Источники эдс и источники тока
Перейти к содержимому

Источники эдс и источники тока

  • автор:

Источники эдс и источники тока

§ 2.2. Источник ЭДС и источник тока. Источник электрической энергии характеризуется ЭДС Е и внутренним сопротивлением R в . Если через него под действием ЭДС Е протекает ток I, то напряжение на его зажимах U = Е — IRв при увеличении I уменьшается. Зависимость напряжения U на зажимах реального источника от тока I изображена на рис. 2.2, а.

Обозначим через mU — масштаб по оси U, через m1 — масштаб по оси I. Тогда для произвольной точки на характеристике рис. 2.2, а abmU = IRв; bсm1 = I; tga = ab/bc = Rвm1/mU. Следовательно, tga пропорционален Rв. Рассмотрим два крайних случая.

Клещи электроизмерительные

1. Если у некоторого источника внутреннее сопротивление Rв = 0, то ВАХ его будет прямой линией (рис. 2.2, б). Такой характеристикой обладает идеализированный источник питания, называемый источником ЭДС. Следовательно, источник ЭДС представляет собой такой идеализированный источник питания, напряжение на зажимах которого постоянно (не зависит от тока I) и равно ЭДС Е, а внутреннее сопротивление равно нулю.

2. Если у некоторого источника беспредельно увеличивать ЭДС Е и внутреннее сопротивление Rв, то точка с (рис. 2.2, а) отодвигается по оси абсцисс в бесконечность, а угол α стремится к 90° (рис. 2.2, в). Такой источник питания называют источником тока.

Следовательно, источник тока представляет собой идеализированный источник питания, который создает ток J = I, не зависящий от сопротивления нагрузки, к которой он присоединен, а его ЭДС Eит и внутреннее сопротивление Rит равны бесконечности. Отношение двух бесконечно больших величин Eит/Rит равно конечной величине — току J источника тока.

При расчете и анализе электрических цепей реальный источник электрической энергии с конечным значением Rв заменяют расчетным эквивалентом. В качестве эквивалента может быть взят:

  • а) источник ЭДС Е с последовательно включенным сопротивлением Rв, равным внутреннему сопротивлению реального источника (рис. 2.3, а; стрелка в кружке указывает направление возрастания потенциала внутри источника ЭДС);
  • б) источник тока с током J = E/Rв параллельно с ним включенным сопротивлением Rв (рис. 2.3, б; стрелка в кружке указывает положительное направление тока источника тока).

Ток в нагрузке (в сопротивлении R) для схем рис. 2.3, а, б одинаков: I = E/(R + Rв), т.е. равен току в схеме рис. 2.1, а. Для схемы, рис. 2.3, а это следует из того, что при последовательном соединении значения сопротивлений R и Rв складываются. В схеме рис. 2.3, б ток J = E/Rв распределяется обратно пропорционально значениям сопротивлений R и Rв двух параллельных ветвей. Ток в нагрузке R

Каким из двух расчетных эквивалентов пользоваться, совершенно безразлично. В дальнейшем используется в основном первый эквивалент.

Обратим внимание на следующее:

  • 1) источник ЭДС и источниктока — идеализированные источники, физически осуществить которые, строго говоря, невозможно;
  • 2) схема рис. 2.3, б эквивалента схеме рис. 2.3, а в отношении энергии, выделяющейся в сопротивлении нагрузки R, и не эквивалентна ей в отношении энергии, выделяющейся во внутреннем сопротивлении источника питания Rв;
  • 3) идеальный источник ЭДС без последовательно соединенного с ним Rв нельзя заменить идеальным источником тока.

На примере схемы рис. 2.3 осуществим эквивалентный переход от схемы с источником тока к схеме с источником ЭДС. В схеме рис. 2.3, б источник тока дает ток J = 50 А. Шунтирующее его сопротивление Rв = 2 Ом. Найти ЭДС эквивалентного источника ЭДС в схеме рис. 2.3, а.

ЭДС Е = JRв = 100 В. Следовательно, параметры эквивалентной схемы рис. 2.3, а таковы; Е = 100 В, Rв = 2 Ом.

1.2. Источники ЭДС и источники тока. Их эквивалентность

В расчетах электрических цепей, кроме источников ЭДС, используют источники тока (рис. 1.5).

Источник тока – это такой идеальный источник, который вырабатывает неизменную по величине силу электрического тока ( ) независимо от нагрузки.

Реальный источник тока – это такой источник, у которого внутреннее сопротивление не равно бесконечности ( ).

Докажем, что любому источнику с электродвижущей силой E и внутренним сопротивлением RE (рис. 1.5, а) может быть найден источник тока J с тем же внутренним сопротивлением RE (рис. 1.5, б).

Если U и I в цепях (рис. 1.5) равны, то обведенные контуром части схем эквивалентны.

Пусть сопротивления RВ в цепях (рис. 1.5) одинаковы. В цепи (рис. 1.5, а) ток можно определить по закону Ома:

В цепи (рис. 1.5, б) ток равен: . С другой стороны: , тогда

Сравнивая формулы (1.1) и (1.2), можно убедиться, что . Это и есть условие эквивалентности источников.

Значит, доказано, что реальному источнику Е, Rв всегда можно найти реальный источник тока J, Rв. Но идеальному источнику Е нельзя найти эквивалентный идеальный источник J, так как внутренние сопротивления у них не могут
быть одинаковыми (RЕ = 0, а RJ = )

Чем отличается источник ЭДС от источника тока?

Ну, подключаются в цепь они по-разному: один параллельно, другой последовательно, а еще какие есть отличия? В школе не объясняли (не было там вообще источников тока, только ЭДС) . На ТОЭ-1 о различия тоже не рассказывали (думаю, и не должны) . В нете потом поищу, захотел тут спросить.
ПС интересно уловить разницу.
ПС 2 не давайте глупых ответов, пожалуйста.
Заранее благодарен)

Дополнен 9 лет назад
И где мои ответы?! (
Лучший ответ

Источник ЭДС (или идеальный источник напряжения) представляет собой активный элемент с двумя зажимами, напряжение на которых не зависит от тока, проходящего через источник.
Идеальный источник тока представляет собой активный элемент, ток которого не зависит от напряжения на его зажимах. Предполагается, что внутреннее сопротивление идеального источника тока бесконечно велико, и поэтому параметры внешней электрической цепи, от которых зависит напряжение на зажимах источника, не влияют на ток источника.

xXx ZEVS xXxМастер (1399) 9 лет назад
Других отличий в них нет? Как-то неинтересно (

Точнее: «Ничего общего в них нет? Интересно-то как! )» Между ними реально ничего общего, окромя одинаковых деталек. При изменении сопротивления нагрузки, при питании её от источника напряжения, напряжение на нагрузке остаётся прежним, а меняется ток через неё. При изменения же сопротивления нагрузки, подключенной к генератору тока, ток через неё остаётся неизменным и меняется напряжение на ней. И что между ними ОБЩЕГО?

Остальные ответы
Источник ЭДС -это в задачках на уроках используется.
xXx ZEVS xXxМастер (1399) 9 лет назад

«ПС 2 не давайте глупых ответов, пожалуйста. » Имхо, ответ таковым является.
ПС источники ЭДС и на задачах в ТОЭ используется наравне с источниками тока!

KERK Искусственный Интеллект (223757) ПС только в задачах. . ПС2 U=Const ПС3 I=Const Бельмес?

я так понял что источником тока в принципе может быть генератор, а источником ЭДС (электродвижущей силы) могут быть химические реакции протекающие в гальванических элементах. Вот их и называют ЭДС источниками.

Электронщики пользуются термином «источник напряжения» и «генератор тока». Первое, подразумевает устройство, с внутренним R стремящемся к 0, и конечную ЭДС. Второе должно иметь ЭДС, стремящуюся в ∞ , и R внутр. много-много больше R нагрузки. В реальности, если взять хороший лабораторный БП, то режим источника U будет ограничен его мощностью, а режим генератора тока, его максимальным напряжением. Предположим, имеете источник в 100 вольт. Хотите иметь стабилизированный ток в 0,1А . Выставили данный режим. Через любую нагрузку от 0 до 1000 ом получите вашу хотелку. На нагрузку свыше 1000 ом данный ток не будет обеспечен за нехваткой напряжения. В данном режиме, можете считать, что внутри стоит регулируемый потенциометр, который «крутит» умная электроника. Соответственно напряжение приложенное к нагрузке от 0 до 1000 ом линейно меняется от 0 до 100 вольт.

Есть батарейка, пока она ни куда не включена, это источник ЭДС, она имеет разницу потенциалов на клеммах, а в схеме она является источником тока. Опять учебник в руки, и учи до посинения.

Виктор НовоселовЗнаток (366) 3 года назад
Наконец-то, простыми словами

Источник ЭДС имеет внутреннее сопротивление на много меньше сопротивления нагрузки
Источник тока имеет внутреннее сопротивление на много больше сопротивления нагрузки

1.8 Источник эдс и источник тока

В теории электрических цепей пользуются идеализированными источниками электрической энергии: источником ЭДС и источником тока. Им приписываются следующие свойства.

Источник ЭДС (или идеальный источник напряжения) представляет собой активный элемент с двумя зажимами, напряжение на которых не зависит от тока, проходящего через источник.

Предполагается, что внутри такого идеального источника пассивные элементы (R, L, С) отсутствуют, и поэтому прохождение через него тока не вызывает в нем падения напряжения.

Упорядоченное перемещение положительных зарядов в источнике от меньшего потенциала к большему возможно за счет присущих источнику сторонних сил. Величина работы, затрачиваемой сторонними силами на перемещение единицы положительного заряда от зажима «» к зажиму «+», называется электродвижущей силой (ЭДС) источника и обозначается е(t).

В соответствии со сказанным выше напряжение на зажимах рассматриваемого источника равно его ЭДС, т. е. u(t) = е(t).

Условные обозначения идеального источника напряжения приведены на рисунке 1.12, а и б. Здесь стрелкой или знаками «+» и «» указано положительное направление ЭДС, или полярность источника, т.е. направление возрастания потенциала в источнике для тех моментов времени, в которые функция е(t) положительна.

Величина тока в пассивной электрической цепи, подключенной к источнику напряжения, зависит от параметров этой цепи и ЭДС е(t). Если зажимы идеального источника напряжения замкнуть накоротко, то ток теоретически должен быть бесконечно велик. Поэтому такой источник рассматривают как источник бесконечной мощности (теоретическое понятие). В действительности при замыкании зажимов реального источника электрической энергии  гальванического элемента, аккумулятора, генератора и т.д.  ток может иметь только конечное значение, так как ЭДС источника уравновешивается падением напряжения от тока внутри источника (например, в сопротивлении R, индуктивности L).

Источник напряжения конечной мощности изображается в виде источника ЭДС с подключенным к нему последовательно пассивным элементом, который характеризует внутренние параметры источника и ограничивает мощность, отдаваемую во внешнюю электрическую цепь (рисунок 1.12, в). Обычно внутренние параметры источника конечной мощности незначительны по сравнению с параметрами внешней цепи; они могут быть отнесены к последней или в некоторых случаях могут вовсе не учитываться (в зависимости от соотношения величин и требуемой точности расчета).

Идеальный источник тока представляет собой активный элемент, ток которого не зависит от напряжения на его зажимах. Предполагается, что внутреннее сопротивление идеального источника тока бесконечно велико, и поэтому параметры внешней электрической цепи, от которых зависит напряжение на зажимах источника, не влияют на ток источника.

Условные обозначения идеального источника тока приведены на рисунке 1.13, а и б. Стрелка в источнике тока или знаки «+» и «» указывают положительное направление тока i(t) или полярность источника, т.е. направление перемещения положительных зарядов, или, что то же, направление, противоположное направлению движения отрицательных зарядов, для тех моментов времени, когда функция i(t) положительна.

По мере неограниченного увеличения сопротивления внешней электрической цепи, присоединенной к идеальному источнику тока, напряжение на его зажимах и соответственно мощность, развиваемая им, неограниченно возрастают. Поэтому идеальный источник тока, так же как и идеальный источник напряжения, рассматривается как источник бесконечной мощности.

Источник тока конечной мощности изображается в виде идеального источника тока с подключенным к его зажимам пассивным элементом, который характеризует внутренние параметры источника и ограничивает мощность, отдаваемую во внешнюю электрическую цепь (рисунок 1.13, в).

Представляя собой теоретическое понятие, источник тока применяется в ряде случаев для расчета электрических цепей.

Некоторым подобием источника тока может служить устройство, состоящее из аккумулятора, соединенного последовательно с дополнительным большим сопротивлением. Другим примером источника тока может являться транзистор, включенный по схеме с общим эмиттером. Имея внутреннее сопротивление, несоизмеримо большее, чем сопротивление внешней электрической цепи, эти устройства отдают ток, почти не зависящий от изменения внешней нагрузки в широких пределах, и именно в этом отношении они аналогичны источнику тока.

Вольт-амперные характеристики идеальных источников напряжения и тока представляются прямыми, параллельными осям i и u (рисунок 1.14, а). Реальные источники электрической энергии по своим вольтамперным характеристикам могут приближаться к идеальным источникам напряжения или тока. Так, например, в значительной части характеристики u = f(i) напряжение на зажимах генератора постоянного тока с независимым возбуждением (обмотка возбуждения питается от постороннего источника), а также ток i генератора постоянного тока с последовательным возбуждением (обмотка возбуждения соединена последовательно с цепью якоря) изменяются незначительно. На рисунке 1.14, б соответствующая часть характеристики показана сплошной линией.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *