Предельная гибкость сжатых элементов связей составляет
Перейти к содержимому

Предельная гибкость сжатых элементов связей составляет

  • автор:

Предельная гибкость элементов

5.9.Гибкость сжатых элементов не должна превышать значений, приведенных в табл. 27.

Таблица 27

Предельная гибкость сжатых элементов

Пояса, опорные раскосы и стойки ферм, передающие опорные реакции

Прочие элементы ферм

Колонны второстепенные (стойки фахверка, фонарей и т. п.), элементы решетки колонн

Стержни, служащие для уменьшения расчетной длины сжатых стержней, и другие ненагруженные элементы

Элементы ограждающих конструкций

несимметрично нагруженные (крайние и угловые стойки витражей и т.д.)

Продолжение табл. 27

Примечание. Приведенные в табл.27 данные относятся к элементам с сечением, симметричным относительно действия сил. При сечениях, несимметричных относительно действия сил, предельную гибкость надлежит уменьшать на 30 %.

5.10.Гибкость растянутых элементов не должна превышать значений, приведенных в табл. 28.

Предельная гибкость растянутых элементов

Пояса и опорные раскосы ферм

Прочие элементы ферм

Связи (кроме элементов, подвергающихся предварительному натяжению)

Примечания: 1. Гибкость растянутых элементов проверяется только в вертикальной плоскости.

2. При проверке гибкости растянутых стержней перекрестной решетки из одиночных уголков радиус инерции принимается относительно оси, параллельной полке уголка.

3. Стержни перекрестной решетки в месте пересечения должны быть скреплены между собой.

4. Для растянутых раскосов стропильных ферм с незначительными усилиями, в которых при неблагоприятном расположении нагрузки может изменяться знак усилия, предельная гибкость принимается как для сжатых элементов, при этом соединительные прокладки должны устанавливаться не реже чем через 40i.

6. Проверка устойчивости стенок и поясных листов изгибаемых и сжатых элементов стенки балок

6.1. Стенки балок для обеспечения их устойчивости следует укреплять двусторонними ребрами:

поперечными основными, поставленными на всю высоту стенки;

поперечными основными и продольными;

поперечными основными и промежуточными, расположенными в сжатой зоне стенки, короткими — только в клепаных балках.

6.2.Расчет на устойчивость стенок балок следует выполнять с учетом всех компонентов напряженного состояния:.Напряжения следует вычислять в предположении упругой работы материала по сечению брутто без учета коэффициента.

Сжимающее (краевое) напряжение у расчетной границы стенки (со знаком „плюс») и среднее касательное напряжениеследует вычислять по формулам:

(43)

(44)

где h полная высота стенки;

М, Q средние значения соответственно момента и поперечной силы в пределах отсека; если длина отсека больше его расчетной высоты, то М иQследует вычислять для более напряженного участка длиной, равной высоте отсека; если в пределах отсека момент или поперечная сила меняют знак, то их средние значения следует вычислять на участке отсека с одним знаком.

Местное напряжение в стенке под сосредоточенной нагрузкой следует определять согласно требованиям обязательного приложения 5.

При проверке устойчивости прямоугольных отсеков стенки, заключенных между поясами и соседними поперечными основными ребрами жесткости, расчетными размерами пластинки являются:

a — расстояние между осями поперечных ребер;

hef — расчетная высота стенки, равная: в балках с поясными соединениями на высокопрочных болтах — расстоянию между ближайшимикоси балки краями поясных уголков; в клепаных балках — расстоянию между ближайшими к оси балки рисками поясных уголков; в сварных балках — полной высоте стенки; в прессованных профилях — высоте в свету между полками;

t толщина стенки.

6.3.Устойчивость стенок балок не требуется проверять, если условная гибкость стенкине превышает предельных значений:

для сварных или прессованных балок;

— для балок клепаных, на болтах и высокопрочных болтах.

При наличии местных напряжений в стенках балок указанные предельные значения следует умножать на коэффициент 0,7.

Стенки балок следует укреплять поперечными ребрами жесткости (см. п. 6.6) при >2,5.

6.4. В балках с местной нагрузкой по верхнему поясу устойчивость стенки следует проверять в соответствии с указаниями обязательного приложения 5.

6.5. Расчет на устойчивость стенок балок симметричного сечения, укрепленных только поперечными основными ребрами жесткости, при отсутствии местного напряжения() следует выполнять по формуле

(45)

где (46)

(47)

(48)

(при следует принимать =1. Значения

не допускаются);следует принимать по табл. 15.

В формулах (45) — (48) :

отношение большей стороны пластинки к меньшей;

условная гибкость пластинки высотой d(здесь d меньшая из сторонhef илиа пластинки) ;

(49)

В стенке балки симметричного сечения (при отсутствии местного напряжения), укрепленной кроме поперечных основных ребер одним продольным ребром, расположенным на расстоянии h1от расчетной (сжатой) границы отсека, обе пластинки, на которые это ребро разделяет отсек, следует рассчитывать отдельно:

а) пластинку, расположенную между сжатым поясом и продольным ребром, —по формуле

(50)

где (51)

(здесь — условная гибкость пластинки высотойh1) ;

следует определять по формуле (47) с подстановкой размеров проверяемой пластинки;

следует определять по формуле (48), принимая при этом

следует принимать по табл. 15;

б) пластинку, расположенную между растянутым поясом и продольным ребром, —по формуле

(52)

где (53)

следует определять по формуле (47) с подстановкой размеров проверяемой пластинки;

следует принимать по табл. 15.

6.6.В стенке, укрепленной только поперечными ребрами жесткости, ширина их выступающей частиbhдолжна быть для парного симметричного ребра не менеемм; толщина ребра tsдолжна быть не менее; расстояние между ребрами не должно превышать 2hef.

6.7.При укреплении стенки поперечными ребрами и одним продольным ребром необходимые моменты инерцииIsсечений ребер жесткости следует определять:

для поперечных ребер —по формуле

для продольного ребра —по формулам табл. 29 с учетом их предельных значений.

При расположении продольного и поперечных ребер с одной стороны стенки моменты инерции сечений каждого из них вычисляются относительно оси, совпадающей с гранью стенки, ближайшей к ребру.

Необходимый момент инерции сечения продольного ребра Isl

Примечаниe.При вычислении Islдля промежуточных значенийдопускается линейная интерполяция.

6.8.Участок стенки балки составного сечения над опорой при укреплении его ребрами жесткости следует рассчитывать на продольный изгиб из плоскости как стойку, нагруженную опорной реакцией. В расчетное сечение этой стойки следует включать сечение ребра жесткости и полосы стенки ширинойс каждой стороны ребра. Расчетную дли-

ну стойки следует принимать равной высоте стенки.

Нижние торцы опорных ребер жесткости должны быть плотно пригнаны или приварены к нижнему поясу балки и рассчитаны на воздействие опорной реакции.

СТЕНКИ ЦЕНТРАЛЬНО-,ВНЕЦЕНТРЕННО СЖАТЫХ И СЖАТО-ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ

6.9.Для центрально-сжатых элементов условную гибкость стенкиследует принимать не более значений, определяемых по формулам табл. 30.

При назначении сечения элемента по предельной гибкости, а также при соответствующем обосновании расчетом наибольшие значения следует умножать на коэффициент(где ), но не более чем в 1,5 раза. При этом значенияследует принимать не более 5,3.

Наибольшие значения при значениях условной гибкости стержня

Швеллерное, трубчатое прямоугольное (hef для большей стенки)

Примечания: 1.Приведенные в табл. 30 данные относятся к сварным и прессованным профилям. В клепаных элементах значениятабл. 31 следует увеличивать на 5%.

2. При вычислении для промежуточных значенийдопускается линейная интерполяция между значениями при=1 и=5.

6.10.Для внецентренно сжатых и сжато-изгибаемых элементов условную гибкость стенкиследует определять в зависимости от значения(где— наибольшее сжимающее напряжение у расчетной границы стенки, принимаемое со знаком „плюс» и вычисленное без учета коэффициентов,или;-соответствующее напряжение у противоположной расчетной границы стенки) и принимать не более значений, определяемых при:

-по п. 6.9;

-по формуле

(55)

— линейной интерполяцией между значениями, вычисленными при=0,5 и =1.

6.11.При укреплении стенки внецентренно сжатого или сжато-изгибаемого элемента продольным ребром жесткости с моментом инерцииIsl, расположенным посредине стенки, наиболее нагруженную часть стенки между поясом и осью ребра следует рассматривать как самостоятельную пластинку и проверять согласно требованиям п. 6.10.

Продольные ребра жесткости следует включать в расчетные сечения элементов.

Если устойчивость стенки не обеспечена, то в расчет следует вводить два крайних участка стенки шириной по 0.6, считая от границ расчетной высоты.

6.12.Стенки сплошных колонн и стоек приследует укреплять поперечными ребрами жесткости, расположенными на расстоянии 2hef одно от другого; на каждом отправочном элементе должно быть не менее двух ребер. При наличии продольного ребра расстояние между поперечными ребрами допускается увеличивать в 1,5 раза.

Минимальные размеры выступающей части поперечных ребер жесткости следует принимать согласно требованиям п. 6.6.

предельная гибкость стержней 12 метровой связи

Доброго времени суток, уважаемые коллеги!
возник вопрос следующего характера.
каркас здания состоит из стальных колонн, ферм, связей.
фермы пролетом 24м с параллельными поясами по серии 1.460.2-10/88.2. Шаг ферм 12м. Применяю вертикальные 12ти метровые связи по фермам по той же серии(ВС-6 см. рисунок). и тут возникает вопрос: по серии нижний пояс такой связи имеет минимальное сечение из 2уголков(крестиком) 110х8. Если посчитать по гибкости такое сечение на 12 метров, то получается число гораздо больше предельной гибкости(200), регламентируемой СНиП. Вопрос: почему так?
З.Ы. считал что в плоскости геом длина 6м, из плоскости 12м.

СНиП II-23-81 Стальные конструкции Часть 3

6.9*. Коэффициенты расчетной длины m колонн и стоек постоянного сечения следует принимать в зависимости от условий закрепления их концов и вида нагрузки.

Для некоторых случаев закрепления и вида нагрузки значения m приведены в прил. 6, табл. 71, а.

Обозначения, принятые в таблице 17, а:

– соответственно момент инерции сечения и длина проверяемой колонны;

– моменты инерции сечения ригелей, примыкающих соответственно к верхнему и нижнему концу проверяемой колонны

Примечание. Для крайней колонны свободной многопролетной рамы коэффициент следует определять как для колонн однопролетной рамы.

6.10*. Коэффициенты расчетной длины m колонн постоянного сечения в плоскости рамы при жестком креплении ригелей к колоннам следует определять:

для свободных рам при одинаковом нагружении верхних узлов по формулам табл. 17, а;

для несвободных рам по формуле

В формуле (70, в) p и n принимаются равными:

в одноэтажной раме:

в многоэтажной раме:

для верхнего этажа p = 0,5(p1 + p2); n = n1 + n2);

для среднего этажа p = 0,5(p1 + p2); n = 0,5(n1 + n2);

для нижнего этажа p = p1 + p2; n + 0,5(n1 + n2),

где p1; p2; n1; n2 следует определять по табл. 17, а.

Для одноэтажных рам в формуле (69) и многоэтажных в формулах (70, а, б, в) при шарнирном креплении нижних или верхних ригелей к колоннам принимаются p = 0 или n=0 (Ji = 0 или Js = 0), при жестком креплении p = 50 или n = 50 (Ji = ¥ или Js = ¥ ).

При отношении Н/В > 6 (где Н – полная высота многоэтажной рамы, В – ширина рамы) должна быть проверена общая устойчивость рамы в целом как составного стержня, защемленного в основании.

Примечание. Рама считается свободной (несвободной), если узел крепления ригеля к колонне имеет (не имеет) свободу перемещения в направлении, перпендикулярном оси колонны в плоскости рамы.

Коэффициент расчетной длины m наиболее нагруженной колонны в плоскости одноэтажной свободной рамы здания при неравномерном нагружении верхних узлов и наличии жесткого диска покрытия или продольных связей по верху всех колонн следует определять по формуле

где m – коэффициент расчетной длины проверяемой колонны, вычисленный по табл. 17, а;

Jc и Nc – соответственно момент инерции сечения и усилие в наиболее нагруженной колонне рассматриваемой рамы;

å Ni и å Ji – соответственно сумма расчетных усилий и моментов инерции сечений всех колонн рассматриваемой рамы и четырех соседних рам (по две с каждой стороны); все усилия Ni следует находить при той же комбинации нагрузок, которая вызывает усилие в проверяемой колонне.

Значения m ef вычисленные по формуле (71)* следует принимать не менее 0,7.

6.11*. Коэффициенты расчетной длины m отдельных участков ступенчатых колонн в плоскости рамы следует определять согласно прил. 6.

При определении коэффициентов расчетной длины m и для ступенчатых колонн рам одноэтажных производственных зданий разрешается:

не учитывать влияние степени нагружения и жесткости соседних колонн;

определять расчетные длины колонн лишь для комбинации нагрузок, дающей наибольшие значения продольных сил на отдельных участках колонн, и получаемые значения m использовать для других комбинаций нагрузок;

для многопролетных рам (с числом пролетов два и более) при наличии жесткого диска покрытия или продольных связей, связывающих поверху все колонны и обеспечивающих пространственную работу сооружения, определять расчетные длины колонн как для стоек, неподвижно закрепленных на уровне ригелей;

для одноступенчатых колонн при соблюдении условий l2/l1 £ 0,6 и N1/N2 ³ 3 принимать значения m по табл. 18.

Конец, закрепленный только от поворота

Неподвижный, шарнирно опертый конец

Неподвижный, закрепленный от поворота конец

Обозначения, принятые в таблице 18:

l1; J1; N1 – соответственно длина нижнего участка колонны, момент инерции сечения и действующая на этом участке продольная сила;

l2; J2; N2 – то же, верхнего участка колонны.

6.13. Расчетные длины колонн в направлении вдоль здания (из плоскости рам) следует принимать равными расстояниям между закрепленными от смещения из плоскости рамы точками(опорами колонн, подкрановых балок и подстропильных ферм; узлами креплений связей и ригелей и т. п.). Расчетные длины допускается определять на основе расчетной схемы, учитывающей фактические условия закрепления концов колонн.

6.14. Расчетную длину ветвей плоских опор транспортерных галерей следует принимать равной:

в продольном направлении галереи – высоте опоры (от низа базы до оси нижнего пояса фермы или балки), умноженной на коэффициент m , определяемый как для стоек постоянного сечения в зависимости от условий закрепления их концов;

в поперечном направлении (в плоскости опоры) – расстоянию между центрами узлов, при этом должна быть также проверена общая устойчивость опоры в целом как составного стержня защемленного в основании и свободного вверху.

ПРЕДЕЛЬНЫЕ ГИБКОСТИ СЖАТЫХ ЭЛЕМЕНТОВ

6.15*. Гибкости сжатых элементов не должны превышать значений, приведенных в табл. 19*.

1. Пояса, опорные раскосы и стойки, передающие опорные реакции:

а) плоских ферм, структурных конструкций и пространственных конструкций из труб и парных уголков высотой до 50 м

б) пространственных конструкций из одиночных уголков, пространственных конструкций из труб и парных уголков св. 50 м

2. Элементы, кроме указанных в поз. 1 и 7:

а) плоских ферм, сварных пространственных и структурных конструкций из одиночных уголков, пространственных и структурных конструкций из труб и парных уголков

б) пространственных и структурных конструкций из одиночных уголков с болтовыми соединениями

3. Верхние пояса ферм, не закрепленные в процессе монтажа (предельную гибкость после завершения монтажа следует принимать по поз. 1)

4. Основные колонны

5. Второстепенные колонны (стойки фахверка, фонарей и т. п.), элементы решетки колонн, элементы вертикальных связей между колоннами (ниже подкрановых балок)

6. Элементы связей, кроме указанных в поз. 5, а также стержни, служащие для уменьшения расчетной длины сжатых стержней, и другие ненагруженные элементы, кроме указанных в поз. 7

7. Сжатые и ненагруженные элементы пространственных конструкций таврового и крестового сечений, подверженные воздействию ветровых нагрузок, при проверке гибкости в вертикальной плоскости

Обозначение, принятое в таблице 19*:

– коэффициент, принимаемый не менее 0,5 (в необходимых случаях вместо j следует применять j e).

ПРЕДЕЛЬНЫЕ ГИБКОСТИ РАСТЯНУТЫХ ЭЛЕМЕНТОВ

6.16*. Гибкости растянутых элементов не должны превышать значений, приведенных в табл. 20*.

при воздействии на конструкцию нагрузок

непосредственно к конструкции

1. Пояса и опорные раскосы плоских ферм (включая тормозные фермы) и структурных конструкций

2. Элементы ферм и структурных конструкций, кроме указанных в поз. 1

3. Нижние пояса подкрановых балок и ферм

4. Элементы вертикальных связей между колоннами (ниже подкрановых балок)

5. Прочие элементы связей

6*. Пояса, опорные раскосы стоек и траверс, тяги траверс опор линий электропередачи, открытых распределительных устройств и линий контактных сетей транспорта

7. Элементы опор линий электропередачи, кроме указанных в поз. 6 и 8

8. Элементы пространственных конструкций таврового и крестового сечений (а в тягах траверс опор линий электропередачи и из одиночных уголков), подверженных воздействию ветровых нагрузок, при проверке гибкости в вертикальной плоскости

Примечания: 1. В конструкциях, не подвергающихся динамическим воздействиям, гибкость растянутых элементов следует проверять только в вертикальных плоскостях.

2. Гибкость растянутых элементов, подвергнутых предварительному напряжению, не ограничивается.

3. Для растянутых элементов, в которых при неблагоприятном расположении нагрузки может изменяться знак усилия, предельную гибкость следует принимать как для сжатых элементов, при этом соединительные прокладки в составных элементах необходимо устанавливать не реже чем через 40i.

4. Значения предельных гибкостей следует принимать при кранах групп режимов работы 7К (в цехах металлургических производств) и 8К по ГОСТ 25546-82.

5. К динамическим нагрузкам, приложенным непосредственно к конструкциям, относятся нагрузки, принимаемые в расчетах на выносливость или в расчетах с учетом коэффициентов динамичности.

7. ПРОВЕРКА УСТОЙЧИВОСТИ СТЕНОК И ПОЯСНЫХ ЛИСТОВ

ИЗГИБАЕМЫХ И СЖАТЫХ ЭЛЕМЕНТОВ

СТЕНКИ БАЛОК

7.1. Стенки балок для обеспечения их устойчивости следует укреплять:

поперечными основными ребрами, поставленными на всю высоту стенки;

поперечными основными и продольными ребрами;

поперечными основными и промежуточными короткими ребрами и продольным ребром (при этом промежуточные короткие ребра следует располагать между сжатым поясом и продольным ребром).

Прямоугольные отсеки стенки (пластинки), заключенные между поясами и соседними поперечными основными ребрами жесткости, следует рассчитывать на устойчивость. При этом расчетными размерами проверяемой пластинки являются:

a – расстояние между осями поперечных основных ребер;

hef – расчетная высота стенки (рис. 10), равная в сварных балках полной высоте стенки, в балках с поясными соединениями на высокопрочных болтах – расстоянию между ближайшими к оси балки краями поясных уголков, в балках, составленных из прокатных профилей, – расстоянию между началами внутренних закруглений, в гнутых профилях (рис. 11) – расстоянию между краями выкружек;

t – толщина стенки.

Рис. 10. Расчетная высота стенки составной балки

а – сварной из листов; б – на высокопрочных болтах; в – сварной с таврами

7.2*. Расчет на устойчивость стенок балок следует выполнять с учетом всех компонентов напряженного состояния ( s , t и s loc).

Напряжение s , t и s loc следует вычислять в предположении упругой работы материала по сечению брутто без учета коэффициента j b.

Сжимающее напряжение s у расчетной границы стенки, принимаемое со знаком «плюс», и среднее касательное напряжение t следует вычислять по формулам:

где h – полная высота стенки;

M и Q – средние значения соответственно момента и поперечной силы в пределах отсека; если длина отсека больше его расчетной высоты, то M и Q следует вычислять для более напряженного участка с длиной, равной высоте отсека; если в пределах отсека момент или поперечная сила меняют знак, то их средние значения следует вычислять на участке отсека с одним знаком.

Местное напряжение s loc в стенке под сосредоточенной нагрузкой следует определять согласно требованиям пп. 5.13 и 13.34* (при g f1 = 1,1) настоящих норм.

В отсеках, где сосредоточенная нагрузка приложена к растянутому поясу, одновременно должны быть учтены только два компонента напряженного состояния: s и t или s loc и t .

Односторонние поясные швы следует применять в балках, в которых при проверке устойчивости стенок значения левой части формулы (74) не превышают 0,9 g c при l w 3,8 и g c при l w ³ 3,8.

7.3. Устойчивость стенок балок не требуется проверять, если при выполнении условий (33) условная гибкость стенки не превышает значений:

3,5 – при отсутствии местного напряжения в балках с двусторонними поясными швами;

3,2 – то же, в балках с односторонними поясными швами;

2,5 – при наличии местного напряжения в балках с двусторонними поясными швами.

При этом следует устанавливать поперечные основные ребра жесткости согласно требованиям пп. 7.10, 7.12 и 7.13 настоящих норм.

7.4*. Расчет на устойчивость стенок балок симметричного сечения, укрепленных только поперечными основными ребрами жесткости, при отсутствии местного напряжения ( s loc = 0) и условной гибкости стенки l w £ 6 следует выполнять по формуле

где g c – коэффициент, принимаемый по табл. 6* настоящих норм;

В формуле (75) коэффициент ccr следует принимать:

для сварных балок – по табл. 21 в зависимости от значения коэффициента d :

Расчет элементов металлических конструкций на центральное растяжение и сжатие

Центрально-растянутые элементы. Работа таких элементов под нагрузкой полностью соответствует диаграмме работы матери­ала при растяжении.

Основная проверка для центрально-растянутых элементов — проверка прочности, относящаяся к первой группе предельных состояний.

Напряжения в центрально-растянутом элементе

где N— усилие в элементе от расчетных нагрузок; Aп — площадь поперечного сечения проверяемого элемента за вычетом ослабле­ний (площадь сечения нетто); Ry — расчетное сопротивление; γc — коэффициент условий работы.

Расчет по формуле выше предупреждает развитие пластических деформаций в ослабленном сечении элементов, выполненных из малоуглеродистых сталей и сталей повышенной прочности.

Расчет на прочность растянутых элементов конструкций из стали с отношением Ruγu > Ry эксплуатация которых возможна и после достижения металлом предела текучести, выполняют по формуле σ=N / Aп ≤ Ruγu / γuγn

где γu — коэффициент надежности при расчете по временному со­противлению.

Кроме прочности растянутых элементов, необходимо обеспечить их достаточную жесткость, чтобы избежать повреждения элементов при перевозке и монтаже конструкций, а также в процессе их эксплу­атации уменьшить провисание элементов от собственного веса и пре­дотвратить вибрацию стержней при динамических нагрузках.

Для этой цели проверяют гибкость растянутых элементов, ко­торая не должна превышать максимально допустимых значений [λ], приведенных в таблице ниже

где lef — расчетная длина элемента; i — радиус инерции сечения.

Предельные гибкости [λ] растянутых элементов

Элементы конструкций

Максимальная допускаемая гибкость

в зданиях и сооружениях при нагрузках

в затво­рах ГТС

динамиче­ских, прило­женных непо­средственно к конструкции

Пояса и опорные раскосы плоских

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *