Как найти длительно допустимый ток
Перейти к содержимому

Как найти длительно допустимый ток

  • автор:

Выбор сечения кабеля по допустимому длительному току

Чтобы выбрать сечение кабеля, провода или шнура по допустимому длительному току обратимся к ПУЭ (правила устройства электроустановок). Глава 1.3 ПУЭ посвящена выбору проводников по нагреву, экономической плотности тока и по условиям короны. Полный текст главы приводить не будем, а приведем таблицы допустимых длительных токов для проводов, шнуров и кабелей с резиновой или пластмассовой изоляцией (наиболее широко распространенные марки, такие как ПВС, ВВП, ВПП, ППВ, АППВ, ВВГ, АВВГ и др.). Напомним, что при упрощенных расчетах (прокладка кабеля дома) ток нагрузки Iн = суммарная мощность приборов (кВт) / 220 В (например, при суммарной мощности подключаемых приборов в 2,2 кВт, Iн = 2,2 кВт / 220 В = 10 А).

Примечание. Данная статья не является прямым руководством по выбору кабелей, проводов или шнуров, а лишь приводит справочные данные для упрощенных предварительных расчетов. Для выбора кабелей, проводов или шнуров рекомендуем проконсультироваться с техническим специалистом.

Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами

Сечение
токопроводящей
жилы, мм²
Ток, А, для проводов, проложенных
открыто в одной трубе
двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного
0,5 11
0,75 15
1 17 16 15 14 15 14
1,2 20 18 16 15 16 14,5
1,5 23 19 17 16 18 15
2 26 24 22 20 23 19
2,5 30 27 25 25 25 21
3 34 32 28 26 28 24
4 41 38 35 30 32 27
5 46 42 39 34 37 31
6 50 46 42 40 40 34
8 62 54 51 46 48 43
10 80 70 60 50 55 50
16 100 85 80 75 80 70
25 140 115 100 90 100 85
35 170 135 125 115 125 100
50 215 185 170 150 160 135
70 270 225 210 185 195 175
95 330 275 255 225 245 215
120 385 315 290 260 295 250
150 440 360 330
185 510
240 605
300 695
400 830

Таблица 1.3.5. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

Сечение
токопроводящей
жилы, мм²
Ток, А, для проводов, проложенных
открыто в одной трубе
двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного
2 21 19 18 15 17 14
2,5 24 20 19 19 19 16
3 27 24 22 21 22 18
4 32 28 28 23 25 21
5 36 32 30 27 28 24
6 39 36 32 30 31 26
8 46 43 40 37 38 32
10 60 50 47 39 42 38
16 75 60 60 55 60 55
25 105 85 80 70 75 65
35 130 100 95 85 95 75
50 165 140 130 120 125 105
70 210 175 165 140 150 135
95 255 215 200 175 190 165
120 295 245 220 200 230 190
150 340 275 255
185 390
240 465
300 535
400 645

Таблица 1.3.6. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных

Сечение токопроводящей жилы, мм² Ток*, А, для проводов и кабелей
одножильных двухжильных трехжильных
при прокладке
в воздухе в воздухе в земле в воздухе в земле
1,5 23 19 33 19 27
2,5 30 27 44 25 38
4 41 38 55 35 49
6 50 50 70 42 60
10 80 70 105 55 90
16 100 90 135 75 115
25 140 115 175 95 150
35 170 140 210 120 180
50 215 175 265 145 225
70 270 215 320 180 275
95 325 260 385 220 330
120 385 300 445 260 385
150 440 350 505 305 435
185 510 405 570 350 500
240 605
* Токи относятся к проводам и кабелям как с нулевой жилой, так и без нее.

Таблица 1.3.7. Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

Сечение токопроводящей жилы, мм² Ток, А, для кабелей
одножильных двухжильных трехжильных
при прокладке
в воздухе в воздухе в земле в воздухе в земле
2,5 23 21 34 19 29
4 31 29 42 27 38
6 38 38 55 32 46
10 60 55 80 42 70
16 75 70 105 60 90
25 105 90 135 75 115
35 130 105 160 90 140
50 165 135 205 110 175
70 210 165 245 140 210
95 250 200 295 170 255
120 295 230 340 200 295
150 340 270 390 235 335
185 390 310 440 270 385
240 465

Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по табл. 1.3.7, как для трехжильных кабелей, но с коэффициентом 0,92.

В следующей статье мы рассмотрим поправочные коэффициенты, которые необходимо учитывать при выборе сечения кабеля и провода.

Украина, г. Киев, ул. Куренёвская, 18
Выдача товара: ул. Куренёвская, 16-В

0 (800) 33-001-3
(бесплатно с любых номеров по Украине)

Выдача товара (склад)
Пн-Пт: с 9:00 до 17:50

Обработка заказов
Пн-Пт: с 9:00 до 18:00

Карта проезда

Наши страницы в Интернете

PROELECTRO logo

© 2014-2024 Интернет-магазин электротехники 001.com.ua. Использование любых материалов, размещённых на сайте, строго запрещено!

Таблица допустимых токов и нагрузок для кабелей и проводов.

Таблица допустимых токов и нагрузок для кабелей и проводов.

Медный кабель и провод (ПУЭ — Таблица 1.3.6.) Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлориднии, найритовыми или резиновой оболочке, бронированных и небронированных Алюминиевый кабель и провод (ПУЭ — Таблица 1.3.7.) Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

Токовые нагрузки на кабели и провода

Токовые нагрузки, установленные в действующих нормативных документах по использованию кабелей и проводов в электрических сетях, указаны в таблицах 1 — 11. Указанные значения токов приведены для температур окружающего воздуха +25 °С и земли +15 °С для усредненных условий прокладки. В случае необходимости выбора конкретной токовой нагрузки для конкретного типа кабеля или провода и конкретных условий прокладки, необходимо руководствоваться методиками, указанными в стандартах и правилах.

Таблица 1. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с медными жилами, А

Сечение токопроводящей жилы, мм 2 Для проводов, проложенных
открыто в одной трубе
двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного
0,5 11
0,75 15
1 17 16 15 14 15 14
1,5 23 19 17 16 18 15
2,5 30 27 25 25 25 21
4 41 38 35 30 32 27
6 50 46 42 40 40 34
10 80 70 60 50 55 50
16 100 85 80 75 80 70
25 140 115 100 90 100 85
35 170 135 125 115 125 100
50 215 185 170 150 160 135
70 270 225 210 185 195 175
95 330 275 255 225 245 215
120 385 315 290 260 295 250

Таблица 2. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами, А

Сечение токопроводящей жилы, мм 2 Для проводов, проложенных
открыто в одной трубе
двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного
2,5 24 20 19 19 19 16
4 32 28 28 23 25 21
10 60 50 47 39 42 38
16 75 60 60 55 60 55
25 105 85 80 70 75 65
35 130 100 95 85 95 75
50 165 140 130 120 125 105
70 210 175 165 140 150 135
95 255 215 200 175 190 165
120 295 245 220 200 230 190

Таблица 3. Длительно допустимый ток для гибких кабелей и проводов с резиновой изоляцией, А

Сечение токопроводящей жилы, мм 2 Одножильные Двухжильные Трехжильные
0,5 12
0,75 16 14
1,0 18 16
1,5 23 20
2,5 40 33 28
4 50 43 36
6 65 55 45
10 90 75 60
16 120 95 80
25 160 125 105
35 190 150 130
50 235 185 160
70 290 235 200

Таблица 4. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией для электрифицированного транспорта 1, 3 и 4 кВ, А

Сечение токопроводящей жилы, мм 2 Ток Сечение токопроводящей жилы, мм 2 Ток Сечение токопроводящей жилы, мм 2 Ток
1 20 16 115 120 390
1,5 25 25 150 150 445
2,5 40 35 185 185 505
4 50 50 230 240 590
6 65 70 285 300 670
10 90 95 340 350 745

Таблица 5. Допустимый длительный ток для кабелей с медными жилами с бумажной пропитанной изоляцией на низкое напряжение в свинцовой оболочке, прокладываемых в земле, А

Сечение токопроводящей жилы, мм 2 Для кабелей
одножильных до 1 кВ двухжильных до 1 кВ трехжильных напряжением, кВ четырехжильных до 1 кВ
доЗ 6 10
6 80 70
10 140 105 95 80 85
16 175 140 120 105 95 115
25 235 185 160 135 120 150
35 285 225 190 160 150 175
50 360 270 235 200 180 215
70 440 325 285 245 215 265
95 520 380 340 295 265 310
120 595 435 390 340 310 350
150 675 500 435 390 355 395
185 755 490 440 400 450
240 880 570 510 460
300 1000
400 1220
500 1400
625 1520
800 1700

Таблица 6. Допустимый длительный ток для кабелей с медными жилами с бумажной пропитанной изоляцией на низкое напряжение в свинцовой оболочке, прокладываемой в воздухе, А

Сечение токопроводящей жилы, мм 2 Для кабелей
одножильных до 1 кВ двухжильных до 1 кВ трехжильных напряжением, кВ четырехжильных до 1 кВ
до 3 6 10
6 55 45
10 95 75 60 55 60
16 120 95 80 65 60 80
25 160 130 105 90 85 100
35 200 150 125 110 105 120
50 245 185 155 145 135 145
70 305 225 200 175 165 185
95 360 275 245 215 200 215
120 415 320 285 250 240 260
150 470 375 330 290 270 300
185 525 375 325 305 340
240 610 430 375 350
300 720
400 880
500 1020
625 1180
800 1400

Таблица 7. Допустимый длительный ток для кабелей с алюминиевыми жилами с бумажной пропитанной изоляцией на низкое напряжение в свинцовой оболочке, прокладываемых в земле, А

Сечение токопроводящей жилы, мм 2 Для кабелей
одножильных до 1 кВ двухжильных до 1 кВ трехжильных напряжением, кВ четырехжильных до 1 кВ
до 3 6 10
6 60 55
10 110 80 75 60 65
16 135 110 90 80 75 90
25 180 140 125 105 90 115
35 220 175 145 125 115 135
50 275 210 180 155 140 165
70 340 250 220 190 165 200
95 400 290 260 225 205 240
120 460 335 300 260 240 270
150 520 385 335 300 275 305
185 580 380 340 310 345
240 675 440 390 355
300 770
400 940
500 1080
625 1170
800 1310

Таблица 8. Допустимый длительный ток для кабелей с алюминиевыми жилами с бумажной пропитанной изоляцией на низкое напряжение в свинцовой оболочке, прокладываемых в воздухе, А

Сечение токопроводящеи жилы, мм 2 Для кабелей
одножильных до 1 кВ двухжильных до 1 кВ трехжильных напряжением, кВ четырехжильных до 1 кВ
до З 6 10
6 42 35
10 75 55 46 42 45
16 90 75 60 50 46 60
25 125 100 80 70 65 75
35 155 115 95 85 80 95
50 190 140 120 110 105 110
70 235 175 155 135 130 140
95 275 210 190 165 155 165
120 320 245 220 190 185 200
150 360 290 255 225 210 230
185 405 290 250 235 260
240 470 330 290 270
300 555
400 675
500 785
625 910
800 1080

Таблица 9. Допустимый длительный ток для кабелей с медными жилами с пластмассовой изоляцией на напряжение до 3 кВ, А

Номинальное сечение жилы, мм 2 Одножильных Двухжильных Трехжильных
на воздухе в земле на воздухе в земле на воздухе в земле
1,5 29 32 24 33 21 28
2,5 40 42 33 44 28 37
4 53 54 44 56 37 48
6 67 67 56 71 49 58
10 91 89 75 94 66 77
16 121 116 101 123 87 100
25 160 148 134 157 115 130
35 197 178 166 190 141 158
50 247 217 208 230 177 192
70 318 265 226 237
95 386 314 274 280
120 450 358 321 321
150 521 406 370 363
185 594 455 421 406
240 704 525 499 468

Таблица 10. Допустимый длительный ток для кабелей с алюминиевыми жилами с пластмассовой изоляцией на напряжение до 3 кВ, А

Номинальное сечение жилы, мм 2 Одножильных Двухжильных Трехжильных
на воздухе в земле на воздухе в земле на воздухе в земле
2,5 30 32 25 33 21 28
4 40 41 34 43 29 37
6 51 52 43 54 37 44
10 69 68 58 72 50 59
16 93 83 77 94 67 77
25 122 113 103 120 88 100
35 151 136 127 145 109 121
50 189 166 159 176 136 147
70 233 200 167 178
95 284 237 204 212
120 330 269 236 241
150 380 305 273 274
185 436 343 313 308
240 515 396 369 355

Таблица 11. Допустимый длительный ток для кабелей с пластмассовой изоляцией на напряжение 6 кВ, А

Номинальное сечение жилы, мм 2 С алюминиевой жилой С медной жилой
на воздухе в земле на воздухе в земле
10 50 55 65 70
16 65 70 85 92
25 85 90 110 122
5 105 110 135 147
50 125 130 165 175
70 155 160 210 215
95 190 195 255 260
120 220 220 300 295
150 250 250 335 335
185 290 285 285 380
240 345 335 460 445

В случае, если Вы не нашли информации по интересующей Вас продукции, обращайтесь на форум и Вы непременно получите ответ на поставленный вопрос. Либо воспользуйтесь формой для обращения к администрации портала.

Для справки: Раздел «Справочник» на сайте RusCable.Ru предназначен исключительно для ознакомительных целей. Справочник составлен путём выборки данных из открытых источников, а также благодаря информации, поступающей от заводов-изготовителей кабельной продукции. Раздел постоянно наполняется новыми данными, а также совершенствуется для удобства в использовании.

Список использованной литературы:

Электрические кабели, провода и шнуры.
Справочник. 5-е издание, переработанное и дополненное. Авторы: Н.И.Белоруссов, А.Е.Саакян, А.И.Яковлева. Под редакцией Н.И.Белоруссова.
(М.: Энергоатомиздат, 1987, 1988)

«Кабели оптические. Заводы-изготовители. Общие сведения. Конструкции, оборудование, техническая документация, сертификаты»
Авторы: Ларин Юрий Тимофеевич, Ильин Анатолий Александрович, Нестерко Виктория Александровна
Год издания 2007. Издательство ООО «Престиж».

Справочник «Кабели, провода и шнуры».
Издательство ВНИИКП в семи томах 2002 год.

Кабели, провода и материалы для кабельной индустрии: Технический справочник.
Сост. и редактирование: Кузенев В.Ю., Крехова О.В.
М.: Издательство «Нефть и газ», 1999

Кабельные изделия. Справочник
Автор: Алиев И.И., издание 2-е, 2004

Монтаж и ремонт кабельных линий. Справочник электромонтажника
Под редакцией А.Д. Смирнова, Б.А. Соколова, А.Н. Трифонова
2-е издание, переработанное и дополненное, Москва, Энергоатомиздат, 1990

Как найти длительно допустимый ток

Звезда активнаЗвезда активнаЗвезда активнаЗвезда активнаЗвезда активна

Длительно допустимый ток

Для того чтобы определить, какие параметры оказывают влияние на длительно допустимый ток кабеля, следует для начала рассмотреть происходящие в условиях протекания электрического тока переходные тепловые процессы. Как известно, после включения тока происходит постепенное повышение температуры проводника, причем, в определенный момент времени нарастание тепловых показателей прекращается.

В результате температура стабилизируется. Но как только ток будет отключен, температура начнет спадать до исходных значений.

Как этот процесс проистекает и какие факторы оказывают на его влияние? Прежде всего, выделяющееся в проводнике тепло при включении тока направлено непосредственно на нагрев самого проводника. Это и является первопричиной роста температуры, что, в свою очередь, связанно с теплоемкостью материала.

От чего зависит длительно допустимый ток кабеля

В процессе роста температуры между проводником и окружающей средой увеличивается разность температурных показателей. В связи с этим в определенный момент часть выделяемого тепла тратится на нагрев окружающей среды. В момент достижения температуры проводника установившегося стабильного значения окружающей среде начинает передаваться уже все выделяющееся тепло. Вместе с этим проводник перестает нагреваться.

Длительно допустимый ток

Итак, какое же значение следует присвоить длительно допустимому току для проводника или кабеля? Очевидно, каждый проводник или кабель обладает собственной нормальной длительной температурой, в соответствии с указанными в документации данными. При этой температуре кабель или провод может функционировать непрерывно долго, без риска нанести вред себе или окружающей среде.

 Таблица длительно допустимых токов

Известно, что значению такой температуры соответствует определенное значение тока, который и называют длительно допустимым током проводника. При прохождении по проводнику силы тока с таким значением он будет нагреваться не выше рабочей температуры, т. е. такой, что является безопасной, как дл самого кабеля, так и для окружающей среды.

Если же возникает короткое замыкание, через проводник протекает ток короткого замыкания, под воздействием которого температура достигает критических значений. Поэтому при выборе проводника необходимо рассчитывать его сечение таким образом, чтобы он был способен выдержать кратковременное превышение нормальной температуры.

Влияние сечения кабеля на длительно допустимый ток

Изменение значений длительно допустимого тока вовсе не прямо пропорционально изменениям сечения проводника. Напротив, по сравнению с площадью поперченного сечения кабеля его длительно допустимый ток возрастает гораздо медленнее. Что касается остальных констант, которые должны быть известны при расчете длительно допустимого тока (удельное сопротивление, коэффициент теплопередачи и допустимая температура), то они индивидуальны для каждого проводника.

Практика лишь подтверждает вышеприведенное суждение: зависимость длительно допустимого тока от сечения проводника не может быть прямой. Ведь с увеличением сечения условия охлаждения внутренних слоев материала только ухудшаются. В связи с этим для достижения допустимой температуры приходится прикладывать ток меньшей плотности.

Учитывая сказанное, применение проводников увеличенного сечения с целью предотвращения перегрева крайне не рационально, поскольку такое решение приведет к значительному перерасходу материала. Более целесообразно использовать сочетание определенного количества параллельно уложенных проводников небольшого сечения. Именно в таком исполнении представлены многожильные провода.

Изменение длительно допустимого тока при отличии внешних и расчетных условий

В процессе прокладки в различных условиях (место и температура прокладки) может возникнуть необходимость в корректировке предельно допустимого тока. В этом случае принято использовать поправочный коэффициент, на который домножается длительно допустимый ток в соответствии с известными условиями.

Если внешние условия отличаются от расчетных

Если несколько проводников прокладываются параллельно и располагаются очень близко друг к другу, возникнет эффект взаимного подогрева. Однако это возможно только в том случае, когда внешняя среда неподвижна. В реальных же условиях воздух или вода находятся в процессе постоянного движения, за счет чего, проводники постоянно охлаждаются.

При создании условий с действительно неподвижной внешней средой, к примеру, когда кабель прокладывают в трубе под землей, из-за взаимного подогрева значение длительно допустимого тока снижается. В данном случае также потребуется коррекция с использованием поправочного коэффициента, данные о котором содержатся в документации к проводам и кабелям.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *