуклеиновые кислоты. Молекулы биополимеров содержат кольцевые группы молекул, содержащие углерод и азот, которые интенсивно поглощают излучение с длиной волны 260. 280 нм. Поглощенная энергия может мигрировать по цепи атомов в пределах молекулы без существенной потери, пока не достигнет слабых связей между атомами и не разрушит связь. В течение такого процесса, называемого фотолизом, образуются осколки молекул, оказывающие сильное действие на организм. Так, например, из аминокислоты гистидина образуется гистамин — вещество, расширяющее кровеносные капилляры и увеличивающее их проницаемость. Кроме фотолиза под действием ультрафиолетовых лучей в биополимерах происходит денатурация. При облучении светом определенной длины волны электрический заряд молекул уменьшается, они слипаются и теряют свою активность — ферментную, гормональную, антигенную и пр.
Процессы фотолиза и денатурации белков идут параллельно и независимо друг от друга. Они вызываются разными диапазонами излучения: лучи 280. 302 нм вызывают главным образом фотолиз, а 250. 265 нм — преимущественно денатурацию. Сочетание этих процессов определяет картину действия на клетку ультрафиолетовых лучей.
Самая чувствительная к действию ультрафиолетовых лучей функция клетки — деление. Облучение в дозе 10(-19) дж/м2 вызывает остановку деления около 90% бактериальных клеток. Но рост и жизнедеятельность клеток при этом не прекращается. Со временем восстанавливается их деление. Чтобы вызвать гибель 90% клеток, подавление синтеза нуклеиновых кислот и белков, образование мутаций, необходимо довести дозу облучения до 10(-18) дж/м2. Ультрафиолетовые лучи вызывают в нуклеиновых кислотах изменения, которые влияют на рост, деление, наследственность клеток, т.е. на основные проявления жизнедеятельности.
Значение механизма действия на нуклеиновую кислоту объясняется тем, что каждая молекула ДНК (дезоксирибонуклеиновой кислоты) уникальна. ДНК — это наследственная память клетки. В ее структуре зашифрована информация о строении и свойствах всех клеточных белков. Если любой белок присутствует в живой клетке в виде десятков и сотен одинаковых молекул, то ДНК хранит информацию об устройстве клетки в целом, о характере и направлении процессов обмена веществ в ней. Поэтому нарушения в структуре ДНК могут оказаться непоправимыми или привести к серьезному нарушению жизнедеятельности.

Действие ультрафиолетового излучения на кожу

Воздействие ультрафиолета на кожу заметно влияет на метаболизм нашего организма. Общеизвестно, что именно УФ-лучи инициируют процесс образования эргокальциферола (витамина Д), необходимого для всасывания кальция в кишечнике и обеспечения нормального развития костного скелета. Кроме того, ультрафиолет активно влияет на синтез мелатонина и серотонина — гормонов, отвечающих за циркадный (суточный) биологический ритм. Исследования немецких ученых показали, что при облучении УФ-лучами сыворотки крови в ней на 7 % увеличивалось содержание серотонина — «гормона бодрости», участвующего в регуляции эмоционального состояния. Его дефицит может приводить к депрессии, колебаниям настроения, сезонным функциональным расстройствам. При этом количество мелатонина, обладающего тормозящим действием на эндокринную и центральную нервную системы, снижалось на 28%. Именно таким двойным эффектом объясняется бодрящее действие весеннего солнца, поднимающего настроение и жизненный тонус.
Действие излучения на эпидермис — наружный поверхностный слой кожи позвоночных животных и человека, состоящий из многослойного плоского эпителия человека, представляет собой воспалительную реакцию называемую эритемой. Первое научное описание эритемы дал в 1889 г. А.Н. Макланов (Россия), который изучил также действие ультрафиолетовых лучей на глаз (фотоофтальмию) и установил, что в основе их лежат общие причины.
Различают калорическую и ультрафиолетовую эритему. Калорическая эритема обусловлена воздействием видимых и инфракрасных лучей на кожу и прилива к ней крови. Она исчезает почти сразу после прекращения действия облучения.
После прекращения воздействия УФ-облучения, через 2..8 часов появляется покраснение кожи (ультрафиолетовая эритема) одновременно с ощущением жжения. Эритема появляется после скрытого периода, в пределах облученного участка кожи, и сменяется загаром и шелушением. Длительность эритемы имеет продолжительность от 10. 12 часов до 3. 4 дней. Покрасневшая кожа горяча на ощупь, чуть болезненна и кажется набухшей, слегка отечной.
По существу эритема представляет собой воспалительную реакцию, ожог кожи. Это особое, асептическое (Асептический — безгнилостный) воспаление. Если доза облучения слишком велика или кожа особенно чувствительна к ним, отечная жидкость, накапливаясь, отслаивает местами наружный покров кожи, образует пузыри. В тяжелых случаях появляются участки некроза (омертвения) эпидермиса. Через несколько дней после исчезновения эритемы кожа темнеет и начинает шелушиться. По мере шелушения слущивается часть клеток, содержащих меланин (Меланин — основной пигмент тела человека; придает цвет коже, волосам, радужной оболочке глаза. Он содержится и в пигментном слое сетчатки глаза, участвует в восприятии света), загар бледнеет. Толщина кожного покрова человека варьирует в зависимости от пола, возраста (у детей и стариков — тоньше) и локализации — в среднем 1..2 мм. Его назначение — защитить организм от повреждений, колебаний температуры, давления.
Основной слой эпидермиса прилегает к собственно коже (дерме), в которой проходят кровеносные сосуды и нервы. В основном слое идет непрерывный процесс деления клеток; более старые вытесняются наружу молодыми клетками и отмирают. Пласты мертвых и отмирающих клеток образуют наружный роговой слой эпидермиса толщиной 0,07. 2,5 мм (На ладонях и подошвах, главным образом за счет рогового слоя, эпидермис толще, чем на других участках тела), который непрерывно слущивается снаружи и восстанавливается изнутри.
Если падающие на кожу лучи поглощаются мертвыми клетками рогового слоя, они не оказывают на организм никакого влияния. Эффект облучения зависит от проникающей способности лучей и от толщины рогового слоя. Чем короче длина волны излучения, тем меньше их проникающая способность. Лучи короче 310 нм не проникают глубже эпидермиса. Лучи с большей длиной волны достигают сосочкового слоя дермы, в котором проходят кровеносные сосуды. Таким образом, взаимодействие ультрафиолетовых лучей с веществом происходит исключительно в коже, главным образом в эпидермисе.
Основное количество ультрафиолетовых лучей поглощается в ростковом (основном) слое эпидермиса. Процессы фотолиза и денатурации приводят к гибели шиловидных клеток зародышевого слоя. Активные продукты фотолиза белков вызывают расширение сосудов, отек кожи, выход лейкоцитов и другие типичные признаки эритемы.
Продукты фотолиза, распространяясь по кровеносному руслу, раздражают также нервные окончания кожи и через центральную нервную систему рефлекторно воздействуют на все органы. Установлено, что в нерве, отходящем от облученного участка кожи, частота электрических импульсов повышается.
Эритема рассматривается как сложный рефлекс, в возникновении которого участвуют активные продукты фотолиза. Степень выраженности эритемы и возможность ее образования зависит от состояния нервной системы. На пораженных участках кожи, при обморожении, воспалении нервов эритема либо вовсе не появляется, либо выражена очень слабо, несмотря на действие ультрафиолетовых лучей. Угнетает образование эритемы сон, алкоголь, физическое и умственное утомление.
Н. Финзен (Дания) впервые применил ультрафиолетовое излучение для лечения ряда болезней в 1899 г. В настоящее время подробно изучены проявления действия разных участков ультрафиолетового излучения на организм. Из ультрафиолетовых лучей, содержащихся в солнечном свете, эритему вызывают лучи с длиной волны 297 нм. К лучам с большей или меньшей длиной волны эритемная чувствительность кожи снижается.
С помощью искусственных источников излучения эритему удалось вызвать лучами диапазона 250. 255 нм. Лучи с длиной волны 255 нм дает резонансная линия излучения паров ртути, используемых в ртутно-кварцевых лампах.
Таким образом, кривая эритемной чувствительности кожи имеет два максимума. Впадина между двумя максимумами обеспечивается экранирующим действием ороговевшего слоя кожи.

Защитные функции организма

В естественных условиях вслед за эритемой развивается пигментация кожи — загар. Спектральный максимум пигментации (340 нм) не совпадает ни с одним из пиков эритемной чувствительности. Поэтому, подбирая источник излучения можно вызвать пигментацию без эритемы и наоборот.
Эритема и пигментация не являются стадиями одного процесса, хотя они и следуют одна за другой. Это проявление разных, связанных друг с другом процессов. В клетках самого нижнего слоя эпидермиса — меланобластах — образуется кожный пигмент меланин. Исходным материалом для образования меланина служат аминокислоты и продукты распада адреналина.
Меланин — не просто пигмент или пассивный защитный экран отгораживающий живые ткани. Молекулы меланина представляют собой огромные молекулы с сетчатой структурой. В звеньях этих молекул связываются и нейтрализуются осколки разрушенных ультрафиолетом молекул, не пропуская их в кровь и внутреннюю среду организма.
Функция загара заключается в защите клеток дермы, расположенных в ней сосудах и нервах от длинноволновых ультрафиолетовых, видимых и инфракрасных лучей, вызывающих перегрев и тепловой удар. Ближние инфракрасные лучи и видимый свет, особенно его длинноволновая, «красная» часть, могут проникать в ткани гораздо глубже, чем ультрафиолетовые лучи, — на глубину 3. 4 мм. Гранулы меланина — темно-коричневого, почти черного пигмента — поглощают излучение в широкой области спектра, защищая от перегрева нежные, привыкшие к постоянной температуре внутренние органы.
Оперативный механизм защиты организма от перегрева — прилив крови к коже и расширение кровеносных сосудов. Это приводит к увеличению теплоотдачи посредством излучения и конвекции (Общая поверхность кожного покрова взрослого человека составляет 1,6 м2). Если воздух и окружающие предметы имеют высокую температуру, вступает в действие еще один механизм охлаждения — испарение за счет потоотделения. Эти механизмы терморегуляции предназначены для защиты от воздействия видимых и инфракрасных лучей Солнца.
Потоотделение, наряду с функцией терморегуляции, препятствует воздействию ультрафиолетового излучения на человека. Пот содержит урокановую кислоту, которая поглощает коротковолновое излучение благодаря наличию в ее молекулах бензольного кольца.

Световое голодание (дефицит естественного УФ-облучения)

Ультрафиолетовое излучение поставляет энергию для фотохимических реакций в организме. В нормальных условиях солнечный свет вызывает образование небольшого количества активных продуктов фотолиза, которые оказывают на организм благотворное действие. Ультрафиолетовые лучи в дозах, вызывающих образование эритемы, усиливают работу кроветворных органов, ретикуло-эндоте-лиальную систему (Физиологическая система соединительной ткани, вырабатывающая антитела разрушающие чужеродные организму тела и микробы), барьерные свойства кожного покрова, устраняют аллергию.
Под действием ультрафиолетового излучения в коже человека из стероидных веществ образуется жирорастворимый витамин D. В отличие от других витаминов он может поступать в организм не только с пищей, но и образовываться в нем из провитаминов. Под влиянием ультрафиолетовых лучей с длиной волны 280. 313 нм провитамины, содержащиеся в кожной смазке выделяемой сальными железами, превращаются в витамин D и всасываются в организм.
Физиологическая роль витамина D заключается в том, что он способствует усвоению кальция. Кальций входит в состав костей, участвует в свертывании крови, уплотняет клеточные и тканевые мембраны, регулирует активность ферментов. Болезнь, возникающая при недостатке витамина D у детей первых лет жизни, которых заботливые родители прячут от Солнца, называется рахитом.
Кроме естественных источников витамина D используют и искусственные, облучая провитамины ультрафиолетовыми лучами. При использовании искусственных источников ультрафиолетового излучения следует помнить, что лучи короче 270 нм разрушают витамин D. Поэтому с помощью фильтров в световом потоке ультрафиолетовых ламп подавляется коротковолновая часть спектра. Солнечное голодание проявляется в раздражительности, бессоннице, быстрой утомляемости человека. В больших городах, где воздух загрязнен пылью, ультрафиолетовые лучи вызывающие эритему почти не достигают поверхности Земли. Длительная работа в шахтах, машинных отделениях и закрытых заводских цехах, труд ночью, а сон в дневные часы приводят к световому голоданию. Световому голоданию способствует оконное стекло, которое поглощает 90. 95% ультрафиолетовых лучей и не пропускает лучи в диапазоне 310. 340 нм. Окраска стен также имеет существенное значение. Например, желтая окраска полностью поглощает ультрафиолетовые лучи. Недостаток света, особенно ультрафиолетового излучения, ощущают люди, домашние животные, птицы и комнатные растения в осенний, зимний и весенний периоды.
Восполнить недостаток ультрафиолетовых лучей позволяют лампы, которые наряду с видимым светом излучают ультрафиолетовые лучи в диапазоне длин волн 300. 340 нм. Следует иметь в виду, что ошибки при назначении дозы облучения, невнимание к таким вопросам, как спектральный состав ультрафиолетовых ламп, направление излучения и высота размещения ламп, длительность горения ламп, могут вместо пользы принести вред.

Бактерицидное действие ультрафиолетового излучения

Нельзя не отметить и бактерицидную функцию УФ-лучей. В медицинских учреждениях активно пользуются этим свойством для профилактики внутрибольничной инфекции и обеспечения стерильности оперблоков и перевязочных. Воздействие ультрафиолета на клетки бактерий, а именно на молекулы ДНК, и развитие в них дальнейших химических реакций приводит к гибели микроорганизмов.
Загрязнение воздуха пылью, газами, водяными парами оказывает вредное влияние на организм. Ультрафиолетовые лучи Солнца усиливают процесс естественного самоочищения атмосферы от загрязнений, способствуя быстрому окислению пыли, частичек дыма и копоти, уничтожая на пылинках микроорганизмы. Природная способность к самоочищению имеет пределы и при очень сильном загрязнении воздуха оказывается недостаточной.
Ультрафиолетовое излучение с длиной волны 253. 267 нм наиболее эффективно уничтожает микроорганизмы. Если принять максимум эффекта за 100%, то активность лучей с длиной волны 290 нм составит 30%, 300 нм — 6%, а лучей лежащих на границе видимого света 400 нм,- 0,01% максимальной.
Микроорганизмы обладают различной чувствительностью к ультрафиолетовым лучам. Дрожжи, плесневые грибки и споры бактерий гораздо устойчивее к их действию, чем вегетативные формы бактерий. Споры отдельных грибков, окруженные толстой и плотной оболочкой, отлично себя чувствуют в высоких слоях атмосферы и, не исключена возможность, что они могут путешествовать даже в космосе.
Чувствительность микроорганизмов к ультрафиолетовым лучам особенно велика в период деления и непосредственно перед ним. Кривые бактерицидного эффекта, торможения и роста клеток практически совпадают с кривой поглощения нуклеиновыми кислотами. Следовательно, денатурация и фотолиз нуклеиновых кислот приводит к прекращению деления и роста клеток микроорганизмов, а в больших дозах к их гибели.
Бактерицидные свойства ультрафиолетовых лучей используются для дезинфекции воздуха, инструмента, посуды, с их помощью увеличивают сроки хранения пищевых продуктов, обеззараживают питьевую воду, инактивируют вирусы при приготовлении вакцин.

Негативное воздействие ультрафиолетового облучения

Хорошо известен и ряд негативных эффектов, возникающих при воздействии УФ-излучения на организм человека, которые могут приводить к ряду серьезных структурных и функциональных повреждений кожи. Как известно, эти повреждения можно разделить на: острые, вызванные большой дозой облучения, полученной за короткое время (например, солнечный ожог или острые фотодерматозы). Они происходят преимущественно за счет лучей УФ-В, энергия которых многократно превосходит энергию лучей УФ-А. Солнечная радиация распределяется неравномерно: 70% дозы лучей УФ-В, получаемых человеком, приходится на лето и полуденное время дня, когда лучи падают почти отвесно, а не скользят по касательной — в этих условиях поглощается максимальное количество излучения. Такие повреждения вызваны непосредственным действием УФ-излучения на хромофоры — именно эти молекулы избирательно поглощают УФ-лучи.
отсроченные, вызванные длительным облучением умеренными (субэритемными) дозами (например, к таким повреждениям относятся фотостарение, новообразования кожи, некоторые фотодерматиты). Они возникают преимущественно за счет лучей спектра А, которые несут меньшую энергию, но способны глубже проникать в кожу, и их интенсивность мало меняется в течение дня и практически не зависит от времени года. Как правило, этот тип повреждений — результат воздействия продуктов свободнорадикальных реакций (напомним, что свободные радикалы — это высокореактивные молекулы, активно взаимодействующие с белками, липидами и генетическим материалом клеток).
Роль УФ-лучей спектра А в этиологии фотостарения доказана работами многих зарубежных и российских ученых, но тем не менее, механизмы фотостарения продолжают изучаться с использованием современной научно-технической базы, клеточной инженерии, биохимии и методов клеточной функциональной диагностики.
Слизистая оболочка глаза — коньюктива — не имеет защитного рогового слоя, поэтому она более чувствительна к уф-облучению, чем кожа. Резь в глазу, краснота, слезотечение, частичная слепота появляются в результате дегенерации и гибели клеток коньюктивы и роговицы. Клетки при этом становятся непрозрачными. Длинноволновые ультрафиолетовые лучи, достигая хрусталика, в больших дозах могут вызвать его помутнение — катаракту.

Искусственные источники УФ-излучения в медицине

Бактерицидные лампы
В качестве источников УФ-излучения используются разрядные лампы, у которых в процессе электрического разряда генерируется излучение, содержащие в своем составе диапазон длин волн 205-315 нм (остальная область спектра излучения играет второстепенную роль). К таким лампам относятся ртутные лампы низкого и высокого давления, а также ксеноновые импульсные лампы.
Ртутные лампы низкого давления конструктивно и по электрическим параметрам практически ни чем не отличаются от обычных осветительных люминесцентных ламп, за исключением того, что их колба выполнена из специального кварцевого или увиолевого стекла с высоким коэффициентом пропускания УФ-излучения, на внутренней поверхности которой не нанесен слой люминофора. Эти лампы выпускаются в широком диапазоне мощностей от 8 до 60 Вт. Основное достоинство ртутных ламп низкого давления состоит в том, что более 60 % излучения приходится на линию с длиной волны 254 нм, лежащей в спектральной области максимального бактерицидного действия. Они имеют большой срок службы 5.000-10.000 ч и мгновенную способность к работе после их зажигания.
Колба ртутно-кварцевых ламп высокого давления выполнена из кварцевого стекла. Достоинство этих ламп состоит в том, что они имеют при небольших габаритах большую единичную мощность от 100 до 1.000 Вт, что позволяет уменьшить число ламп в помещении, но обладают низкой бактерицидной отдачей и малым сроком службы 500-1.000 ч. Кроме того, нормальный режим горения наступает через 5-10 минут после их зажигания.
Существенным недостатком непрерывных излучательных ламп является наличие риска загрязнения парами ртути окружающей среды при разрушении лампы. В случае нарушения целостности бактерицидных ламп и попадания ртути в помещение должна быть проведена тщательная демеркуризация загрязненного помещения.
В последние годы появилось новое поколение излучателей — короткоимпульсные, обладающие гораздо большей биоцидной активностью. Принцип их действия основан на высокоинтенсивном импульсном облучении воздуха и поверхностей УФ-излучением сплошного спектра. Импульсное излучение получают при помощи ксеноновых ламп, а также с помощью лазеров. Данные об отличии биоцидного действия импульсного УФ-излучения от такового при традиционном УФ-излучении на сегодняшний день отсутствуют.
Преимущество ксеноновых импульсных ламп обусловлено более высокой бактерицидной активностью и меньшим временем экспозиции. Достоинством ксеноновых ламп является также то, что при случайном их разрушении окружающая среда не загрязняется парами ртути. Основными недостатками этих ламп, сдерживающими их широкое применение, является необходимость использования для их работы высоковольтной, сложной и дорогостоящей аппаратуры, а также ограниченный ресурс излучателя (в среднем1-1,5 года).
Бактерицидные лампы разделяются на озонные и безозонные.
У озонных ламп в спектре излучения присутствует спектральная линия с длиной волны 185 нм, которая в результате взаимодействия с молекулами кислорода образует озон в воздушной среде. Высокие концентрации озона могут оказать неблагоприятное воздействие на здоровье людей. Использование этих ламп требует контроля содержания озона в воздушной среде и тщательного проветривания помещения.
Для исключения возможности генерации озона разработаны так называемые бактерицидные «безозонные» лампы. У таких ламп за счет изготовления колбы из специального материала (кварцевое стекло с покрытием) или её конструкции исключается выход излучения линии 185 нм.
Бактерицидные лампы, отслужившие свой срок службы или вышедшие из строя, должны храниться запакованными в отдельном помещении и требуют специальной утилизации согласно требованиям соответствующих нормативных документов.

Бактерицидные облучатели.
Бактерицидный облучатель-это электротехническое устройство, в котором размещены: бактерицидная лампа, отражатель и другие вспомогательные элементы, а также приспособления для его крепления. Бактерицидные облучатели перераспределяют поток излучения в окружающее пространство в заданном направлении и подразделяются на две группы — открытые и закрытые.
Открытые облучатели используют прямой бактерицидный поток от ламп и отражателя (или без него), который охватывает широкую зону пространства вокруг них. Устанавливаются на потолке или стене. Облучатели, устанавливаемые в дверных проемах, называются барьерными облучателями или ультрафиолетовыми завесами, у которых бактерицидный поток ограничен небольшим телесным углом.
Особое место занимают открытые комбинированные облучатели. В этих облучателях, за счет поворотного экрана, бактерицидный поток от ламп можно направлять в верхнюю или нижнюю зону пространства. Однако эффективность таких устройств значительно ниже из-за изменения длины волны при отражении и некоторых других факторов. При использовании комбинированных облучателей бактерицидный поток от экранированных ламп должен направляться в верхнюю зону помещения таким образом, чтобы исключить выход прямого потока от лампы или отражателя в нижнюю зону. При этом облученность от отраженных потоков от потолка и стен на условной поверхности на высоте 1,5 м от пола не должна превышать 0,001 Вт/м2.
У закрытых облучателей (рециркуляторов) бактерицидный поток от ламп распределяется в ограниченном небольшом замкнутом пространстве и не имеет выхода наружу, при этом обеззараживание воздуха осуществляется в процессе его прокачки через вентиляционные отверстия рециркулятора. При применении приточно-вытяжной вентиляции бактерицидные лампы размещаются в выходной камере. Скорость воздушного потока обеспечивается либо естественной конвекцией, либо принудительно с помощью вентилятора. Облучатели закрытого типа (рециркуляторы) должны размещаться в помещении на стенах по ходу основных потоков воздуха (в частности, вблизи отопительных приборов) на высоте не менее 2 м от пола.
Согласно перечню типовых помещений, разбитых по категориям (ГОСТ), рекомендуется помещения I и II категорий оборудовать как закрытыми облучателями (или приточно-вытяжной вентиляцией), так и открытыми или комбинированными — при их включении в отсутствии людей.
В помещениях для детей и легочных больных рекомендуется применять облучатели с безозонными лампами. Искусственное ультрафиолетовое облучение, даже непрямое, противопоказано детям с активной формой туберкулеза, нефрозо-нефрита, лихорадочным состоянием и резким истощением.
Использование ультрафиолетовых бактерицидных установок требует строгого выполнения мер безопасности, исключающих возможное вредное воздействие на человека ультрафиолетового бактерицидного излучения, озона и паров ртути.

Основные меры безопасности и противопоказания к использованию терапевтического УФ-облучения.

Перед использованием УФ-облучения от искусственных источников необходимо посетить врача с целью подбора и установления минимальной эритемной дозы (МЭД), которая является сугубо индивидуальным параметром для каждого человека.
Поскольку индивидуальная чувствительность людей широко варьируется, рекомендуется продолжительность первого сеанса сократить вдвое по сравнению с рекомендованным временем, с тем чтобы установить кожную реакцию пользователя. Если после первого сеанса обнаружится какая-либо неблагоприятная реакция, дальнейшее использование УФ-облучения не рекомендуется.
Регулярное облучение в течение длительного времени (год и больше) не должно превышать 2 сеансов в неделю, причем в год может быть не более 30 сеансов или 30 минимальных эритемных доз (МЭД), какой бы малой ни была эритемно-эффективная облученность. Рекомендуется иногда прерывать регулярные сеансы облучения.
Терапевтическое облучение необходимо проводить с обязательным использованием надежных защитных очков для глаз.
Кожа и глаза любого человека могут стать «мишенью» для ультрафиолета. Считается, что люди со светлой кожей более восприимчивы к повреждению, однако и смуглые, темнокожие люди тоже не могут чувствовать себя в полной безопасности.

Очень осторожным с естественным и искусственным УФ-облучением всего тела следует быть следующим категориям людей:

Гинекологическим больным (ультрафиолет может усилить воспалительные явления).
Имеющих большое количество родимых пятен на теле, или участки скопления родимых пятен, или большие родимые пятна
Лечившимся от рака кожи в прошлом
Работающим в течение недели в помещении, а затем длительно загорающим в выходные дни Живущим или отдыхающим в тропиках и субтропиках
Имеющим веснушки или ожоги
Альбиносам, блондинам, русоволосым и рыжеволосым людям
Имеющим среди близких родственников больных раком кожи, особенно меланомой
Живущим или отдыхающим в горах (каждые 1000 метров над уровнем моря прибавляют 4% — 5% солнечной активности)
Длительно пребывающим, в силу различных причин, на свежем воздухе
Перенесшим трансплантацию какого-либо органа
Страдающим некоторыми хроническими заболеваниями, например, системной красной волчанкой
Принимающим следующие лекарственные препараты:
Антибактериальные (тетрациклины, сульфаниламиды и некоторые другие)
Нестероидные противовоспалительные средства, например, напроксен
Фенотиазиды, используемые в качестве успокаивающих и противотошнотных

Другие статьи

Нормативы ЭМИ. Измерительные приборы.

Нормативы ЭМИ. Измерительные приборы. 02 января 2024

Приведены безопасные нормативы ЭМИ. Приборы позволяющие измерить ЭМИ. Общая информация о воздействии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *