Что произойдет при соединении лучей всех цветов спектра
Перейти к содержимому

Что произойдет при соединении лучей всех цветов спектра

  • автор:

Физика цвета

В 1676 году сэр Исаак Ньютон с помощью трехгранной призмы разложил белый солнечный свет на цветовой спектр. Подобный спектр содержал все цвета за исключением пурпурного.

Ньютон ставил свой опыт следующим образом (рис. 1) солнечный свет пропускался через узкую щель и падал на призму. В призме луч белого цвета расслаивался на отдельные спектральные цвета. Разложенный таким образом он направлялся затем на экран, где возникало изображение спектра. Непрерывная цветная лента начиналась с красного цвета и через оранжевый, желтый, зеленый, синий кончалась фиолетовым. Если это изображение затем пропускалось через собирающую линзу, то соединение всех цветов вновь давало белый цвет.

Эти цвета получаются из солнечного луча с помощью преломления. Существуют и другие физические пути образования цвета, например, связанные с процессами интерференции, дифракции, поляризации и флуоресценции.

Если мы разделим спектр на две части, например — на красно-оранжево-желтую и зелено-сине-фиолетовую, и соберем каждую из этих групп специальной линзой, то в результате получим два смешанных цвета, смесь которых в свою очередь также даст нам белый цвет.

Два цвета, объединение которых дает белый цвет, называются дополнительными цветами.

Если мы удалим из спектра один цвет, например, зеленый, и посредством линзы соберем оставшиеся цвета — красный, оранжевый, желтый, синий и фиолетовый, — то полученный нами смешанный цвет окажется красным, то есть цветом дополнительным по отношению к удаленному нами зеленому. Если мы удалим желтый цвет, то оставшиеся цвета — красный, оранжевый, зеленый, синий и фиолетовый — дадут нам фиолетовый цвет, то есть цвет, дополнительный к желтому.

Каждый цвет является дополнительным по отношению к смеси всех остальных цветов спектра.

В смешанном цвете мы не можем увидеть отдельные его составляющие. В этом отношении глаз отличается от музыкального уха, которое может выделить любой из звуков аккорда.

Различные цвета создаются световыми волнами, которые представляют собой определенный род электромагнитной энергии.

Человеческий глаз может воспринимать свет только при длине волн от 400 до 700 миллимикрон:

  • 1 микрон или 1μ = 1/1000 мм = 1/1000000 м.
  • 1 миллимикрон или 1mμ = 1/1000000 мм.

Длина волн, соответствующая отдельным цветам спектра, и соответствующие частоты (число колебаний в секунду) для каждого спектрального цвета имеют следующие характеристики:

Цвет Длина волны
в н/м
Частота колебаний
в секунду
Красный 800-650 mμ 400-470 млрд.
Оранжевый 640-590 mμ 470-520 млрд.
Жёлтый 580-550 mμ 520-590 млрд.
Зелёный 530-490 mμ 590-650 млрд.
Голубой 480-460 mμ 650-700 млрд.
Синий 450-440 mμ 700-760 млрд.
Фиолетовый 430-390 mμ 760-800 млрд.

Отношение частот красного и фиолетового цвета приблизительно равно 1:2, то есть такое же как в музыкальной октаве.

Каждый цвет спектра характеризуется своей длиной волны, то есть он может быть совершенно точно задан длиной волны или частотой колебаний. Световые волны сами по себе не имеют цвета. Цвет возникает лишь при восприятии этих волн человеческим глазом и мозгом. Каким образом он распознает эти волны до настоящего времени еще полностью неизвестно. Мы только знаем, что различные цвета возникают в результате количественных различий светочувствительности.

Остается исследовать важный вопрос о корпусном цвете предметов. Если мы, например, поставим фильтр, пропускающий красный цвет, и фильтр, пропускающий зеленый, перед дуговой лампой, то оба фильтра вместе дадут черный цвет или темноту. Красный цвет поглощает все лучи спектра, кроме лучей в том интервале, который отвечает красному цвету, а зеленый фильтр задерживает все цвета, кроме зеленого. Таким образом, не пропускается ни один луч, и мы получаем темноту. Поглощаемые в физическом эксперименте цвета называются также вычитаемыми.

Цвет предметов возникает, главным образом, в процессе поглощения волн. Красный сосуд выглядит красным потому, что он поглощает все остальные цвета светового луча и отражает только красный.

Когда мы говорим: «эта чашка красная», то мы на самом деле имеем в виду, что молекулярный состав поверхности чашки таков, что он поглощает все световые лучи, кроме красных. Чашка сама по себе не имеет никакого цвета, цвет создается при ее освещении.

Если красная бумага (поверхность, поглощающая все лучи кроме красного) освещается зеленым светом, то бумага покажется нам черной, потому что зеленый цвет не содержит лучей, отвечающих красному цвету, которые могли быть отражены нашей бумагой.

Все живописные краски являются пигментными или вещественными. Это впитывающие (поглощающие) краски, и при их смешивании следует руководствоваться правилами вычитания. Когда дополнительные краски или комбинации, содержащие три основных цвета — желтый, красный и синий, — смешиваются в определенной пропорции, то результатом будет черный, в то время как аналогичная смесь невещественных цветов, полученных в ньютоновском эксперименте с призмой, дает в результате белый цвет, поскольку здесь объединение цветов базируется на принципе сложения, а не вычитания.

Свет и цвет: основы основ

Piccy.info - Free Image Hosting

Мы часто говорим о таком понятии как свет, источниках освещения, цвете изображений и объектов, но не совсем хорошо себе представляем, что такое свет и что такое цвет. Пора разобраться с этими вопросами и перейти от представления к понимаю.

Мы окружены

Осознаем мы этого или нет, но мы находимся в постоянном взаимодействии с окружающим миром и принимаем на себя воздействие различных факторов этого мира. Мы видим окружающее нас пространство, постоянно слышим звуки от различных источников, ощущаем тепло и холод, не замечаем, что пребываем под воздействием естественного радиационного фона, а также постоянно находимся в зоне излучения, которое исходит от огромного количества источников сигналов телеметрии, радио и электросвязи. Почти всё вокруг нас испускает электромагнитное излучение. Электромагнитное излучение — это электромагнитные волны, созданные различными излучающими объектами – заряженными частицами, атомами, молекулами. Волны характеризуются частотой следования, длинной, интенсивностью, а также рядом других характеристик. Вот вам просто ознакомительный пример. Тепло, исходящее от горящего костра – это электромагнитная волна, а точнее инфракрасное излучение, причем очень высокой интенсивности, мы его не видим, но можем почувствовать. Врачи сделали рентгеновский снимок – облучили электромагнитными волнами, обладающими высокой проникающей способностью, но мы этих волн не ощутили и не увидели. То, что электрический ток и все приборы, которые работают под его действием, являются источниками электромагнитного излучения, вы все, конечно же, знаете. Но в этой статье я не стану рассказать вам теорию электромагнитного излучения и его физическую природу, я постараюсь более мене простым языком объяснить, что же такое видимый свет и как образуется цвет объектов, которые мы с вами видим. Я начал говорить про электромагнитные волны, чтобы сказать вам самое главное: Свет – это электромагнитная волна, которая испускается нагретым или находящимся в возбужденном состоянии веществом. В роли такого вещества может выступить солнце, лампа накаливания, светодиодный фонарик, пламя костра, различного рода химические реакции. Примеров может быть достаточно много, вы и сами можете привести их в гораздо большем количестве, чем я написал. Необходимо уточнить, что под понятием свет мы будем подразумевать видимый свет. Всё выше сказанное можно представить в виде вот такой картинки (Рисунок 1).

Piccy.info - Free Image Hosting

Рисунок 1 – Место видимого излучения среди других видов электромагнитного излучения.

На Рисунке 1 видимое излучение представлено в виде шкалы, которая состоит из «смеси» различных цветов. Как вы уже догадались – это спектр. Через весь спектр (слева направо) проходит волнообразная линия (синусоидальная кривая) – это электромагнитная волна, которая отображает сущность света как электромагнитного излучения. Грубо говоря, любое излучение – есть волна. Рентгеновское, ионизирующее, радиоизлучение (радиоприемники, телевизионная связь) – не важно, все они являются электромагнитными волнами, только каждый вид излучения имеет разную длину этих волн. Синусоидальная кривая является всего лишь графическим представлением излучаемой энергии, которая изменяется во времени. Это математическое описание излучаемой энергии. На рисунке 1 вы также можете заметить, что изображенная волна как бы немного сжата в левом углу и расширена в правом. Это говорит о том, что она имеет разную длину на различных участках. Длина волны – это расстояние между двумя её соседними вершинами. Видимое излучение (видимый свет) имеет длину волны, которая изменяется в пределах от 380 до 780nm (нанометров). Видимый свет — всего лишь звено одной очень длинной электромагнитной волны.

От света к цвету и обратно

Ещё со школы вы знаете, что если на пути луча солнечного света поставить стеклянную призму, то большая часть света пройдет через стекло, и вы сможете увидеть разноцветные полосы на другой стороне призмы. То есть изначально был солнечный свет — луч белого цвета, а после прохождения через призму разделился на 7 новых цветов. Это говорит о том, что белый свет состоит из этих семи цветов. Помните, я только что говорил, что видимый свет (видимое излучение) — это электромагнитная волна, так вот, те разноцветные полосы, которые получились после прохождения солнечного луча через призму – есть отдельные электромагнитные волны. То есть получаются 7 новых электромагнитных волн. Смотрим на рисунок 2.

Piccy.info - Free Image Hosting

Рисунок 2 – Прохождение луча солнечного света через призму.

Каждая из волн имеет свою длину. Видите, вершины соседних волн не совпадают друг с другом: потому что красный цвет (красная волна) имеет длину примерно 625-740nm, оранжевый цвет (оранжевая волна) – примерно 590-625nm, синий цвет (синяя волна) – 435-500nm., не буду приводить цифры для остальных 4-х волн, суть, я думаю, вы поняли. Каждая волна – это излучаемая световая энергия, то есть красная волна излучает красный свет, оранжевая – оранжевый, зеленая – зеленый и т.д. Когда все семь волн излучаются одновременно, мы видим спектр цветов. Если математически сложить графики этих волн вместе, то мы получим исходный график электромагнитной волны видимого света – получим белый свет. Таким образом, можно сказать, что спектр электромагнитной волны видимого света – это сумма волн различной длины, которые при наложении друг на друга дают исходную электромагнитную волну. Спектр «показывает из чего состоит волна». Ну, если совсем просто сказать, то спектр видимого света – это смесь цветов, из которых состоит белый свет (цвет). Надо сказать, что и у других видов электромагнитного излучения (ионизирующего, рентгеновского, инфракрасного, ультрафиолетового и т.д.) тоже есть свои спектры.

Любое излучение можно представить в виде спектра, правда таких цветных линий в его составе не будет, потому, как человек не способен видеть другие типы излучений. Видимое излучение – это единственный вид излучений, который человек может видеть, потому-то это излучение и назвали – видимое. Однако сама по себе энергия определенной длины волны не имеет никакого цвета. Восприятие человеком электромагнитного излучения видимого диапазона спектра происходит благодаря тому, что в сетчатке глаза человека располагаются рецепторы, способные реагировать на это излучение.

Но только ли путем сложения семи основных цветов мы можем получить белый цвет? Отнюдь. В результате научных исследований и практических экспериментов было установлено, что все цвета, которые способен воспринимать человеческий глаз, можно получить смешиванием всего лишь трех основных цветов. Три основных цвета: красный, зеленый, синий. Если с помощью смешивания этих трех цветов можно получить практически любой цвет, значит можно получить и белый цвет! Посмотрите на спектр, который был приведен на рисунке 2, на спектре четко просматриваются три цвета: красный, зеленый и синий. Именно эти цвета лежат в основе цветовой модели RGB (Red Green Blue).

Проверим как это работает на практике. Возьмем 3 источника света (прожектора) — красный, зеленый и синий. Каждый из этих прожекторов излучает только одну электромагнитную волну определенной длины. Красный – соответствует излучению электромагнитной волны длиной примерно 625-740nm (спектр луча состоит только из красного цвета), синий излучает волну длиной 435-500nm (спектр луча состоит только из синего цвета), зеленый – 500-565nm (в спектре луча только зеленый цвет). Три разных волны и больше ничего, нет никакого разноцветного спектра и дополнительных цветов. Теперь направим прожектора так, чтобы их лучи частично перекрывали друг друга, как показано на рисунке 3.

Piccy.info - Free Image Hosting

Рисунок 3 — Результат наложения красного, зеленого и синего цветов.

Посмотрите, в местах пересечения световых лучей друг с другом образовались новые световые лучи – новые цвета. Зеленый и красный образовали желтый, зеленый и синий – голубой, синий и красный — пурпурный. Таким образом, изменяя яркость световых лучей и комбинируя цвета можно получить большое многообразие цветовых тонов и оттенков цвета. Обратите внимание на центр пересечения зеленого, красного и синего цветов: в центре вы увидите белый цвет. Тот самый, о котором мы недавно говорили. Белый цвет – это сумма всех цветов. Он является «самым сильным цветом» из всех видимых нами цветов. Противоположный белому – черный цвет. Черный цвет – это полное отсутствие света вообще. То есть там, где нет света — там мрак, там всё становится черным. Пример тому — иллюстрация 4.

Piccy.info - Free Image Hosting

Рисунок 4 – Отсутствие светового излучения

Я как-то незаметно перехожу от понятия свет к понятию цвет и вам ничего не говорю. Пора внести ясность. Мы с вами выяснили, что свет – это излучение, которое испускается нагретым телом или находящимся в возбужденном состоянии веществом. Основными параметрами источника света являются длина волны и сила света. Цвет – это качественная характеристика этого излучения, которая определяется на основании возникающего зрительного ощущения. Конечно же, восприятие цвета зависит от человека, его физического и психологического состояния. Но будем считать, что вы достаточно хорошо себя чувствуете, читаете эту статью и можете отличить 7 цветов радуги друг от друга. Отмечу, что на данный момент, речь идет именно о цвете светового излучения, а не о цвете предметов. На рисунке 5 показаны зависимые друг от друга параметры цвета и света.

Piccy.info - Free Image Hosting

Рисунки 5 и 6– Зависимость параметров цвета от источника излучения

Существуют основные характеристики цвета: цветовой тон (hue), яркость (Brightness), светлость (Lightness), насыщенность (Saturation).

Цветовой тон (hue)

Piccy.info - Free Image Hosting

– Это основная характеристика цвета, которая определяет его положение в спектре. Вспомните наши 7 цветов радуги – это, иначе говоря, 7 цветовых тонов. Красный цветовой тон, оранжевый цветовой тон, зелёный цветовой тон, синий и т.д. Цветовых тонов может быть довольно много, 7 цветов радуги я привел просто в качестве примера. Следует отметить, что такие цвета как серый, белый, черный, а также оттенки этих цветов не относятся к понятию цветовой тон, так как являются результатом смешивания различных цветовых тонов.

Яркость (Brightness)

Piccy.info - Free Image Hosting

– Характеристика, которая показывает, насколько сильно излучается световая энергия того или иного цветового тона (красного, желтого, фиолетового и т.п.). А если она вообще не излучается? Если не излучается – значит, её нет, а нет энергии — нет света, а там где нет света, там черный цвет. Любой цвет при максимальном снижении яркости становится черным цветом. Например, цепочка снижения яркости красного цвета: красный — алый — бордовый — бурый — черный. Максимальное увеличение яркости, к примеру, того же красного цвета даст «максимально красный цвет».

Светлость (Lightness)

Piccy.info - Free Image Hosting

– Степень близости цвета (цветового тона) к белому. Любой цвет при максимальном увеличении светлости становится белым. Например: красный — малиновый — розовый — бледно-розовый — белый.

Piccy.info - Free Image Hosting

– Степень близости цвета к серому цвету. Серый цвет является промежуточным цветом между белым и черным. Серый цвет образуется путем смешивания в равных количествах красного, зеленого, синего цвета с понижением яркости источников излучения на 50%. Насыщенность изменяется непропорционально, то есть понижение насыщенности до минимума не означает, что яркость источника будет снижена до 50%. Если цвет уже темнее серого, при понижении насыщенности он станет ещё более темным, а при дальнейшем понижении и вовсе станет черным цветом.

Такие характеристики цвета как цветовой тон (hue), яркость (Brightness), и насыщенность (Saturation) лежат в основе цветовой модели HSB (иначе называемая HCV).

Для того чтобы разобраться в этих характеристиках цвета, рассмотрим на рисунке 7 палитру цветов графического редактора Adobe Photoshop.

Piccy.info - Free Image Hosting

Рисунок 7 – Палитра цветов Adobe Photoshop

Если вы внимательно посмотрите на рисунок, то обнаружите маленький кружочек, который расположен в самом верхнем правом углу палитры. Этот кружочек показывает, какой цвет выбран на цветовой палитре, в нашем случае это красный. Начнем разбираться. Сначала посмотрим на числа и буквы, которые расположены в правой половине рисунка. Это параметры цветовой модели HSB. Самая верхняя буква – H (hue, цветовой тон). Он определяет положение цвета в спектре. Значение 0 градусов означает, что это самая верхняя (или нижняя) точка цветового круга – то есть это красный цвет. Круг разделен на 360 градусов, т.е. получается, в нем 360 цветовых тонов. Следующая буква – S (saturation, насыщенность). У нас указано значение 100% — это значит, что цвет будет «прижат» к правому краю цветовой палитры и имеет максимально возможную насыщенность. Затем идет буква B (brightness, яркость) – она показывает, насколько высоко расположена точка на палитре цветов и характеризует интенсивность цвета. Значение 100% говорит о том, что интенсивность цвета максимальна и точка «прижата» к верхнему краю палитры. Буквы R(red), G(green), B(blue) — это три цветовых канала (красный, зеленый, синий) модели RGB. В каждом в каждом из них указывается число, которое обозначает количество цвета в канале. Вспомните пример с прожекторами на рисунке 3, тогда мы выяснили, что любой цвет может быть получен путем смешивания трех световых лучей. Записывая числовые данные в каждый из каналов, мы однозначно определяем цвет. В нашем случае 8-битный канал и числа лежат в диапазоне от 0 до 255. Числа в каналах R, G, B показывают интенсивность света (яркость цвета). У нас в канале R указано значение 255, а это значит, что это чистый красный цвет и у него максимальная яркость. В каналах G и B стоят нули, что означает полное отсутствие зеленого и синего цветов. В самой нижней графе вы можете увидеть кодовую комбинацию #ff0000 — это код цвета. У любого цвета в палитре есть свой шестнадцатиричный код, который определяет цвет. Есть замечательная статья Теория цвета в цифрах, в которой автор рассказывает как определять цвет по шестнадцатеричному коду.
На рисунке вы также можете заметить перечеркнутые поля числовых значений с буквами «lab» и «CMYK». Это 2 цветовых пространства, по которым тоже можно характеризовать цвета, о них вообще отдельный разговор и на данном этапе незачем вникать в них пока не разберетесь с RGB.
Можете открыть цветовую палитру Adobe Photoshop и поэксперовать со значением цветов в полях RGB и HSB. Вы заметите, что изменение числовых значений в каналах R, G, и B приводит к изменению числовых значений в каналах H, S, B.

Цвет объектов

Пора поговорить о том, как так получается, что окружающие нас предметы принимают свой цвет, и почему он меняется при различном освещении этих предметов.

Объект можно увидеть, только если он отражает или пропускает свет. Если же объект почти полностью поглощает падающий свет, то объект принимает черный цвет. А когда объект отражает почти весь падающий свет, он принимает белый цвет. Таким образом, можно сразу сделать вывод о том, что цвет объекта будет определяться количеством поглощенного и отраженного света, которым этот объект освещается. Способность отражать и поглощать свет определятся молекулярной структурой вещества, иначе говоря — физическими свойствами объекта. Цвет предмета «не заложен в нем от природы»! От природы в нем заложены физические свойства: отражать и поглощать.

Цвет объекта и цвет источника излучения неразрывно связаны между собой, и эта взаимосвязь описывается тремя условиями.

Первое условие: Цвет объект может принимать только при наличии источника освещения. Если нет света, не будет и цвета! Красная краска в банке будет выглядит черной. В темной комнате мы не видим и не различаем цветов, потому что их нет. Будет черный цвет всего окружающего пространства и находящихся в нем предметов.

Второе условие: Цвет объекта зависит от цвета источника освещения. Если источник освещения красный светодиод, то все освещаемые этим светом объекты будут иметь только красные, черные и серые цвета.

И наконец, Третье условие: Цвет объекта зависит от молекулярной структуры вещества, из которого состоит объект.

Зеленая трава выглядит для нас зеленой, потому что при освещении белым светом она поглощает красную и синюю волну спектра и отражает зеленую волну (Рисунок 8).

Piccy.info - Free Image Hosting

Рисунок 8 – Отражение зеленой волны спектра

Бананы на рисунке 9 выглядят желтыми, потому что они отражают волны, лежащие в желтой области спектра (желтую волну спектра) и поглощает все остальные волны спектра.

Piccy.info - Free Image Hosting

Рисунок 9 – Отражение желтой волны спектра

Собачка, та что изображена на рисунке 10 – белая. Белый цвет – результат отражения всех волн спектра.

Piccy.info - Free Image Hosting

Рисунок 10 – Отражение всех волн спектра

Цвет предмета – это цвет отраженной волны спектра. Вот так предметы приобретают видимый нами цвет.

В следующей статье речь пойдет о новой характеристике цвета — цветовой температуре.

Почему если «смешать» все цвета радуги, то получится белый?

Цветовое зрение обеспечивается тремя типами светочувствительных клеток-колбочек в сетчатке глаза. Каждый тип особенно чувствителен к своему цветовому диапазону — желто-красному, желто-зеленому и сине-фиолетовому. Видимый нами цвет зависит от того, как соотносятся сигналы, приходящие от колбочек разного типа.

Если свет разных цветов смешать в равных пропорциях, то все колбочки будут давать сигнал одинаковой интенсивности, что воспринимается как белый (или серый) цвет.

Это, конечно, упрощенное объяснение. На практике строгое равенство сигналов необязательно. Зрение очень адаптивно: мы видим лист бумаги белым и в красных лучах заката, и при синем освещении. Так же работают цифровые фотоаппараты, имеющие настройку баланса белого цвета.

Физика цвета

Всю жизнь мы окружены невероятным буйством цветов. В отличие от большинства млекопитающих, люди воспринимают мир в виде красочных картин. Мы сталкиваемся с цветом каждый день, он приобрел для нас большое значение и играет важную роль в повседневных делах. Но что такое цвет? Как он образуется и почему мы видим его? На эти и другие вопросы я постараюсь ответить в своей статье.

Что такое свет и цвет

Поскольку цвет — это способность объектов отражать или излучать световые волны отдельной части спектра, начнем с определения того, что же такое свет.

С древних времен люди пытались понять природу света. Так, например, древнегреческий философ Пифагор сформулировал теорию света, в которой утверждал, что непосредственно из глаз испускаются прямолинейные лучи видимого света, которые, попадая на объект и ощупывая его, дают людям возможность видеть. Согласно Эмпедоклу, богиня любви Афродита поместила в наши глаза четыре элемента — огонь, воду, воздух и землю. Именно свет внутреннего огня, считал философ, помогает людям видеть объекты материального мира. Платон же предполагал, что существуют две формы света — внутренняя (огонь в глазах) и внешняя (свет внешнего мира) — и их смешение дает людям зрение.

По мере изобретения и развития различных оптических приборов представления о свете развивались и трансформировались. Так в конце XVII века возникли две основные теории света — корпускулярная теория Ньютона и волновая теория Гюйгенса.

Согласно корпускулярной теории, свет представлялся в виде потока частиц (корпускул), излучаемых светящимся объектом. Ньютон считал, что движение световых частиц подчинено законам механики, то есть, например, отражение света понималось как отражение упругого мячика от поверхности. Преломление света ученый объяснял изменением скорости световых частиц при переходе между разными средами.

В волновой теории, в отличие от корпускулярной, свет рассматривался как волновой процесс, подобно механическим волнам. В основе теории лежит принцип Гюйгенса, по которому каждая точка, до которой доходит световая волна, становится центром вторичных волн. Теория Гюйгенса позволила объяснить такие световые явления, как отражение и преломление.

Таким образом, весь XVIII век стал веком борьбы двух теорий света. В первой трети XIX века, однако, корпускулярная теория Ньютона была отвергнута и восторжествовала волновая теория.

Важным открытием XIX века стала выдвинутая английским ученым Максвеллом электромагнитная теория света. Исследования привели его к выводу, что в природе должны существовать электромагнитные волны, скорость которых достигает скорости света в безвоздушном пространстве. Ученый считал, что световые волны имеют ту же природу, что и волны, возникающие вокруг провода с переменным электрическим током, и отличаются друг от друга лишь длиной.

В 1900 году Макс Планк выдвинул новую квантовую теорию света, согласно которой, свет является потоком определенных и неделимых порций энергии (кванты, фотоны). Развитая Эйнштейном, квантовая теория смогла объяснить не только фотоэлектрический эффект, но и закономерности химического действия света и ряд других явлений.

В настоящее время в науке преобладает корпускулярно-волновой дуализм, то есть свету приписывается двойственная природа. Так при распространении света проявляются его волновые свойства, в то время как при его испускании и поглощении — квантовые.

Но как из света получается цвет? В 1676 году Исаак Ньютон с помощью трёхгранной призмы разложил белый солнечный свет на цветовой спектр, который содержал все цвета кроме пурпурного. Ученый проводил свой опыт следующим образом: белый солнечный свет проходил сквозь узкую щель и пропускался через призму, после чего направлялся на экран, где возникало изображение спектра. Непрерывная цветная полоса начиналась с красного и через оранжевый, желтый, зеленый и синий заканчивалась фиолетовым. Если же это изображение пропускалось через собирающую линзу, то на выходе вновь получался белый свет. Таким образом, Ньютон открыл, что белый свет — это комбинация всех цветов.

Любопытным было и следующее наблюдение: если из цветового спектра убрать один из цветов, например, зеленый, а остальные пропустить через собирающую линзу, то полученный в итоге цвет окажется красным — дополнительным к удаленному цвету.

По сути, каждый цвет создается электромагнитными волнами определенной длины. Человеческий глаз способен видеть цвета с длиной волны в диапазоне от 400 до 700 миллимикрон, где наименьшая длина волны соответствует фиолетовому цвету, а наибольшая — красному. Поскольку каждый цвет спектра характеризуется своей длиной волны, то он может быть точно задан длиной волны или частотой колебаний. Сами по себе световые волны бесцветны, цвет возникает лишь при восприятии волн человеческим глазом и мозгом. Однако механизм, по которому мы распознаем эти волны, до сих пор неизвестен.

Что касается цвета предметов, то он возникает, фактически, в процессе поглощения световых волн. То есть, если мы видим, что предмет зеленого цвета, по сути, это означает, что молекулярный состав его поверхности таков, что он поглощает все волны, кроме зеленых. Сами по себе предметы не имеют никакого цвета и обретают его лишь при освещении.

История теории цвета

Одна из первых известных теорий цвета была изложена в трактате «О цвете», написанном в древней Греции. В нем утверждается, что все цвета существуют в спектре между светом и тьмой, а четыре основные цвета происходят из основных стихий: огня, воды, воздуха и земли. Несмотря на наивность и ошибочность взглядов, трактат содержал ряд важных наблюдений, например, о том, что тьма — это отсутствие света, а не цвет.

В 1704 году Исаак Ньютон опубликовал первое издание «Оптики», в котором впервые разложил цветовой спектр по кругу. Это положило начало традиции применения геометрических фигур для изображения цветовых моделей. Так как Ньютон открыл, что соотношение первого и последнего цветов в спектре приблизительно равно 1:2, то есть как в музыкальной октаве, имеющей семь интервалов, количество основных цветов в круге он выбрал по аналогии, разделив круг на семь неравных сегментов в зависимости от интенсивности цвета в спектре.

В 1810 году немецкий поэт, мыслитель и ученый Вольфганг фон Гёте издал свою книгу «Теория цвета», которую посвятил восприятию цвета человеком. Он провел множество экспериментов, в которых измерял реакцию глаза на определенные цвета. Гёте создал, пожалуй, самый известный цветовой круг, на котором расположил три основных цвета — красный, синий и желтый — и три дополнительных, созданных из основных — оранжевый, зеленый и фиолетовый. Гёте полагал, что из основных цветов можно составить все остальные цвета.

Пытаясь создать единую цветовую систему художники начали изображать цветовой спектр в виде объемных фигур. Отличным примером могут послужить цветовые треугольники Тобиаса Майера, которые он опубликовал в своей книге «Комментарий о родстве цветов» в 1775 году. Он расположил в углах треугольника традиционные основные цвета — красный, желтый и синий — и заполнил внутреннее пространство, смешивая противоположные оттенки. Для создания объема он добавил измерение яркости цвета, располагая треугольники разной яркости друг над другом. Таким образом, конкретный цвет стал определяться положением в трехмерном пространстве, что используется и сегодня.

В 1810 году свою теорию цвета издал немецкий художник Филипп Отто Рунге. К основным цветам он причислил белый и черный, расположив их на полюсах своей цветовой сферы, между которыми разместились цветовые пояса. К сожалению, сфера не делала различия между яркостью и насыщенностью цвета и в результате представляла лишь небольшой градиент по интенсивности цвета. Тем не менее, его цветовая сфера послужила основой для последующих цветовых моделей.

В 1839 году французский химик Мишель Эжен Шеврёль представил свою цветовую полусферу. Оттенки для своей модели он выбирал визуально, а не на основе количественного соотношения цветов в них. Для проверки правильности выбора дополнительных цветов в своей модели Шеврёль использовал метод остаточного изображения: если человек будет долго смотреть на зеленый квадрат, а затем переведет взгляд на белую стену, то он увидит красный цвет. Это происходит из-за того, что зеленые рецепторы в сетчатке глаза устают и им требуется дополнительный к зеленому цвет для равновесия.

В начале XX века американский художник Альберт Генри Манселл создал одну из наиболее значимых в истории цветовых моделей, так называемое цветовое дерево Манселла. Основная особенность этой модели заключается в том, что Манселл по-новому обозначил пространственные координаты: оттенок определял тип цвета (красный, синий, желтый), значение определяло яркость (наличие белого в цвете) и цветность отвечала за насыщенность цвета (его чистоту). Эти обозначения используются и сегодня в цветовой модели HSV.

В настоящее время в дизайне, живописи и архитектуре широко используется цветовой круг швейцарского художника и педагога Иоханнеса Иттена. В его 12-частном круге изображена наиболее распространенная система распределения цветов и их взаимодействия. Иттен выделил основные цвета (синий, красный и желтый), вторичные цвета, получаемые при смешении основных (оранжевый, зеленый и фиолетовый) и третичные цвета, которые образуются при смешении вторичного цвета с основным.

Цветовые модели

Цветовая модель — это изображение цветового спектра в виде объемной фигуры. Поскольку большинство современных цветовых моделей имеют три измерения (как например модель RGB), то они могут быть изображены в виде трехмерных фигур.

По принципу действия цветовые модели бывают субтрактивными и аддитивными, они описывают поведение цвета в разных средах. Аддитивные модели (RGB) основаны на сложении цветов и характеризуются тем, что соединяя разные оттенки света, в результате получится белый свет. В основе субтрактивных моделей (CMYK) лежит принцип вычитания, характерный для пигментов, при смешении которых образуется черный цвет. Так, например, в принтерах используются краски трех цветов — голубой, пурпурный и желтый — из которых смешивается приемлемое количество цветов. Черный цвет зачастую используется в целях экономии, так как не может быть эффективно получен из трех красок. В цифровых же устройствах, воспроизводящих изображение с помощью света, используется три основных цвета на пиксель — красный, зеленый и синий. Хотя обе эти модели основаны на разных цветах, дополняющие цвета у них одинаковые.

Для корректной цветопередачи важно использовать правильную цветовую модель. При подготовке макета для печати предпочтительной будет модель CMYK, что сократит искажения цвета и конечный результат будет максимально близок к оригинальному изображению.

RGB — цветовая модель, которая имеет три измерения: красное, зеленое и синее. Ее зачастую изображают в виде куба с красным, зеленым и синим цветами на осях x, y и z. Определяя конкретный цвет, мы задаем его координаты в трехмерном пространстве RGB, где 0% каждого цвета дадут черный, а 100% каждого из основных цветов дадут белый цвет.

HSV (HSB) — цветовая модель, которая перераспределяет основные цвета RGB модели в виде цилиндра. Эта модель имеет такие же измерения, как в цветовом дереве Манселла:

  1. Оттенок (hue) — измерение, расположенное по окружности, где 0° дает красный цвет, 120° — зеленый и 240° — синий цвет.
  2. Насыщенность (saturation) — отвечает за количество цвета, при этом 100% насыщенности даст самый чистый цвет, а 0% уйдет в шкалу серого.
  3. Яркость (value или brightness) — отвечает за наличие белого в цвете. При этом 0% яркости даст черный цвет, а при 100% яркости цвет будет максимально ярким.

Следует учесть, что измерения в модели HSV взаимозависимы. То есть, если, например, яркость выставлена на 0%, то насыщенность и оттенок не будут иметь значения, так как 0% яркости дает черный цвет.

HSL — цилиндрическая цветовая модель, похожая на HSV, но вместо яркости третье измерение в ней отвечает за светлоту цвета (количество белого).

  1. Оттенок (hue) — так же как в модели HSV определяет положение цвета по окружности.
  2. Насыщенность (saturation) — также отвечает за чистоту цвета
  3. Светлота (lightness) — отвечает за количество белого в цвете. 100% светлоты дают белый цвет, 0% — черный, а 50% — наиболее чистый насыщенный цвет.

LAB — обладает самым широким цветовым диапазоном (охватом) за счет того, что в ней, хоть и не явно, используются не три, а четыре базовых цвета. Эта модель состоит из трех каналов:

  1. L (lightness) — светлота, устанавливает координаты света (100) и тени (0)
  2. a — спектр от зеленого через серый к пурпурному
  3. b — спектр от синего через серый к желтому.

Параметры a и b имеют по 256 значений от -128 до 127. При этом их отрицательные значения соответствуют холодным цветам, а положительные — теплым. Нулевые значения каналов a и b дают ахроматическую гамму

CMYK — четырехмерная цветовая модель, используемая в печатном деле. На печати используют всего четыре цвета для получения других цветов: голубой, пурпурный, желтый и черный. Каждое из чисел, которые определяют CMYK цвет, представляет собой процент содержания каждой краски в определенном цвете.

В графических редакторах зачастую можно встретить настройки цвета по нескольким цветовым моделям. Так, например, в Adobe Photoshop можно настраивать цвет по моделям RGB, HSB, CMYK и LAB. Изменение параметров в одной из них влечет к изменению показателей в других моделях.

Приложение Colorizer позволяет настроить цвет по всем выше описанным моделям и нескольким дополнительным. При этом так же как в Photoshop легко проследить взаимосвязь всех цветовых моделей. К тому же Colorizer предоставляет целый набор гармоничных сочетаний с выбранным цветом: комплиментарные цвета, триадные, аналогичные и другие сочетания цветов.

Цветовой охват и цветовые пространства

Поскольку работа дизайнера напрямую связана с цветами, рано или поздно каждый сталкивается с вопросом их воспроизведения. Цвета могут искажаться при загрузке изображения в интернет, при печати или отображении на другом устройстве. Почему же это происходит?

Причина в цветовом охвате. Дело в том, что каждое устройство способно воспроизвести определенный набор цветов, и у разных устройств эти наборы могут сильно разниться. Цвета, которые выходят за пределы общего охвата, на разных устройствах будут отображаться по-разному. Так, например, монитор может отобразить часть цветов, которые отсутствуют в цветовом охвате принтера, что приведет к некоторому искажению при печати. Кроме того, у однотипных устройств цветовой охват может сильно отличаться, то есть один и тот же цвет не будет выглядеть одинаково на разных мониторах.

Проще и удобнее всего сравнить цветовой охват устройства с набором карандашей: у одних устройств это большие богатые наборы со множеством оттенков, у других — скромные наборы, состоящие из базовых цветов. Если в наборе нет нужного оттенка, он заменяется на тот, который доступен, изменяя итоговое изображение. Так же и с цветовым охватом: если устройство не способно воспроизвести определенный цвет, то он заменяется на ближайший доступный. Отсюда и искажения.

Для того, чтобы прояснить работу с цветом, были придуманы абстрактные, не привязанные к конкретному устройству, цветовые пространства. Существует три наиболее распространенных цветовых пространства: sRGB, Adobe RGB 1998 и ProPhoto RGB.

sRGB является самым часто используемым пространством. Оно довольно узкое (покрывает всего 35% видимых цветов), благодаря чему практически любой монитор может воспроизвести все его цвета без искажений. Именно поэтому при создании цифрового дизайна рекомендуется использовать именно sRGB пространство, так как конечный интерфейс будет отображаться корректно у максимального количества пользователей. Однако, с другой стороны, узость sRGB пространства приводит к тому, что его не достаточно для корректной цветопередачи при печати.

Пространство Adobe RGB 1998 было разработано компанией Adobe для того, чтобы покрыть большее количество цветов, достижимых на принтере CMYK, но используя первичные цвета RGB на цифровых устройствах. Оно шире чем, sRGB (покрывает примерно половину всех видимых цветов) и хорошо приспособлено для подготовки изображений для печати. Но стоит учитывать тот факт, что не многие мониторы способны воспроизвести цвета этого пространства.

Охват пространства ProPhoto RGB настолько велик, что включает цвета, которые человеческий глаз не способен воспринять, то есть оно выходит за рамки видимых цветов. Это цветовое пространство было разработано компанией Kodak и предназначено для использования в фотографии.

Восприятие цвета и цветовые иллюзии

Воздействие и восприятие цвета — сложный процесс, обусловленный психологическими факторами и базирующийся на физиологии нервной системы. По мнению Иоханнеса Иттена, глаза и мозг могут прийти к четкому различению цвета лишь с помощью контрастов и сравнений. Он утверждал, что сам цвет и цветовое воздействие совпадают лишь в случае гармонических сочетаний, а во всех остальных случаях цвет приобретает иное измененное качество.

На этой базе и создаются разнообразные цветовые иллюзии. Один и тот же цвет может выглядеть совершенно по-разному на разном фоне или в разных контекстах. Зачастую цвет искажается из-за соседства с другим цветом. Бывает и так, что мозг «видит» цвета, которых нет на изображении, дорисовывая его исходя из прошлого опыта.

Ниже приведены несколько любопытных цветовых иллюзий, в которых цвет играет с нашим восприятием реальности.

Шахматная доска

Поверите ли вы, что клетки А и В одного цвета? Это становится ясно, если открыть изображение в редакторе и проверить цвета с помощью «пипетки». Но из-за того что мозг не хочет нарушать предложенный узор их темных и светлых квадратов, для нас они выглядят по-разному.

По похожему принципу работает и следующая иллюзия — нам кажется, что нижний квадрат светлее верхнего, однако, если закрыть линию их соединения, становится очевидно, что они одного серого цвета.

Иллюзия несуществующих цветов

На изображении ниже кроме белого фона присутствуют только два цвета — салатовый и розовый. Они легко различимы, если между клетками разного цвета есть белый фон, но стоит только разместить их рядом, как они начинают усиливать и затемнять друг друга.

Следующая иллюзия работает благодаря эффекту прошлого опыта. На изображении с клубникой нет ни одного красного пикселя, однако ягоды выглядят красными. Все потому, что, во-первых, мы привыкли видеть клубнику красной, и мозг не хочет признавать, что на изображении она серая. Во-вторых, хотя красного цвета фактически нет, красный канал на изображении наиболее сильный, что способствует тому, что мы видим красный цвет. Как утверждает автор этого фото — японский психолог Акиеши Китаока — секрет в том, что все изображение имеет ярко выраженный голубоватый оттенок, из-за чего наш мозг делает “поправку” на фон и воспринимает различные серые оттенки как цвета, противоположные этому фону.

Иллюзия градиента

Замечено, что на темном фоне цвет выглядит светлее, в то время как на светлом фоне тот же цвет кажется значительно темнее. Этот эффект проиллюстрирован в следующей иллюзии. На самом деле изображения лошадей одного цвета, однако из-за разного фона они выглядят по-разному.

Иллюзия дополняющих цветов

В следующей иллюзии использован эффект остаточного изображения, применяемый еще Мишелем Эженом Шеврёлем при создании его цветовой полусферы. Если долго смотреть на какой-то цвет, это вызывает усталость глазных рецепторов. Для устранения напряжения и достижения гармонии требуется дополняющий цвет. В данном случае черно-белое изображение может на долю секунды показаться цветным, чтобы компенсировать усталость рецепторов после первого насыщенного изображения.

Иллюзия с платьем

И напоследок знаменитая иллюзия с платьем, взорвавшая интернет в 2015 году. По сути, это и не иллюзия, а лишь демонстрация того, насколько по-разному мы воспринимаем реальность. Изображение платья разделило интернет на два лагеря: одни утверждали, что платье белое с золотым, другие были уверена в том, что оно синее с черным. Истина же в том, где, по мнению наблюдателя, расположен источник света и как он освещает платье. Поскольку тени обычно окрашены в синие тона, то в уме мы вычитаем их из изображения, оставляя картинку в бело-золотых оттенках. С другой стороны, искусственный свет зачастую отдает желтизной, поэтому удаляя желтый оттенок, остается изображение в сине-черных цветах.

Цвет — мощнейший инструмент в руках дизайнера. Понимание его природы и свойств поможет использовать этот инструмент более осознанно и эффективно.

Специально для Design Spot.

Это статья из серии наших публикаций про цвет и колористику. Надеемся, вам понравилось. Поэтому, рекомендуем продолжить:

  • Взаимодействие цвета(О цветовой гармонии и в целом о цвете, или точнее сказать о его взаимодействии со средой, в которой он обитает.)
  • Базовые понятия в колористике (ликбез)
  • Цветовой круг, гармонии и колориты (ликбез)
  • Цвет настроения синий(все о синем цвете и его применении в дизайне)
  • В белом плаще с кровавым подбоем(все о красном цвете и его применении в дизайне)
  • Тоска зелёная (все о зелёном цвете и его применении в дизайне)
  • Чернее чёрной черноты бесконечности (все о чёрном цвете и его применении в дизайне)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *