Будет ли действовать сила на проводник помещенный в магнитное поле параллельно силовым линиям
Перейти к содержимому

Будет ли действовать сила на проводник помещенный в магнитное поле параллельно силовым линиям

  • автор:

Действие магнитного поля на проводник с током

На проводник с током, помещенный в магнитное поле, действует сила, величина которой зависит от абсолютной величины тока, длины проводника и величины магнитной индукции. Чему равна величина этой силы и как определить направление силы, действующей на проводник, если известны направления тока и магнитной индукции? Попробуем найти ответы на эти вопросы.

Магнитное взаимодействие

Французский физик Андре-Мари Ампер в 1820 г. обнаружил, что два проводника, по которым пропущен электрический ток, расположенные параллельно друг другу, притягиваются, если направления токов совпадают, и отталкиваются, если токи направлены в разные стороны. Ампер назвал этот эффект электродинамическим взаимодействием.

Для объяснения этого явления Ампер ввел понятие магнитного поля, которое возникает вокруг любого движущегося электрического заряда. Магнитное поле непрерывно в пространстве и проявляет себя, оказывая силовое воздействие на другие движущиеся электрические заряды.

Предшественники Ампера пытались построить теорию магнитного поля по аналогии с электрическим полем с помощью магнитных зарядов с разными знаками (северным N и южным S). Однако, эксперименты показали, что отдельных магнитных зарядов в природе не существует. Магнитное поле возникает только в результате движения электрических зарядов.

Сила магнитного взаимодействия

Сила, действующая на проводник с током со стороны магнитного поля, была названа в честь первооткрывателя — силой Ампера. Эксперименты показали, что модуль силы Ампера F пропорционален длине проводника L и зависит от пространственного положения проводника в магнитном поле.

Для количественного описания действия магнитного поля на проводник с током была введена величина, названная магнитной индукцией B. Тогда сила Ампера будет равна:

где I — сила тока. Эта формула справедлива при вычислении модуля максимального значения силы Ампера, действующей на прямолинейный проводник в магнитном поле, вектор магнитного поля B направлен под 90 0 к вектору тока I.

Если проводник расположен под углом α к вектору магнитной индукции B, то вместо формулы (1) следует применять следующую формулу:

Правило левой руки

Для определения направления вектора силы Ампера применяется “правило левой руки”.

Правило левой руки для определения направления силы Ампера

Левая рука располагается так, чтобы пальцы ладони (все кроме большого) указывали направление тока в проводнике. Затем плоскость ладони устанавливается перпендикулярно плоскости, в которой находятся проводник с током и вектор магнитной индукции B. Вектор B должен входить в ладонь. Тогда большой палец левой руки, развернутый под прямым углом, укажет направление силы Ампера.

Единица измерения индукции

Единица индукции в системе СИ определяется как индукция такого магнитного поля, в котором на 1 м проводника при силе тока действует сила Ампера величиной 1 Н. Единица называется тесла (Тл).

Единица индукции названа в честь выдающегося сербского инженера, физика Николы Тесла (1856-1943 г.г.). Тесла изобрел электромеханические генераторы, высокочастотный трансформатор. Исследовал свойства токов высокой частоты, изобрел многофазный электродвигатель и системы передачи электроэнергии с помощью переменного тока. Тесла сформулировал основные принципы радиосвязи, изобрел мачтовую антенну для приемки и передачи радиосигналов.

Портрет Никола Тесла

Рис. 3. Портрет Никола Тесла.

Что мы узнали?

Итак, мы узнали что на проводник с током, помещенный в магнитное поле, действует сила Ампера. В статье рассказано кратко о действии магнитного поля на проводник с током. Дано определение понятия магнитной индукции. Приведены формулы для вычисления силы Ампера. Для определения направления силы Ампера дано описание “правила левой руки”.

Действие магнитного поля на движущуюся заряженную частицу

На этом уроке мы будем рассматривать движение заряженных частиц в однородном магнитном поле. Познакомимся с силой Лоренца и научимся находить её модуль. Узнаем, как определяется направление силы Лоренца. А также поговорим об использовании действия магнитного поля на движущийся заряд.

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет.

Получите невероятные возможности

1. Откройте доступ ко всем видеоурокам комплекта.

2. Раздавайте видеоуроки в личные кабинеты ученикам.

3. Смотрите статистику просмотра видеоуроков учениками.
Получить доступ

Конспект урока «Действие магнитного поля на движущуюся заряженную частицу»

На прошлых уроках мы с вами начали знакомство с магнитными полями. Давайте с вами вспомним, что магнитное поле — это особая форма материи, созданная движущимися (относительно определённой инерциальной системы отсчёта) электрическими зарядами или переменными электрическими полями.

Силовой характеристикой магнитного поля является вектор магнитной индукции, направление которого в данной точке совпадает с направлением силовой магнитной линии, проходящей через эту точку:

Так же мы с вами установили, что на проводник с током, помещённый в магнитное поле, со стороны магнитного поля действует сила, называемая силой Ампера. Её модуль равен произведению силы тока, модуля вектора магнитной индукции, длины отрезка проводника и синуса угла между направлениями вектора магнитной индукции и элемента тока:

Поскольку электрический ток представляет собой упорядоченное движение заряженных частиц, то это означает, что магнитное поле, действуя на проводник с током, действует тем самым на каждую из этих движущихся заряженных частиц. Следовательно, силу Ампера можно рассматривать как результат сложения сил, действующих на каждую движущуюся заряженную частицу.

Силу, с которой магнитное поле действует на заряженную частицу, движущуюся в этом поле, называют силой Лоренца.

Своё название сила получила в честь выдающегося голландского физика Хендрика Антона Лоренца — основателя электронной теории строения вещества.

Модуль силы Лоренца определяется отношением силы Ампера, действующей на участок проводника, находящийся в магнитном поле, к числу заряженных частиц, упорядоченно движущихся в этом участке проводника:

Давайте с вами рассмотрим прямолинейный участок проводника с током длиной Δl и площадью поперечного сечения S. При этом будем считать, что длина участка проводника и его площадь поперечного сечения настолько малы, что вектор магнитной индукции поля можно считать одинаковым в пределах этого участка проводника.

Итак, на участок проводника с током, находящимся в магнитном поле, действует сила Ампера, модуль которой равен произведению силы тока, модуля вектора магнитной индукции, длины отрезка проводника и синуса угла между направлениями вектора магнитной индукции и элемента тока:

Теперь давайте с вами вспомним, что сила тока в проводнике определяется зарядом, прошедшим через поперечное сечение проводника за единицу времени:

Здесь ∆t — это промежуток времени, за который заряженная частица проходит участок проводника длиной ∆l.

Пусть модуль заряда одной частицы равен q. Тогда суммарный заряд всех частиц равен произведению модуля заряда одной частицы на общее число частиц в выбранном участке проводника: Q = qN.

Перепишем уравнение для силы тока с учётом последнего равенства.

Полученное равенство подставим в закон Ампера:

Обратите внимание на отношение ∆l/∆t — это есть не что иное, как модуль средней скорости заряженной частицы, упорядоченно движущейся в магнитном поле внутри проводника:

Теперь подставим полученное выражение для силы Ампера в формулу для силы Лоренца:

После упрощения получим, что модуль силы Лоренца равен произведению заряда частицы, модуля её средней скорости, модуля вектора индукции магнитного поля и синуса угла между вектором магнитного поля и вектором скоростью движения частицы:

Направление силы Лоренца определяют по правилу левой руки: если левую руку расположить так, чтобы составляющая магнитной индукции, перпендикулярная скорости упорядоченного движения заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (или против движения отрицательного заряда), то отогнутый на 90 о большой палец укажет направление действующей на заряд силы Лоренца.

Анализ данного правила позволяет нам утверждать, что сила Лоренца, действующая на движущуюся в магнитном поле частицу, перпендикулярна вектору скорости этой частицы. Следовательно, сила Лоренца не совершает работы. Тогда, согласно теореме о кинетической энергии, это означает, что сила Лоренца не меняет кинетическую энергию частицы и, следовательно, модуль скорости частицы. А значит заряженная частица в магнитном поле движется с постоянной по модулю скоростью, но при этом направление скорости непрерывно изменяется.

Вид траектории заряженной частицы в магнитном поле зависит от угла между скоростью влетающей в поле частицы и магнитной индукцией. Рассмотрим такую ситуацию. Пусть протон, ускоренный разностью потенциалов U влетает в однородное магнитное поле сначала параллельно линиям индукции, затем — перпендикулярно, и, наконец, под некоторым углом к ним. Индукция магнитного поля равна B. Для каждого случая определите радиус кривизны траектории протона и период его обращения.

Итак, рассмотрим первый случай, когда протон, двигаясь по силовой линии в электрическом поле ускоренно, приобретает скорость, с которой влетает в однородное магнитное поле так, что его вектор скорости направлен вдоль поля (или противоположно направлению индукции магнитного поля).

Очевидно, что в этом случае угол между направлением вектора скорости и индукции магнитного поля либо равен нулю, либо 180 о .

Тогда, согласно формуле, сила Лоренца, действующая на протон, равна нулю и частица будет продолжать двигаться равномерно прямолинейно.

Теперь рассмотрим второй случай, когда протон влетает в однородное магнитное поле перпендикулярно линиям его индукции.

В этом случае на протон в магнитном поле действует сила Лоренца, направленная перпендикулярно вектору скорости (направление силы Лоренца определяем по правилу левой руки). Как мы уже выяснили, сила Лоренца не может изменить модуль скорости заряженной частицы — она лишь меняет её направление. А так как магнитное поле однородно и вектор скорости частицы перпендикулярен линиям магнитной индукции, то протон под действием силы Лоренца начнёт двигаться по окружности.

С другой стороны, такое движение заряженной частицы в магнитном поле будет подчиняться второму закону Ньютона:

И нам осталось рассмотреть последний случай, когда частица влетает в магнитное поле под заданным углом к силовым линиям.

Подобное явление происходит в магнитном поле Земли. Движущиеся с огромными скоростями заряженные частицы из космоса «захватываются» магнитным полем Земли и образуют вокруг неё радиационные пояса. В них заряженные частицы перемещаются по винтообразным траекториям между северным и южным магнитными полюсами. И только в полярных областях небольшая часть частиц вторгается в верхние слои атмосферы, вызывая восхитительные полярные сияния.

В заключении урока отметим, что действие магнитного поля на движущийся заряд широко используется в технике. Вспомните хотя бы электронно-лучевые трубки, применяемые в кинескопах телевизоров, где пучок летящих к экрану электронов отклоняется с помощью магнитных катушек.

Сила Лоренца используется и в циклотронах — особых ускорителях заряженных частиц. Обычный циклотрон состоит из двух полых полуцилиндров разного диаметра (дуантов), находящихся в однородном магнитном поле. Его принцип действия достаточно прост.

В зазоре между цилиндрами находится заряженная частица. В этом зазоре создаётся переменное электрическое поле с постоянным периодом, равным периоду обращения частицы. Это поле каждые пол периода разгоняет частицу, увеличивая при этом радиус её обращения (период обращения частицы не увеличивается). На последнем витке частица вылетает из циклотрона.

Действие силы Лоренца используют и в масс-спектрографах — устройствах, предназначенных для разделения частиц по их удельным зарядам, то есть по отношению заряда частицы к её массе, и по полученным результатам точно определять массы частиц. На экране вы видите схему простейшего масс-спектрографа. Цифрами один и два обозначены две диафрагмы, между которыми создаются взаимно перпендикулярные электрическое и магнитное поля. Заряженная частица, пройдя через первую диафрагму попадает в эти поля и, если сила Лоренца, действующая на неё, равна электростатической силе, то она сможет пройти через вторую диафрагму. Ионы же с другими скоростями отклонятся в полях и через вторую диафрагму не пройдут.

За диафрагмой создаётся постоянное магнитное поле, заставляющее заряженные частицы двигаться по окружности, радиус кривизны которой можно измерить, поставив на пути частиц фотопластинку. Так как скорость частиц одинакова и определяется постоянной прибора, то, зная заряд ионов, можно легко определить их массу.

Ещё одно устройство, в котором применяется действие силы Лоренца — это ТОКАМАК (тороидальная камера с магнитными катушками).

В нём плазма (напомним, что это частично или полностью ионизированный газ) удерживается в специально создаваемом сильном магнитном поле. ТОКАМАК считается наиболее перспективным устройством для осуществления управляемого термоядерного синтеза.

Магнитное поле. Сила Лоренца. Сила Ампера

Явление взаимодействия постоянных магнитов (установление магнитной стрелки вдоль магнитного меридиана Земли, притяжение разноименных полюсов, отталкивание одноименных) известно с древних времен и систематически исследовано У. Гильбертом (результаты опубликованы в 1600 г. в его трактате «О магните, магнитных телах и о большом магните — Земле»).

Природные (естественные) магниты

Магнитные свойства некоторых природных минералов были известны уже в древности. Так, имеются письменные свидетельства более чем 2000-летней давности об использовании в Китае естественных постоянных магнитов в качестве компасов. О притяжении и отталкивании магнитов и намагничивании ими железных опилок упоминается в трудах древнегреческих и римских ученых (например, в поэме «О природе вещей» Лукреция Кара).

Природные магниты представляют собой куски магнитного железняка (магнетита), состоящего из $FeO$ (31 %) и $Fe_2O$ (69 %). Если такой кусок минерала поднести к мелким железным предметам — гвоздям, опилкам, тонкому лезвию и т. д., они к нему притянутся.

Искусственные постоянные магниты

Постоянный магнит — это изделие из материала, являющегося автономным (самостоятельным, изолированным) источником постоянного магнитного поля.

Искусственные постоянные магниты изготавливают из специальных сплавов, в которые входят железо, никель, кобальт и др. Эти металлы приобретают магнитные свойства (намагничиваются), если их поднести к постоянным магнитам. Поэтому, чтобы изготовить из них постоянные магниты, их специально держат в сильных магнитных полях, после чего они сами становятся источниками постоянного магнитного поля и способны длительное время сохранять магнитные свойства.

На рисунке изображены дугообразный и полосовой магниты.

На рис. даны картины магнитных полей этих магнитов, полученных методом, который впервые применил в своих исследованиях М. Фарадей: с помощью железных опилок, рассыпанных на листе бумаги, на котором лежит магнит. У каждого магнита есть два полюса — это места наибольшего сгущения магнитных силовых линий (их называют также линиями магнитного поля, или линиями магнитной индукции поля). Это места, к которым сильнее всего притягиваются железные опилки. Один из полюсов принято называть северным (($N$), другой — южным ($S$). Если поднести два магнита друг к другу одноименными полюсами, можно увидеть, что они отталкиваются, а если разноименными — притягиваются.

На рис. наглядно видно, что магнитные линии магнита — замкнутые линии. Показаны силовые линии магнитного поля двух магнитов, обращенных друг к другу одноименными и разноименными полюсами. Центральная часть этих картин напоминает картины электрических полей двух зарядов (разноименных и одноименных). Однако существенным различием электрического и магнитного полей является то, что линии электрического поля начинаются на зарядах и заканчиваются на них. Магнитных же зарядов в природе не существует. Линии магнитного поля выходят из северного полюса магнита и входят в южный, они продолжаются и в теле магнита, т. е., как было сказано выше, являются замкнутыми линиями. Поля, силовые линии которых замкнуты, называются вихревыми. Магнитное поле — это вихревое поле (в этом его отличие от электрического).

Применение магнитов

Самым древним магнитным прибором является всем хорошо известный компас. В современной технике магниты используются очень широко: в электродвигателях, в радиотехнике, в электроизмерительной аппаратуре и т. д.

Магнитное поле Земли

Земной шар является магнитом. Как у всякого магнита, у него есть свое магнитное поле и свои магнитные полюсы. Именно поэтому стрелка компаса ориентируется в определенном направлении. Понятно, куда именно должен указывать северный полюс магнитной стрелки, ведь притягиваются разноименные полюсы. Поэтому северный полюс магнитной стрелки указывает на южный магнитный полюс Земли. Этот полюс находится на севере земного шара, несколько в стороне от северного географического полюса (на острове Принца Уэльского — около $75°$ северной широты и $99°$ западной долготы, на расстоянии примерно $2100$ км от северного географического полюса).

При приближении к северному географическому полюсу силовые линии магнитного поля Земли все под большим углом наклоняются к горизонту, и в области южного магнитного полюса становятся вертикальными.

Северный магнитный полюс Земли находится вблизи южного географического полюса, а именно на $66.5°$ южной широты и $140°$ восточной долготы. Здесь силовые линии магнитного поля выходят из Земли.

Другими словами, магнитные полюсы Земли не совпадают с ее географическими полюсами. Поэтому направление магнитной стрелки не совпадает с направлением географического меридиана, и магнитная стрелка компаса лишь приблизительно показывает направление на север.

На стрелку компаса могут влиять также некоторые природные явления, например, магнитные бури, которые являются временными изменениями магнитного поля Земли, связанными с солнечной активностью. Солнечная активность сопровождается выбросом с поверхности Солнца потоков заряженных частиц, в частности, электронов и протонов. Эти потоки, движущиеся с большой скоростью, создают свое магнитное поле, взаимодействующее с магнитным полем Земли.

На земном шаре (кроме кратковременных изменений магнитного поля) встречаются области, в которых наблюдается постоянное отклонение направления магнитной стрелки от направления магнитной линии Земли. Это области магнитной аномалии (от греч. anomalia — отклонение, ненормальность). Одной из самых больших таких областей является Курская магнитная аномалия. Причиной аномалий являются огромные залежи железной руды на сравнительно небольшой глубине.

Земное магнитное поле надежно защищает поверхность Земли от космического излучения, действие которого на живые организмы разрушительно.

Полеты межпланетных космических станций и кораблей позволили установить, что у Луны и планеты Венера отсутствует магнитное поле, а у планеты Марс оно очень слабое.

Опыты Эрстедаи Ампера. Индукция магнитного поля

В 1820 г. датский ученый Г. X. Эрстед обнаружил, что магнитная стрелка, помещенная вблизи проводника, по которому течет ток, поворачивается, стремясь расположиться перпендикулярно к проводнику.

Схема опыта Г. X. Эрстеда изображена на рисунке. Проводник, включенный в цепь источника тока, расположен над магнитной стрелкой параллельно ее оси. При замыкании цепи магнитная стрелка отклоняется от своего первоначального положения. При размыкании цепи магнитная стрелка возвращается в свое первоначальное положение. Отсюда следует, что проводник с током и магнитная стрелка взаимодействуют друг с другом. На основании этого опыта можно сделать вывод о существовании магнитного поля, связанного с протеканием тока в проводнике и о вихревом характере этого поля. Описанный опыт и его результаты явились важнейшей научной заслугой Эрстеда.

В том же году французский физик Ампер, которого заинтересовали опыты Эрстеда, обнаружил взаимодействие двух прямолинейных проводников с током. Оказалось, что если токи в проводниках текут в одну сторону, т. е. параллельны, то проводники притягиваются, если в противоположные стороны (т. е. антипараллельны), то отталкиваются.

Взаимодействия между проводниками с током, т. е. взаимодействия между движущимися электрическими зарядами, называют магнитными, а силы, с которыми проводники с током действуют друг на друга, — магнитными силами.

Согласно теории близкодействия, которой придерживался М. Фарадей, ток в одном из проводников не может непосредственно влиять на ток в другом проводнике. Аналогично случаю с неподвижными электрическими зарядами, вокруг которых существует электрическое поле, был сделан вывод, что в пространстве, окружающем токи, существует магнитное поле, которое действует с некоторой силой на другой проводник с током, помещенный в это поле, либо на постоянный магнит. В свою очередь, магнитное поле, создаваемое вторым проводником с током, действует на ток в первом проводнике.

Подобно тому как электрическое поле обнаруживается по его воздействию на пробный заряд, внесенный в это поле, магнитное поле можно обнаружить по ориентирующему действию магнитного поля на рамку с током малых (по сравнению с расстояниями, на которых магнитное поле заметно меняется) размеров.

Провода, подводящие ток к рамке, следует сплести (или расположить близко друг к другу), тогда результирующая сила, действующая со стороны магнитного поля на эти провода, будет равна нулю. Силы же, действующие на такую рамку с током, будут ее поворачивать, так что ее плоскость установится перпендикулярно линиям индукции магнитного поля. В примере, рамка повернется так, чтобы проводник с током оказался в плоскости рамки. При изменении направления тока в проводнике рамка повернется на $180°$. В поле между полюсами постоянного магнита рамка повернется плоскостью перпендикулярно магнитным силовым линиям магнита.

Магнитная индукция

Магнитная индукция ($В↖$) — это векторная физическая величина, характеризующая магнитное поле.

За направление вектора магнитной индукции $В↖$ принимается:

1) направление от южного полюса $S$ к северному полюсу $N$ магнитной стрелки, свободно устанавливающейся в магнитном поле, или

2) направление положительной нормали к замкнутому контуру с током на гибком подвесе, свободно устанавливающемся в магнитном поле. Положительной считается нормаль, направленная в сторону перемещения острия буравчика (с правой нарезкой), рукоятку которого вращают по направлению тока в рамке.

Ясно, что направления 1) и 2) совпадают, что было установлено еще опытами Ампера.

Что касается величины магнитной индукции (т. е. ее модуля) $В$, которая могла бы характеризовать силу действия поля, то экспериментами было установлено, что максимальная сила $F$, с которой поле действует на проводник с током (помещенный перпендикулярно линиям индукции магнитного поля), зависит от силы тока $I$ в проводнике и от его длины $∆l$ (пропорциональна им). Однако сила, действующая на элемент тока (единичной длины и силы тока), зависит только от самого поля, т. е. отношение $/$ для данного поля является величиной постоянной (аналогично отношению силы к заряду для электрического поля). Эту величину и определяют как магнитную индукцию.

Индукция магнитного поля в данной точке равна отношению максимальной силы, действующей на проводник с током, к длине проводника и силе тока в проводнике, помещенном в эту точку.

Чем больше магнитная индукция в данной точке поля, тем с большей силой будет действовать поле в этой точке на магнитную стрелку или движущийся электрический заряд.

Единицей магнитной индукции в СИ является тесла (Тл), названная в честь сербского электротехника Николы Теслы. Как видно из формулы, $1$ Тл $=l/$

Если имеется несколько различных источников магнитного поля, векторы индукции которых в данной точке пространства равны $↖, ↖, ↖. $, то, согласно принципу суперпозиции полей, индукция магнитного поля в этой точке равна сумме векторов индукции магнитных полей, создаваемых каждым источником.

Линии магнитной индукции

Для наглядного представления магнитного поля М. Фарадей ввел понятие магнитных силовых линий, которые он неоднократно демонстрировал в своих опытах. Картина силовых линий легко может быть получена с помощью железных стружек, насыпанных на картон. На рисунке представлены: линии магнитной индукции прямого тока, соленоида, кругового тока, прямого магнита.

Линиями магнитной индукции, или магнитными силовыми линиями, или просто магнитными линиями называют линии, касательные к которым в любой точке совпадают с направлением вектора магнитной индукции $В↖$ в этой точке поля.

Если вместо железных опилок вокруг длинного прямолинейного проводника с током поместить маленькие магнитные стрелки, то можно увидеть не только конфигурацию силовых линий (концентрические окружности), но и направление силовых линий (северный полюс магнитной стрелки указывает направление вектора индукции в данной точке).

Направление магнитного поля прямого тока можно определить по правилу правого буравчика.

Если вращать рукоятку буравчика так, чтобы поступательное движение острия буравчика указывало направление тока, то направление вращения рукоятки буравчика укажет направление силовых линий магнитного поля тока.

Направление магнитного поля прямого тока можно определять также и с помощью первого правила правой руки.

Если охватить проводник правой рукой, направив отогнутый большой палец по направлению тока, то кончики остальных пальцев в каждой точке покажут направление вектора индукции в этой точке.

Вихревое поле

Линии магнитной индукции являются замкнутыми, это свидетельствует о том, что в природе нет магнитных зарядов. Поля, силовые линии которых замкнуты, называют вихревыми полями. То есть магнитное поле — это вихревое поле. Этим оно отличается от электрического поля, создаваемого зарядами.

Соленоид

Соленоид — это проволочная спираль с током.

Соленоид характеризуется числом витков на единицу длины $n$, длиной $l$ и диаметром $d$. Толщина провода в соленоиде и шаг спирали (винтовой линии) малы по сравнению с его диаметром $d$ и длиной $l$. Термин «соленоид» применяют и в более широком значении — так называют катушки с произвольным сечением (квадратный соленоид, прямоугольный соленоид), и не обязательно цилиндрической формы (тороидальный соленоид). Различают длинный соленоид ($l>>d$) и короткий ($l 1$ (у платины $μ = 1.00036$); у ферромагнетиков $μ >> 1$ (железо, никель, кобальт).

Диамагнетики отталкиваются от магнита, парамагнетики — притягиваются. По этим признакам их можно отличить друг от друга. У большинства веществ магнитная проницаемость практически не отличается от единицы, только у ферромагнетиков намного превосходит ее, достигая нескольких десятков тысяч единиц.

Ферромагнетики. Наиболее сильные магнитные свойства проявляют ферромагнетики. Магнитные поля, создаваемые ферромагнетиками, намного сильнее внешнего намагничивающего поля. Правда, магнитные поля ферромагнетиков создаются не вследствие обращения электронов вокруг ядер — орбитального магнитного момента, а вследствие собственного вращения электрона — собственного магнитного момента, называемого спином.

Температура Кюри ($Т_с$) — это температура, выше которой ферромагнитные материалы теряют свои магнитные свойства. Для каждого ферромагнетика она своя. Например, для железа $Т_с = 753°$С, для никеля $Т_с = 365°$С, для кобальта $Т_с = 1000°$ С. Существуют ферромагнитные сплавы, у которых $Т_с

  • ООО «Экзамер», 2024
  • Написать нам
  • Юридические документы

Khan Academy does not support this browser.

Чтобы пользоваться «Академией Хана», необходимо обновить ваш веб-браузер. Чтобы начать обновление, выберите один из предложенных ниже вариантов.

If you’re seeing this message, it means we’re having trouble loading external resources on our website.

Если вы используете веб-фильтр, пожалуйста, убедитесь, что домены *.kastatic.org и *.kasandbox.org разблокированы.

Основное содержание

Course: Физика > Модуль 13

Урок 2: Магнитное поле, вызываемое электрическим током
Магнитное поле, создаваемое проводником
Что такое магнитные поля?
Магнитное поле между двумя проводниками с током.
Магнитная сила между двумя проводниками с током, движущимся в одном направлении
Электромагнитная индукция
© 2024 Khan Academy

Магнитное поле между двумя проводниками с током.

0 очков энергии
О проекте Об этом видео Транскрипция

Рассказываем о том, как взаимодействуют друг с другом два проводника с электрическим током, если ток в них течёт в одном и том же направлении. Создатели: Сэл Хан .

Вопросы Подсказки и благодарности

Хотите присоединиться к обсуждению?

Сортировать по:
Топ голосования
Пока нет ни одной записи.

Транскрипция к видео

в прошлом видео мы говорили о том что магнитное поле влияет на движущийся заряд в том числе на электрический ток кроме того мы узнали что проводник с током сам способен создавать вокруг себя магнитное поле и тут возникает вопрос как влияют друг на друга два проводника с электрическим током давайте изобразим два проводника 1 пусть будет зеленого цвета ток по нему течет вверх его силу обозначим и один рядом с ним находится еще один проводник с током тока в нем также течет вверх и его силу обозначим едва что еще нужно знать пусть эти проводники находятся друг от друга на расстояние радиуса r я говорю радиус потому что как мы узнали из прошлого видео силовые линии магнитного поля порождаемого проводником с током представляют собой концентрические круги и на расстоянии одного и того же радиуса сила поля будет одинаковой и так пусть эти два проводника идут параллельно друг другу и расстояние между ними равно r и прежде чем перейти к вычислениям давайте подумаем что в этой ситуации произойдет предлагаю пока не рассматривать конкретные значения а просто подумать что мы можем наблюдать в этом случае представьте что левый проводник жестко закреплен а правый может свободно перемещаться в пространстве обозначим левый проводник цифра один правый цифрой 2 и так что случится с проводником номер два проводник 1 создаст вокруг себя магнитное поле как будет выглядеть это магнитное поле в этом нам поможет разобраться правило правой руки для магнитного поля порождаемого проводник вам правила правой руки отличается от правило правой руки для векторного произведения хотя и является по сути его следствием итак представим что я хватаюсь правой рукой за проводник направив большой палец вдоль направление тока тогда магнитное поле будет направлена вдоль согнутых пальцев его силовые линии будут огибать проводник вокруг то есть если изобразить их выходящими за пределы экрана то справа они будут направлены от вас за экран а слева от экрана на вас справа мы увидим оперения стрел я изображаю их таким же цветом что и стрелку с током чтобы было видно что это поле порождается проводником и один причем это магнитное поле будет расходиться в разные стороны до бесконечности хотя как мы узнали из прошлых видео его сила будет слабеть обратно пропорционально расстоянию р с левой стороны кончики пальцев смотрят на вас то есть линии магнитного поля смотрят из экрана на вас вы видите условные концы стрел и так проводник номер один порождает магнитное поле которая со стороны и второго проводника направлена от вас в сторону экрана теперь давайте вспомним формула воздействия магнитного поля на проводник с током сила воздействия магнитного поля это у нас вектор у него есть величина и направление равна силе тока во втором проводнике и 2 умножить на длину проводника мы не можем посчитать силу воздействия на бесконечный проводник мы должны знать или определить длину участка проводника для которого мы используем формулу поэтому давайте возьмем определенный фрагмент проводника и скажем мы будем считать силу действующую на вот этот участок длины l 2 причем l2 это тоже вектор с направлением вдоль силы тока итак магнитное поле действует на этот фрагмент проводника долины l2 силой равной силе тока и два умноженное на векторное произведение вектора l 2 на индукцию магнитного поля которая помещен проводник нас интересует вот это малиновое поле порожденная проводником номер один его индукция b1 и прежде чем приступить к дальнейшим вычислением давайте определим направление этой силы сила тока это положительная скалярная величина она не будет влиять на направление куда направлен вектор l 2 он направлен вверх магнитное поле направлено от вас в сторону экрана мы находим векторное произведение этих двух векторов для этого воспользуемся правилом правой руки для векторного произведения указательный палец направим сторону l2 средний палец в сторону магнитного поля он будет указывать от вас за экран тогда большой палец укажет направление векторного произведения вы можете встретить разные варианты правило правой руки учителя иногда направляют в большой палец вдоль поля и смотрят куда открытая ладонь это все равнозначные правило но тот вариант который показываю я мне кажется проще для запоминания указательный палец направляем вдоль первого множителя средний вдоль 2 тогда большой укажет направление результата векторного произведения смотрите что получилось и если в первом проводнике ток течет вверх то слева от него магнитное поле выходит из экрана справа входит в экран тогда она будет притягивать к себе второй проводник в котором ток течет в том же направлении что и в первом результирующая сила действующая на второй проводник направлена влево обозначим ее сила действующие со стороны 1 проводника на 2 вы можете встретить обозначение где цифры поменяны местами то есть сила действующая на второй проводник со стороны 1 а теперь давайте подумаем с какой силой проводник номер два воздействует на проводник номер один будем рассуждать точно также изобразим магнитное поле порождаемая проводником номер 2 рисунок для правило правой руки будет тем же самым поскольку ток во втором проводнике течет в том же направлении что и в первом справа от проводника магнитное поле будет направлена от вас в сторону экрана а слева от экрана в сторону вас я мысленно взялся за второй проводник и слева пальцы будут указывать в вашу сторону это у меня магнитное поле порождаемое проводником номер два точно также возьмём некий фрагмент от первого проводника длиной aladdin сила действующая со стороны проводника 2 на проводник 1 будет равна силе тока в проводнике 1 умноженное на векторное произведение l1 на индукцию магнитного поля вокруг второго проводника и снова воспользуемся правилом правой руки направим указательный палец вдоль вектора l1 вдоль первого множителя средний палец направим вдоль индукции b2 и тогда большой палец укажет вам направление результирующей силы то есть теперь моя рука обращена к вам ладонью получается что большой палец направлен вправо таким образом векторное произведение в случае когда магнитное поле смотрит из экрана на вас будет направлено вправо получил асимметричная картинка первый проводник притягивает к себе 2 и второй проводник притягивает к себе 1 если бы они свободно плавали в пространстве то они начали бы сближаться расстоянии r между ними стала бы уменьшаться и они начали бы двигаться друг к другу с возрастающей скоростью в следующем видео мы рассмотрим ту же ситуацию но с конкретными числами спасибо что подписывайтесь на наш канал нам очень важно знать ваше мнение если у вас возникают вопросы касательно данного видеоролика то не стесняйтесь задавать их в комментариях мы с удовольствием на них ответим

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *