Векторная диаграмма — графическое изображение меняющихся по закону синуса (косинуса) величин и соотношений между ними при помощи направленных отрезков — векторов. Векторные диаграммы широко применяются в электротехнике, акустике, оптике, теории колебаний и так далее.
Гармоническое (то есть синусоидальное) колебание может быть представлено графически в виде проекции на некоторую ось (обычно берут ось координат Оx) вектора, вращающегося с постоянной угловой скоростью ω. Длина вектора соответствует амплитуде, угол поворота относительно оси (Ox) — фазе.
Сумма (или разность) двух и более колебаний на векторной диаграмме представлена при этом (геометрической) суммой [1] (или разностью) векторов этих колебаний. Мгновенное значение искомой величины определяется при этом проекцией вектора суммы на ось Оx, амплитуда — длиной этого вектора, а фаза — углом его поворота относительно Ox.
Векторные диаграммы и комплексное представление
Векторные диаграммы можно считать вариантом (и иллюстрацией) представления колебаний в виде комплексных чисел. При таком сопоставлении ось Ox соответствует оси действительных чисел, а ось Oy — оси чисто мнимых чисел (положительный единичный вектор вдоль которой есть мнимая единица).
Тогда вектор длиной A, вращающийся в комплексной плоскости с постоянной угловой скоростью ω с начальным углом φ0 запишется как комплексное число
Если двумерная скорость (на диаграмме) не меняется по величине (по модулю), то можно показать, что ускорение направлено также под прямым углом к скорости и направлено в точности противоположно радиус-вектору (центростемительное ускорение).
Что касается соотношения величин векторов, то исходя из довольно очевидного геометрически факта, что конец любого вектора длиной L, вращающегося вокруг своего начала с угловой скоростью ω, равна ωL, и предполагая, что движение на двумерной диаграмме чисто вращательное, легко понять, что
получаем, что его величина равна а направление — противоположно направлению (из-за поворота дважды на 90 градусов).
(Таким образом мы получили, по ходу дела, и теорему о центростремительном ускорении [2] ).
Естественным расширением возвращающей силы одномерного осциллятора
до двумерной, удовлетворяющей условию совпадения x-компоненты силы с одномерной, будет
Тогда видим, что можно подобрать скорость вращения так, чтобы все векторы оставались неизменными по величине, и только вращались с угловой скоростью ω. А именно, если то
(При этом длину вектора может быть взята любой, она сокращается в этом уравнении; также может быть взят любым угол поворота начального положения ).
То есть мы нашли решение для двумерной системы (соответствующей векторной диаграмме), а следовательно проекция этого решения на ось x — есть решение уравнения движения для одномерной системы, то есть
— любые, есть решение уравнения движения гармонического осциллятора
Гармонический осциллятор с затуханием и внешней вынуждающей силой
Аналогично можно рассмотреть решение уравнения движения гармонического осциллятора со внешней вынуждающей силой f:
(Здесь в правой части первый член — обычная гуковская возвращающая сила, второй — вязкое трение, третий — внешняя вынуждающая сила — подразумевается, что она зависит только от времени и не зависит от x).
Поскольку практически любая [3] сила f может быть разложена в ряд или интеграл Фурье, то есть представлена как сумма (дискретная сумма или интеграл) синусоидальных сил, задача сводится к задаче с синусоидальной силой
При этом пытаемся подобрать эти векторы так, чтобы двумерное движение сводилось к чистому вращению.
Для этого надо потребовать, чтобы суммарная сила, действующая на массу осциллятора (являющуюся материальной точкой), была направлена всегда к одной и той же точке (центру вращения), а по величине равнялась величине центростремительного ускорения, умноженного на массу.
Исходя из этих условий получаем уравнение на соотношение модулей векторов (соответствующих, очевидно, амплитудам колебания соответствующих одномерных величин), а также и на их углы (соответствующие фазам одномерных колебаний).
Разумно, исходя из симметрии, предположить, что вращение должно происходить относительно начала координат (точки равновесия).
Тогда ускорение должно быть направлено к этой точке (ведь мы имеем в виду правильное равномерное вращение), а значит, имеем два условия, если рассмотрим компоненты сил и ускорения по оси, соответствующей радиус вектору и по оси перпендикулярной ей. Эти два условия записываются как уравнения
соответственно. (Здесь r — модуль радиус-вектора, f с разными индексами — компоненты вектора внешней силы вдоль радиус-вектора и перпендикулярно ему; первое уравнение содержит количественный баланс радиальных сил и центростремительного ускорения, а второе означает компенсацию поперечных сил, которая необходима, чтобы в итоге сила была направлена по линии радиус-вектора, т.е. была центростремительной).
Разрешая каждое из этих двух уравнений относительно компоненты силы f, а затем возводя каждое в квадрат и сложив, имея в виду по теореме Пифагора , получаем:
то есть выражение для амплитуды колебания при заданной амплитуде вынуждающей силы f.
(Аналогично — из отношения выписанных компонент силы, представляющего тангенс искомого угла — находится и угол, под которым вектор силы на диаграмме наклонен к радиус-вектору. А этот угол и есть запаздывание фазы колебаний x относительно фазы колебаний приложенной внешней силы).
Как видим, исследование колебаний под действием вынуждающей синусоидальной силы (из которого в числе прочего получаются условия резонанса итд итп) для гармонического осциллятора вполне успешно осуществляется методом векторных диаграмм. Впрочем, для исследования других вопросов, таких, как получение затухающего решения в отсутствие внешней вынуждающей силы, такой метод не слишком удобно применим. [4]
Расчет электрических цепей
Расчет электрических цепей — пожалуй, наиболее стандартный и крайне широко распространенный случай применения векторных диаграмм, причем именно здесь по ряду педагогических причин он, видимо, чаще всего применяется именно под этим названием и в чистом виде (то есть даже без упоминания комплексных чисел) [5] .
На самом деле аналогичный метод, основанный на комплексном представлении колебаний, конечно же, есть — в основном его можно обозначить как метод комплексных импедансов (см.тж. Метод комплексных амплитуд). В целом последний более мощен, чем простой метод векторных диаграмм, т.к. более формализован и позволяет найти решение для произвольной (сколь угодно сложной) схемы, состоящей из линейных элементов (резисторов, конденсаторов, катушек индуктивности), используя обобщенные [6] правила Кирхгофа. В то же время, векторные диаграммы могут быть использованы для иллюстрации этого метода, а в тех случаях [7] , где они применимы, формально полностью совпадают.
Наиболее стандартный, распространенный и простой случай применения векторных диаграмм к электрическим схемам — это последовательные и параллельные цепи, состоящие из линейных элементов (резисторов, конденсаторов и элементов, обладающих индуктивностью [8] ).
В принципе векторные диаграммы могут быть, если параметры элементов цепи и частота заданы численно, использованы для получения ответа графическим путем почти без вычислений (путем построения точного чертежа), однако чаще под применением векторной диаграммы понимают получение с помощью нее ответа в виде формулы (тогда векторная диаграмма играет роль схематического чертежа при решении геометрической задачи).
Основой выполнения типичного расчета в терминах, исключающих явное использование комплексных чисел, является понятие реактивного сопротивления, которое вводится для конденсаторов и индуктивных элементов (катушек индуктивности), исходя из основных физических уравнений [9] , позволяющих связать ток через элемент и напряжение на нем (или ЭДС в нем):
для конденсатора:
для индуктивности: притом
Затем в эти уравнения подставляют синусоидальный ток:
за исключением двух моментов: 1) если обычное (называемое в данном контексте активным) сопротивление R не вызывает изменения фазы напряжения по сравнению с током (они синфазны), то напряжение на конденсаторе запаздывает по фазе относительно тока на 90°, а на индуктивности напряжение опережает ток по фазе на те же 90°; 2) коэффициент, на который домножается ток, чтобы получить напряжение, как раз и называемый реактивным сопротивлением зависит и у конденсатора, и у индуктивности от частоты тока (и зависит разным, обратным, образом).
Таким образом, мы знаем, как изобразить на векторной диаграмме напряжение на конденсаторе, индуктивности или резисторе, если известен ток (то есть его вектор уже нарисован). А именно: для конденсатора мы должны умножить (масштабировать) вектор, изображающий ток, на коэффициент и повернуть его на 90° в отрицательном направлении (по часовой стрелке). Так мы получим вектор, изображающий напряжение, для конденсатора и индуктивности, если мы знаем вектор тока. Для резистора же («активного сопротивления»), чтобы построить вектор, изображающий напряжение, вектор, изображающий ток, надо только умножить на R, не меняя его направления.
Совершенно аналогично можно построить на векторной диаграмме вектор, изображающий ток, если мы знаем вектор, изображающий напряжение. (Очевидно, просто умножать придется на обратные приведенным выше числа, и поворачивать вектор в противоположную сторону).
Когда это ясно, можно рассмотреть конкретно типичные задачи для параллельного и последовательного соединения элементов.
Основным фактом, используемым для решения задачи при параллельном соединении, является тот факт, что напряжение на всех параллельно соединенных элементах одинаково, поэтому за исходный вектор берется вектор напряжения (он один и тот же для всех элементов, то есть он всего один, поэтому именно с него удобно начать). Затем по рецепту, приведенному выше, строятся векторы тока для каждого элемента, а их (векторная) сумма, конечно же, изображает суммарный ток.
Основным фактом для решения задачи с последовательным соединением является равенство тока во всех последовательно соединенных элементах [10] Тогда мы начинаем построение с вектора тока, вычисляем напряжение на каждом элементе способом, описанным выше (через его активное или реактивное сопротивление), а напряжение на концах цепи вычисляется как сумма векторов, изображающих напряжение на каждом элементе. Он позволяет определить амплитуду и фазу напряжения на концах цепи, если известна амплитуда, фаза и частота тока. После записи ответа в виде формулы, можно при необходимости переписать ее и так, чтобы выразить наоборот неизвестный ток через известное напряжение.
Векторная диаграмма для RLC-цепочки. (Стрелки в нижней части рисунка не являются векторами векторной диаграммы, а лишь показывают участки цепи, напряжения на которых соответствует векторам с таким же буквенным обозначением и цветом в верхней части рисунка, как раз и являющейся собственно векторной диаграммой).
Последний вариант построения векторной диаграммы (для последовательно соединенных резистора, индуктивности и конденсатора) приведен на рисунке.
Подробно
В последовательную цепь (как на рисунке) включены резистор сопротивлением R, конденсатор емкостью C и катушка индуктивностью L. Обозначим напряжение на каждом из этих элементов соответственно UR,UC,UL, а ток через цепь (одинаковый для каждого элемента из-за их последовательного включения) обозначим I.
Напряжение на концах цепи (которое мы обозначим как URLC) будет суммой напряжений на каждом элементе:
Напряжение на каждом из элементов цепи вычисляется исходя из его активного или реактивного сопротивления, а именно амплитуды напряжений, соответствующие длинам векторов, которыми эти напряжения изображаются на диаграмме, равны:
причем первое не сдвинуто по фазе относительно тока, а значит изображается на диаграмме вектором, сонаправленным с I, второе — в силу [12] емкостного характера его реактивного сопротивления — отстает по фазе на 90°, а значит изображается вектором, повернутым на 90° в отрицательном направлении (по часовой стрелке) — то есть на рисунке вниз (поскольку I на этом рисунке строго горизонтально), а третье — силу [13] индуктивного характера его реактивного сопротивления — обгоняет ток по фазе на 90°, а значит на диаграмме изображается вектором, повернутым на 90° в положительном направлении (против часовой стрелки) — на нашем рисунке это получается строго вверх.
Далее складываем UR,UC,UL по правилам сложения векторов, то есть, как на рисунке, строим цепочку векторов (ломаную), где каждый следующий прибавляемый вектор строится так, чтобы его начало совпадало с концом предыдущего.
Вектором суммы оказывается, как мы и полагали выше
Следовательно, если мы будем суммировать векторы в естественном порядке, начиная с наименьшей частоты к наибольшей, ломаная, состоящая из цепочки суммируемых векторов, будет в произвольный момент времени представлять собой часть «правильного многоугольника» [17] , то есть все начала и концы векторов лежат в конкретный момент времени на некоторой одной окружности (в начальный момент, очевидно, эта ломаная вырождена в отрезок прямой).
Сразу заметим, что в случае задачи для непрерывного спектра такая ломаная, очевидно, переходит в окружность. При желании это утверждение можно обосновать строго, а все рассуждения для дискретного спектра переформулировать соответственно для непрерывного.
Вектор суммы — вектор, проведенный от начала первого вектора в цепочке к концу последнего — очевидно, направлен под углом к горизонтали, где — среднее нижней и верхней частот нашего спектра (то есть наибольшей и наименьшей частоты).
Длину этого вектора также нетрудно вычислить из элементарных геометрических соображений.
Качественное отличие случая дискретного спектра от непрерывного состоит в том, что при дискретном спектре количество звеньев ломаной конечно (и каждый ее отрезок тоже конечен) поэтому через некоторое конечное время будет достигнуто положение, когда каждый следующий вектор будет противоположен предыдущему (ломаная полностью «сложится» до размеров одного вектора), а после этого она начнет «раскладываться», пока, через то же время, не достигнет начального положения, то есть ампдитуда суммы опять будет максимальной, как и при t=0, а сама функция будет периодической [18] .
Нетрудно вычислить, через какое время «огибающая сигнала пройдет через ноль» [19] . (Очевидно, это произойдет тогда, когда ломаная — или в случае непрерывного спектра кривая (дуга окружности) — составленная из векторов, изображающих каждую синусоиду, впервые замкнется. Это время можно использовать как количественную характеристику «ширины сигнала» (ширины его главного пика) по времени. (Очевидно, что сигнал есть четная — то есть симметричная относительно обращения времени — функция, поэтому аналогичная точка на оси времени будет и на отрицательной полуоси, симметрично первой).
Эту характеристику ширины сигнала — в сочетании с очевидной (в силу его резких границ) характеристикой ширины спектра — можно использовать для формулировки соотношений неопределенностей; это может быть полезно при популярном изложении, т.к. требует в общем элементарных математических средств, а при этом суть проблемы затронута (пусть и на частном примере) достаточно детально.
Дифракция
При решении задачи дифракции Фраунгофера [20] на щели, мы сталкиваемся с вопросом, сходным с рассмотренным в предыдущем параграфе: как просуммировать синусоиды, равные по амплитуде и сдвинутые по фазе следующая относительно предыдущей на одинаковую величину (только в этом параграфе эти сдвиги фазы пропорциональны не времени, а — в простейшем случае — синусу угла).
Аналогичным случаю предыдущего параграфа образом, каждая синусоида представлена вектором, цепочка которых при суммировании способом ломаной оказывается вписана в окружность, а в непрерывном пределе (к которому здесь необходимо перейти) — представляет собой дугу окружности. Ветор суммы — замыкающий ломаную — есть тогда хорда этой дуги, и его длина рассчитывается из элементарных геометрических соображений.
Довольно интересно, что метод векторных диаграмм позволяет качественно исследовать переход от фраунгоферова случая к более общему (при приближении экрана наблюдения к щели). (Тогда длины складываемых векторов перестают быть одинаковыми, однако качественно можно понять, как меняется картина, особенно пока расстояние до экрана уменьшилось не слишком сильно).
В принципе, метод векторных диаграмм пригоден для нахождения решения задач дифракции и в общем случае (для которого нет аналитических методов) — численным методом, методом построения или с помощью механического аналогового устройства, хотя во многих из таких применений не слишком очевидно, насколько корректно применение самого термина «векторные диаграммы» (в смысле отграничения от других обычных методов — комплексного представления итд; хотя, конечно, в отдельных случаях это несомненно корректно — скажем при чисто графическом построении).
Примечания
↑ полученной по правилу параллелограмма, треугольника или (в случае суммирования многих векторов) ломаной.
↑ Впрочем, можно считать ее известной независимо, т.к. собственно пока рассматривалось просто двумерное движение, не являющееся само по себе предметом метода векторных диаграмм, а скорее используется в нем. С другой стороны, мы уже замечали, что почти всё содержание метода векторных диаграмм в пределах данного параграфа может быть переформулировано в терминах простой анологии с двумерным движением.
↑ То есть зависящая от времени как угодно, иначе говоря, произвольная функция f(t). Конечно, на класс допустимых функций f(t) следует наложить требование физической разумности, например, считать их конечными или (поскольку класс допустимых функций иногда разумно сделать еще более широким) хотя бы интегрируемыми в каком-то смысле.
↑ В принципе, можно предложить некие пути его применения, однако они довольно искусственны и в любом случае не дают возможности просто получить прямой ответ сразу в естественной форме, как это было сделано для задачи, разобранной выше.
↑ Формулировка с использованием комплексных чисел не только расширяет возможности применения метода, но и более компактна, а значит и красива. Однако для ее понимания надо затратить некоторое (в принципе — не большое) время на знакомство с элементарными операциями над комплексными числами. В этой формулировке векторные диаграммы становятся геометрической иллюстрацией метода, а его алгебраическая запись становится проще, короче и стандартнее.
↑ Под обобщением правил Кирхгофа здесь понимается их использование применительно к схемам, включающим не только резисторы, но и реактивные сопротивления (конденсаторы и катушки индуктивности), причем для реактивных элементов вместо сопротивлений используются комплексные числа — импедансы. Чисто формально при этом всё остается так же, как для схем, включающих только резисторы; просто не все сопротивления теперь являются действительными числами.
↑ К сожалению, в чистом виде — т.е. чисто геометрически, без явного использования комплексных чисел — он применим (по крайней мере, удобно применим) не ко всем случаям, и даже можно сказать, что в обычном своем виде он применим только к случаю последовательных или параллельных соединений элементов цепи, а также к последовательно-параллельным цепям (хотя в последнем случае уже заметно менее удобен).
↑ Также в этот список можно включить и некоторые другие элементы, например, усилители в области их линейности, а в приближении малых сигналов нелинейные элементы могут быть приближенно заменены линейными.
↑ Наиболее просто — для идеальных конденсаторов и индуктивностей. Часть неидеальности затем может изображаться параллельным или последовательным подключением к идеальным элементам дополнительных резисторов, конденсаторов, индуктивностей, которые должны быть эквивалентны паразитному активному сопротивлению, паразитной емкости, паразитной индуктивности реальных элементов.
↑ Мы рассуждаем в рамках предположения, что емкости самого проводников как таковых пренебрежимо малы, и заметный заряд может накапливаться только на пластинах конденсатора (симметрично), тогда ток везде одинаков.
↑ Вариантом формулировки такой задачи может быть задание в условии синусоидальности напряжения на концах цепи, а не тока в ней. Однако, начав с синусоидального тока — как изложено в основном тексте — мы приходим к синусоидальности напряжения, т.е. эти условия согласованны и являются друг для друга необходимыми и достаточными. Поэтому в основном тексте без потери общности мы начинаем изложение с синусоидальности тока, что является более простым и ясным.
↑ Обоснование — см. в статье выше.
↑ Обоснование — также см. в статье выше.
↑ Не говоря уж о том, что он позволяет говорить об этом без знания упомянутых тригонометрических формул, то есть, например, в более раннем возрасте, если это требуется.
↑ в этом параграфе мы понимаем под прямоугольным сигналом единичный импульс прямоугольной формы, то есть функцию, принимающую ненулевое постоянное значение на некотором отрезке и равную нулю везде вне этого отрезка.
↑ Кроме того к этой задаче тесно примыкает задача о нахождении сигнала, имеющего дискретный спектр из равноотстоящих гармоник одинаковой интенсивности, занимающих по частоте конечный интервал, а в пределе — и все частоты (вариант белого шума).
↑ Кавычки потому, что термин правильный многоугольник здесь применен не строго: имеется в виду, что все отрезки нашей ломаной равны и углы между соседними равны (как в настоящем правильном многоугольнике), однако вообще говоря эта ломаная, даже если ее продолжить, не всегда замыкается в правильный многойгольник (угол между отрезками не всегда позволяет конечным отрезкам совпасть вершинами); хотя, в некоторые моменты времени (когда угол становится подходящим), это действительно часть настоящего правильного многоугольника в обычном строгом смысле.
↑ Ситуация несколько усложняется тем фактом, что в момент, когда вектор суммы достигнет максимума своей длины, он может, вообще говоря, быть направлен не горизонтально. Тем не менее для наиболее типичной ситуации, когда отношение наименьшей частоты и разности частот есть рациональное число резултат (горизонтальная проекция суммы) — всё же периодическая функция времени и опять достигнет максимума через конечное время. В самом же общем случае — когда это отношение может быть иррациональным — мы всё же имеем дело с тем, что функция может снова приблизиться к своему максимуму сколь угодно близко (в отличие от случая непрерывного спектра, амплитуда осцилляций достаточно быстро убывает, так что любой следующий локальный максимум заведомо меньше всех предыдущих).
↑ Мы здесь не будем пытаться придать этой очевидной интуитивной формулировке строгую форму.
↑ Речь может идти не только об оптике, но и об акустике итп; в деталях решение задачи (и ответ) несколько отличаются (из-за учета поляризации итп), однако в целом способ решения, описанный здесь, одинаков. (Ответ также получается во многом сходным, по меньшей мере, качественно).
Ссылки
Электротехника
Диаграммы
Wikimedia Foundation . 2010 .
Что такое векторные диаграммы и для чего они нужны
Применение векторных диаграмм при расчете и исследовании электрических цепей переменного тока позволяет наглядно представлять рассматриваемые процессы и упрощать производимые электротехнические расчеты.
При расчете цепей переменного тока часто приходится суммировать (или вычитать) несколько однородных синусоидально изменяющихся величин одной и той же частоты, но имеющих разные амплитуды и начальные фазы. Такую задачу можно решать аналитическим путем тригонометрических преобразований или геометрически. Геометрический метод более прост и нагляден, чем аналитический.
Векторные диаграммы являются совокупностью векторов, изображающих действующие синусоидальные ЭДС и токи или их амплитудные значения.
Гармонически изменяющееся напряжение определяется выражением u = Um sin ( ωt + ψ и ).
Расположим под углом ψ и относительно положительной оси абсцисс х вектор U m , длина которого в произвольно выбранном масштабе равна амплитуде изображаемой гармонической величины (рис. 1). Положительные углы будем откладывать в направлении против вращения часовой стрелки, а отрицательные — по часовой стрелке. Предположим, что вектор U m , начиная с момента времени t = 0, вращается вокруг начала координат против часовой стрелки с постоянной частотой вращения ω , равной угловой частоте изображаемого напряжения. В момент времени t вектор Um повернется на угол ωt и будет расположен под углом ωt + ψ и по отношению к оси абсцисс. Проекция этого вектора на ось ординат в выбранном масштабе равна мгновенному значению изображаемого напряжения: u = Um sin ( ωt + ψ и ).
Рис. 1. Изображение синусоидального напряжения вращающегося вектора
Следовательно, величину, изменяющуюся гармонически во времени, можно изображать вращающимся вектором . При начальной фазе, равной нулю, когда u = 0 , вектор U m для t = 0 должен быть расположен на оси абсцисс.
График зависимости любой переменной (в том числе и гармонической) величины от времени называется временной диаграммой . Для гармонических величин по оси абсцисс удобнее откладывать не само время t, а пропорциональную ему величину ωt . Временные диаграммы полностью определяют гармоническую функцию, так как дают представление о начальной фазе, амплитуде и о периоде.
Обычно при расчете цепи нас интересуют только действующие ЭДС, напряжения и токи или амплитуды этих величин, а также их сдвиг по фазе относительно друг друга. Поэтому обычно рассматриваются неподвижные векторы для некоторого момента времени, который выбирается так, чтобы диаграмма была наглядной. Такая диаграмма называется векторной диаграммой . При этом углы сдвига по фазе откладываются в направлении вращения векторов (против часовой стрелки), если они положительные, и в обратном направлении, если они отрицательные.
Если, например, начальный фазовый угол напряжения ψ и больше начального фазового угла ψi то сдвиг по фазе φ = ψ и — ψi и этот угол откладывается в положительном направлении от вектора тока.
При расчете цепи переменного тока часто приходится складывать ЭДС, токи или напряжения одной и той же частоты.
Предположим, что требуется сложить две ЭДС: e1 = E1m sin ( ωt + ψ 1e ) и e 2 = E 2m sin ( ωt + ψ 2 e ) .
Такое сложение можно осуществить аналитически и графически. Последний способ более нагляден и прост. Две складываемые ЭДС е1 и е2 в определенном масштабе представлены векторами E1m E 2m (рис. 2). При вращении этих векторов с одной и той же частотой вращения, равной угловой частоте, взаимное расположение вращающихся векторов остается неизменным.
Рис. 2. Графическое сложение двух синусоидальных ЭДС одинаковой частоты
Сумма проекций вращающихся векторов E1m и E 2m на ось ординат равна проекции на ту же ось вектора E m, являющегося их геометрической суммой. Следовательно, при сложения двух синусоидальных ЭДС одной и той же частоты получается синусоидальная ЭДС той же частоты, амплитуда которой изображается вектором E m, равным геометрической сумме векторов E1m и E 2m: E m = E1m + E 2m.
Векторы переменных ЭДС и токов являются графическими изображениями ЭДС и токов в отличие от векторов физических величин, имеющих определенное физическое значение: вектора силы, напряженности поля и других.
Указанный способ можно применить для сложения и вычитания любого числа ЭДС и токов одной частоты. Вычитание двух синусоидальных величин можно представить в виде сложения: e1— e2 = e1+ (- e2), т. е. уменьшаемая величина складывается с вычитаемой, взятой с обратным знаком. Обычно векторные диаграммы строятся не для амплитудных значений переменных ЭДС и токов, а для действующих величин, пропорциональных амплитудным значениям, так как все расчеты цепей обычно выполняются для действующих ЭДС и токов.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Метод векторных диаграмм
Этот метод используется для лучшего понимания и наглядности представления процесса, изменяющегося по гармоническому закону.
Суть метода: переменные величины , изменяющиеся по гармоническому закону изображаются графически методом вращающегося вектора амплитуды колебаний.
Для этого из произвольной точки О оси ОXоткладывается вектор, модуль которого равен амплитуде рассматриваемого колебания (рис. 6.5).
Рис. 6.5. Метод векторных диаграмм
Если вектор привести во вращение относительно точки О против часовой стрелки с циклической частотой, то проекция векторна ось ОХ будет изменяться по закону:
. (6.13)
Таким образом, достигается эквивалентность вращающегося вектора и гармонического закона (6.5).
В общем случае векторная диаграмма – это совокупность вращающихся против часовой стрелки векторов амплитудных (действующих) значений гармонических величин.
Лекция 7. Действующее значение переменного тока. Связь между током и напряжением в элементах электрической цепи тока
Действующее значение переменного тока равно такому значению постоянного тока, которое за время, равное периоду переменного тока, выделяет в том же сопротивлении такое же количество теплоты, что и данный переменный ток.
Для постоянного тока по закону Джоуля-Ленца
, (7.1)
где Q– количество теплоты, выделяемое в проводнике.
Если , тогда, (7.2)
где Т— период переменного тока.
, тогда. (7.3)
Пусть ток меняется по закону , (7.4)
где – амплитудное значение переменного тока.
Рассмотрим очень малый промежуток времени dt, для которого переменный ток можно считать постоянным (рис. 7.1).
Рис. 7.1. Переменный ток
Тогда по аналогии с выражением (7.3)
, (7.5)
где — количество теплоты, которое выделяется в проводнике за промежуток времени.
Для нахождения количества теплоты, выделяющейся в проводнике за период, проинтегрируем выражение (7.5).
; (7.6)
(7.7)
А в
. (7.8)
Вывод. Интеграл от периодической знакопеременной функции за 1 период равен 0.
Геометрически это можно трактовать как площадь под кривой периодической функции (рис 7.2).
Рис. 7.2. Периодическая функция
Анализируя интеграл А получим:
, т.е.. (7.9)
Сравнивая выражения (7.3) и (7.9) получим:
(7.10)
или , (7.11)
где I– действующее значение переменного тока.
Связь между током и напряжением в элементах электрической цепи
2) напряжение источника в цепи изменяется по закону
. (7.12)
Запишем второй закон Кирхгофа для электрической цепи (рис. 7.3):
u=uR. (7.13)
По закону Ома , (7.14)
, (7.15)
где – амплитудное значение тока через активное сопротивление, т.е.
. (7.16)
Сравнивая выражения (7.12) и (7.16) заключаем, что на активном сопротивлении ток и напряжение совпадают по фазе (рис. 7.4).
Поделим выражение (7.15) на и получим:
, (7.17)
где и– соответственно действующие значения тока и напряжения на активном сопротивлении.
Закон Ома для действующих значений тока и напряжения на активном сопротивлении:
(7.18)
0 t
0 x
Рис. 7.4. Графики тока и напряжения на активном сопротивлении и векторная диаграмма
Векторные и топографические диаграммы. Преобразование линейных электрических цепей.
Совокупность радиус-векторов, изображающих синусоидально изменяющиеся ЭДС, напряжения, токи и т. д., называется векторной диаграммой. Векторные диаграммы наглядно иллюстрируют ход решения задачи. При точном построении векторов можно непосредственно из диаграммы определить амплитуды и фазы искомых величин. Приближенное (качественное) построение диаграмм при аналитическом решении служит надежным контролем корректности хода решения и позволяет легко определить квадрант, в котором находятся определяемые векторы.
При построении векторных диаграмм для цепей с последовательным соединением элементов за базовый (отправной) вектор следует принимать вектор тока (см. лекцию № 8), а к нему под соответствующими углами подстраивать векторы напряжений на отдельных элементах. Для цепей с параллельным соединением элементов за базовый (отправной) вектор следует принять вектор напряжения (см. лекцию № 8), ориентируя относительно него векторы токов в параллельных ветвях.
Для наглядного определения величины и фазы напряжения между различными точками электрической цепи удобно использовать топографические диаграммы. Они представляют собой соединенные соответственно схеме электрической цепи точки на комплексной плоскости, отображающие их потенциалы. На топографической диаграмме, представляющей собой в принципе векторную диаграмму, порядок расположения векторов напряжений строго соответствует порядку расположения элементов в схеме, а вектор падения напряжения на каждом последующем элементе примыкает к концу вектора напряжения на каждом предыдущем элементе.
В качестве примера построим векторную диаграмму токов, а также топографическую диаграмму потенциалов для схемы, расчет которой был приведен в лекции № 5 (см. рис. 1).
При данных параметрах и заданном напряжении на входе схемы найденные значения токов (см. лекцию № 5) равны: ; ; .
При построении векторной диаграммы зададимся масштабами токов и напряжений (см. рис. 2). Векторную диаграмму можно строить, имея запись комплекса в показательной форме, т.е. по значениям модуля и фазы . Однако на практике удобнее проводить построения, используя алгебраическую форму записи, поскольку при этом вещественная и мнимая составляющие комплексной величины непосредственно откладываются на соответствующих осях комплексной плоскости, определяя положение точки на ней.
Построение векторной диаграммы токов осуществляется непосредственно на основании известных значений их комплексов. Для построения топографической диаграммы предварительно осуществим расчет комплексных потенциалов (другой вариант построения топографической диаграммы предполагает расчет комплексов напряжений на элементах цепи с последующим суммированием векторов напряжений вдоль контура непосредственно на комплексной плоскости).
При построении топографической диаграммы обход контуров можно производить по направлению тока или против. Чаще используют второй вариант.
В этом случае с учетом того, что в электротехнике принято, что ток течет от большего потенциала к меньшему, потенциал искомой точки равен потенциалу предыдущей плюс падение напряжения на элементе между этими точками. Если на пути обхода встречается источник ЭДС, то потенциал искомой точки будет равен потенциалу предыдущей плюс величина этой ЭДС, если направление обхода совпадает с направлением ЭДС, и минус величина ЭДС, если не совпадает. Это вытекает из того, что напряжение на источнике ЭДС имеет направление, противоположное ЭДС.
Обозначив на схеме по рис. 1 точки между элементами цепи e и a и приняв потенциал точки а за нуль( ), определим потенциалы этих точек:
Таким образом, в результате проведенных вычислений получено, что . Но разность потенциалов точек е и а равно напряжению U, приложенному к цепи, а оно равно 120 В. Таким образом, второй закон Кирхгофа выполняется, а следовательно, вычисления выполнены верно. В соответствии с полученными результатами строится топографическая диаграмма на рис. 2. Следует обратить внимание на ориентацию векторов, составляющих топографическую диаграмму, относительно векторов тока: для резистивных элементов соответствующие векторы параллельны, для индуктивного и емкостных – ортогональны.
В заключение заметим, что векторы напряжений ориентированы относительно точек топографической диаграммы противоположно положительным направлениям напряжений относительно соответствующих точек электрической цепи. В этой связи допускается не указывать на топографической диаграмме направления векторов напряжений.
Потенциальная диаграмма применяется при анализе цепей постоянного тока. Она представляет собой график распределения потенциала вдоль участка цепи или контура, при этом по оси абсцисс откладываются сопротивления резистивных элементов, встречающихся на пути обхода ветви или контура, а по оси ординат – потенциалы соответствующих точек. Таким образом, каждой точке рассматриваемого участка или контура соответствует точка на потенциальной диаграмме.
Рассмотрим построение потенциальной диаграммы на примере схемы на рис. 3.
При параметрах схемы ; ; ; ; и токи в ветвях схемы равны: ; ; .
Построим потенциальную диаграмму для контура abcda .
Для выбора масштаба по оси абсцисс просуммируем сопротивления резисторов вдоль рассматриваемого контура: после чего определим потенциалы точек контура относительно потенциала произвольно выбранной точки a , потенциал которой принят за нуль:
Таким образом, координаты точек потенциальной диаграммы: а(0;0);b(4;-20); c(4;17); d(7;2) . С учетом выбранных масштабов на рис. 4 построена потенциальная диаграмма для выбранного контура.
Преобразование линейных электрических схем
Для упрощения расчета и повышения наглядности анализа сложных электрических цепей во многих случаях рационально подвергнуть их предварительному преобразованию. Очевидно, что преобразование должно приводить к упрощению исходной схемы за счет уменьшения числа ее ветвей и (или) узлов. Такое преобразование называется целесообразным. При этом при любых способах преобразований должно выполняться условие неизменности токов в ветвях участков схемы, не затронутых этими преобразованиями. Из последнего вытекает, что, если преобразованию подвергаются участки цепи, не содержащие источников энергии, то мощности в исходной и эквивалентной схемах одинаковы. Если в преобразуемые участки входят источники энергии, то в общем случае мощности в исходной и преобразованной цепях будут различны.
Рассмотрим наиболее важные случаи преобразования электрических цепей.
1, Преобразование последовательно соединенных элементов
Рассмотрим участок цепи на рис. 5,а. При расчете внешней по отношению к этому участку цепи данную ветвь можно свести к виду на рис. 5,б, где
При этом при вычислении эквивалентной ЭДС k-я ЭДС берется со знаком “+”, если ее направление совпадает с направлением эквивалентной ЭДС, и “-”, если не совпадает.
2 Преобразование параллельно соединенных ветвей
Пусть имеем схему на рис. 6,а.
Согласно закону Ома для участка цепи с источником ЭДС
;
(3)
,
(4)
причем со знаком “+” в (4) записываются ЭДС и ток , если они направлены к тому же узлу, что и ЭДС ; в противном случае они записываются со знаком “-”.
3. Взаимные преобразования “треугольник-звезда”
В ряде случаев могут встретиться схемы, соединения в которых нельзя отнести ни к последовательному, ни к параллельному типу (см. рис. 7). В таких случаях преобразования носят более сложный характер: преобразование треугольника в звезду и наоборот.
Преобразовать треугольник в звезду – значит заменить три сопротивления, соединенных в треугольник между какими-то тремя узлами, другими тремя сопротивлениями, соединенными в звезду между теми же точками. При этом на участках схемы, не затронутых этими преобразованиями, токи должны остаться неизменными.
Без вывода запишем формулы эквивалентных преобразований
Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
Бессонов Л.А . Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш.шк., 1978. –528с.
Контрольные вопросы и задачи
Что представляют собой векторные диаграммы?
Что такое топографические диаграммы, для чего они служат?
В чем сходство и различие топографической и потенциальной диаграмм?
Какой практический смысл преобразований электрических цепей?
В чем заключается принцип эквивалентности преобразований?
Построить потенциальные диаграммы для левого и внешнего контуров цепи рис.3.
Полагая в цепи на рис. 8 известными ток и параметры всех ее элементов, качественно построить векторную диаграмму токов и топографическую диаграмму потенциалов для нее.
Определить входное сопротивление цепи на рис. 8, если . Ответ: .
Определить сопротивления ветвей треугольника, эквивалентного звезде между узлами a,c и d в цепи на рис. 8. Ответ: ; ; .
Определить сопротивления ветвей звезды, эквивалентной треугольнику в цепи на рис. 8, состоящему из элементов , и . Ответ: ; ; .
Что такое ИБП
Отличие источников
Как рассчитать мощность
Перед включением ИБП
Библиотека ИБП
Запрос стоимости ИБП
г.Москва, Киевское шоссе, 22-й км, домовл.6. стр.1. Офисный парк Comcity Общий e-mail отдела: power@landata.ru
АО НТЦ «Ландата» ОГРН: 1027739021650 ИНН: 7731253031