Как проверить конденсатор самым простым, дешевым мультиметром
Как проверить обычным мультиметром исправность конденсатора?
Итак, у вас есть проблема — нужно проверить исправность конденсатора, но подходящего измерительного прибора с функцией измерения емкости под рукой нет. Что же делать? Бежать в магазин и купить нужный мультиметр? Если вы будете постоянно иметь дело с измерением емкости и проверкой конденсаторов, такой шаг будет более чем оправдан, но для разовой, простой проверки подойдет и обычный, самый простой прибор.
Так что давайте узнаем, как можно проверить работоспособность конденсатора с помощью данного измерительного прибора, который вообще не имеет функции измерения емкости конденсаторов. Единственный недостаток этого способа — измерение емкости конденсатора таким способом просто невозможно.
Так что же нужно делать?
Начнем проверку. Представим, что вы уже разобрали прибор или устройство на котором нужно проверить конденсаторы, или же они и вовсе отпаяны. С последними работать будет даже проще. Но если конденсаторы нужно только проверить, лучше не выпаивать их с устройства. Особенно если сомневаетесь, что получится их выпаять и припаять на место.
- Итак, включаем мультиметр в режим измерения сопротивления. При этом выставляем самый высокий предел.
- Неважно, выпаян конденсатор или находится на плате — главное подключить щупы к выводам конденсатора. Но некоторые радиолюбители советуют отпаять хотя бы одну ножку конденсатора, чтобы устранить «паразитные помехи» прочих компонентов сети.
- Теперь наблюдаем за показаниями. На экране устройства вы увидите, что сопротивление конденсатора постепенно возрастает. Если это так — конденсатор исправен.
Как это работает?
Когда конденсатор набирает заряд его сопротивление, соответственно, растет. Если вы наблюдаете рост сопротивления, значит, конденсатор заряжается. При измерении сопротивления мультиметры подают через щупы определенное, фиксированное напряжение. Именно оно и заряжает конденсатор. Если сопротивление остается постоянным — конденсатор пробит и не набирает заряд.
Для такой вот проверки конденсатора годиться любая модель, которая может измерять сопротивление. Это может быть как универсальный цифровой прибор, так и простой, аналоговый измеритель. Но вот снимать данные простым, аналоговым инструментом интереснее.
- Аналоговый мультиметр должен быть включен в режим измерения сопротивления. Можно выбрать средний диапазон.
- Как и в случае с цифровым, дотроньтесь щупами к контактам конденсатора.
- Наблюдайте за стрелкой. Она будет до определенного момента ползти вверх, а потом падать назад. Если это происходит, значит, конденсатор заряжается и разряжается.
Как видите, все достаточно просто!
Стоит заметить, что мультиметры не смогут измерить емкость конденсатора. Хотя в большинстве случаев достаточно просто проверить работоспособность компонента.
Проверка пленочного конденсатора на исправность
022 мф на 630 v если подключить одним концом к фазе 220v а между вторым концом и 0 включить вольтметр на переменый ток У меня показывает напряжение 0 — правильно ли я понимаю что конденсатор умер?
Дополнен 11 лет назад
Сопротивление бесконечно, а цепь запитанная через конденсатор показывает 0. По моему мнению что если на одной обкладке 220~ относительно ноля то и на 2 должно быть 220~ с отставанием по фазе. Те стандартная работа неполярного конденсатора в переменной цепи.
Лучший ответ
Если вольтметр, подключенный в розетку без конденсатора, показывает 220, а с конденсатором 0, то конденсатор помер. В компьютерных блоках питания на входе стоят конденсаторы с ёмкостью 1500 — 2200 пФ, и то при незаземлённом корпусе показывается напряжение около 110 вольт.
Лучше проверить свой вольтметр с каким-нибудь другим конденсатором близкого номинала.
Остальные ответы
У конденсатора есть 2 вида «смерти» — инфаркт и инсульт, прошу прощения — обрыв и пробой.
Обрыв (редко) — нарушение контакта между выводами (выводом) и обкладками конденсатора.
Пробой (чаще) — нарушение целостности изоляции между обкладками конденсатора.
Обрыв определить просто — сунул в розетку, если в нем появился заряд ( есть искра при замыкании)
значит конденсатор «жив». Если мегомметром прозвонить — покажет бесконечность.
Пробой — если вставишь в розетку — вылетят пробки. Так что лучше прозвонить тестером — сопротивление
будет небольшим (для конденсатора) — от килоомов до единиц мегомов.
А вольтметр ваш естественно ничего не покажет (он не преднозначен для измерения тока) .
Для таких целей не заменим стрелочный тестер, ставим измерение на 1, или 10 килоом, и проверяем конденсатор, при касании выводов, стрелка слегка уйдет вправо и встанет на бесконечность. Это значит конденсатор исправен, он получил заряд от прибора, и замыкания у него нет.
Тем кто мучается с такими проблемами рекомендую преобрести мультиметр с измерением емкости конденсаторов до 200 мкф.
Как проверить конденсаторы. Обучающее видео
Конденсатор — элемент, способный запасать в себе энергию. Этот элемент состоит из металлических пластинок, присоединенных к внешним выводам, и непроводящему слою диэлектрика между ними. Его основное назначение — быстро запасти определенный заряд, а потом быстро его отдать в нагрузку.
Поскольку основное назначение конденсатора — запасать энергию, характеристика, которая за это отвечает — емкость. Чем больше емкость, тем больше энергии «поместится» в конденсатор.
Вторая главная характеристика — максимальное допустимое напряжение. Она показывает, сколько вольт можно максимально подать на конденсатор. Если прикладываемое напряжение значительно меньше допустимого — ничего страшного и даже хорошо, срок службы конденсатора увеличится. Если же напряжение в цепи больше, чем допускает конденсатор — большой риск его электрического пробоя, после чего внутри получится короткое замыкание.
Чем меньше расстояние между пластинками конденсатора, тем больше получается его емкость. Но при этом маленькое расстояние хуже противостоит большому напряжению. Поэтому, например, электролитические конденсаторы одного размера могут быть либо большой емкости, но для небольшого напряжения, либо с маленькой емкостью, но большим допустимым напряжением.
Еще одна немаловажная характеристика — внутреннее сопротивление конденсатора. Оно же ESR (Equivalent series resistance — Эквивалентное последовательное сопротивление). Схематически это выглядит так: любой физический конденсатор на схеме можно нарисовать как идеальный конденсатор и последовательно с ним резистор, величина которого и есть внутренним сопротивлением, ESR. Любой конденсатор обладает внутренним сопротивлением из-за материалов изготовления, сопротивления своих обложек и других факторов). От этого значения зависит максимальный отдаваемый ток, скорость разряда, эффективность подавления помех, нагрев самого конденсатора в процессе работы. Чем этот параметр меньше — тем лучше.
Рассмотрим основные типы существующих конденсаторов:
Электролитические. За счет жидкого электролита внутри они обладают большой емкостью. Но при этом плохо работают на больших частотах, и обладают важным свойством — полярностью. То есть у них есть плюс и минус. Если перепутать полярность питания — электролит начнет кипеть, расширяться и в итоге разорвет конденсатор.
Отдельно выделяются низкоимпедансные, или Low ESR модели. Это электролитические конденсаторы с уменьшенным внутренним сопротивлением, о котором мы вспомнили ранее. Керамические, которые в свою очередь делятся на однослойные дисковые и многослойные. Первые обычно рассчитаны на высокие напряжения, вторые имеют бОльшую емкость. У них между обложками расположена керамическая пластинка-изолятор. За счет этого при маленьких размерах можно добиться довольно большой емкости и допустимого напряжения. Хорошо работают в качестве помехоподавляющих, однако емкость сильно зависит от температуры и прикладываемого напряжения.
Пленочные. В них роль изолятора играет слюдяная, полипропиленовая, полистирольная или другая эластичная пленка. Самые распространенные благодаря своей универсальности и надежности.
Аудиоконденсаторы (Hi-End) — пленочного типа, разрабатываются специально для применения в аудиоаппаратуре. Имеют минимальное внутреннее сопротивление и не искажают звуковые сигналы, благодаря этому передают чистый, максимально качественный звук. Такие конденсаторы являются неотъемлемой частью дорогой Hi-Fi аппаратуры.
Танталовые. Уникальны из-за того, что обладают свойством самовосстанавливаться после пробоя и других негативных воздействий, очень долго сохраняют работоспособность и не теряют свойств. (картинка)
Пусковые. В общем случае это пленочные конденсаторы, а называются так, потому что используются для запуска и работы трехфазных электрических двигателей.
Как проверить, рабочий ли конденсатор?
Базовую работоспособность можно проверить с помощью мультиметра. Для полной проверки, включая внутреннее сопротивление, понадобится ESR-метр.
При проверке исправности конденсатора сначала можно измерить его сопротивление. Нужно установить самый большой предел измерений. Сопротивление должно постепенно увеличиваться, и в итоге достигнуть бесконечности. Если оно остановилось на каком-то значении — у конденсатора большой ток утечки, что свидетельствует либо о его плохом качестве, либо о повреждении диэлектрика (пробое). Такой конденсатор использовать нельзя. Кстати, нагляднее всего это делать на аналоговом мультиметре, хотя и цифровой тоже подходит.
Если сопротивление конденсатора равно нулю — внутри него короткое замыкание, что тоже есть явной поломкой.
Если ваш мультиметр имеет функцию измерения емкости — можно более детально изучить состояние конденсатора. Если емкость значительно больше, чем заявленная — расстояние между обложками где-то уменьшилось, например, вследствии механического воздействия. А значит, уменьшилось и допустимое напряжение конденсатора. Такой конденсатор хоть и можно дальше использовать, но лучше заменить.
Если емкость меньше, чем должна быть — это тоже чревато ухудшением свойств конденсатора. В случае с электролитическими это означает, что внутри них «высох» электролит, и они уже не обладают нужными свойствами, хуже держат заряд и имеют высокое внутреннее сопротивление. Проверить какой-то конденсатор прямо на плате, как правило, проблематично и часто невозможно, потому что другие компоненты вокруг него сильно влияют на результаты замеров.
Но по внешнему виду тоже можно найти проблему. Чаще всего проблемы возникают в электролитах. Достаточно поискать конденсаторы со вздувшимся верхом — их без сомнений нужно заменять. Верхушка вздувается из-за того, что электролит либо улетучивается сам по себе и расширяется, либо он сильно нагревается в процессе работы, кипит и превращается в газ.
Дальше стоит «прозвонить» все конденсаторы. Если где-то мультиметр показывает короткое замыкание, а по схеме его не должно быть — стоит перестраховаться и выпаять конденсатор, проверив его отдельно.
В этом видео мы рассказали вам основные свойства конденсаторов, их применение и методы быстрой проверки. Надеемся, вы узнали что-то новое и полезное для себя.
Большой выбор конденсаторов в нашем интернет-магазине позволяет вам подобрать любую модель для замены вышедшей из строя или для проектирования разных самодельных конструкций.
А все актуальные ценовые предложения, акции и специальные цены вы можете первыми узнавать на канале Electronoff в Telegram.
Как проверить конденсатор мультиметром на работоспособность
Перед тем, как проверить конденсатор мультиметром (или прозвонить конденсатор мультиметром или тестером) на работоспособность, рекомендуется выполнить тщательный визуальный осмотр устройства.
Такое мероприятие позволяет выявить наиболее частые причины выхода конденсатора из строя.
Типы транзисторов
Стандартные современные транзисторы отличаются структурой, принципом действия и основными параметрами, в соответствии с которыми они могут быть представлены:
- Биполярными устройствами, которые отличаются наличием трёх слоёв в виде «базы», «коллектора» и «эмиттера». Полупроводниковый материал отвечает за протекание тока исключительно в одном направлении, определяемым видом перехода. Характерной особенностью данного типа транзистора является подача в базу токов незначительной величины.
- Полевыми или униполярными устройствами, которые отличаются наличием трёх выводов в виде «затвора», «стока» и «истока». Показатели сопротивления зоны проводника напрямую зависят от уровня напряжения, прилагаемого к затворной части. В соответствии с проводимостью кристалла выпускаются устройства, имеющие p-канал и n-канал.
Электрические или электронные компоненты, представленные конденсатором, в отличие от транзисторов включают в себя пару проводниковых обкладок, разделенных диэлектрическим слоем.
Существует огромное количество разновидностей конденсаторных приборов, которые, чаще всего, различаются материалом обкладок и видовыми особенностями диэлектрика:
- бумажного и металлобумажного типа;
- электролитические разновидности;
- полимерного или пленочного типа;
- керамического типа;
- с наличием диэлектрика воздушного типа.
Кроме всего прочего, конденсаторные устройства могут быть полярными и неполярными. Второй вариант используется для обеспечения периодического, непродолжительного включения в цепь с переменными токовыми показателями. Полярные электролитические конденсаторы обладают значительно меньшими размерами, чем неполярные устройства с аналогичной емкостью.
Если все транзисторы отвечают за протекание тока в соответствии с управляющим сигналом, то конденсаторы накапливают и затем отдают электрический ток, поэтому часто применяются для выравнивания скачков напряжения.
Проверка конденсатора мультиметром в режиме омметра
Возникновение основных проблем с аппаратурой электронного типа предполагает решение вопроса, связанного с тестированием работоспособности конденсаторного устройства.
Простой визуальный осмотр такого элемента не позволяет получить максимально точные результаты, поэтому актуальной является проверка работы конденсатора при помощи мультиметра.
Проверка конденсатора — подключение к мультиметру
Наиболее доступным и удобным способом тестирования неисправного конденсаторного устройства является использование мультиметра с выставленным режимом омметра.
Варистор применяется для предохранения электроприборов от поломки в результате скачков напряжения. Иногда нужно проверить, работает ли сам варистор. Как проверить варистор мультиметром и расшифровать результат.
Схемы разных типов энергосберегающих ламп представлены в этой теме.
Схема подключения дросселя для ламп дневного света представлена тут.
Как проверить неполярный конденсатор мультиметром
Стандартные устройство неполярного типа выглядит аналогично обычному электролитическому конденсаторному элементу, но для такого вида прибора полярность напряжения не является важной. Такие конденсаторные элементы устанавливаются в схемах, имеющих переменный или пульсирующий ток.
Отличить неполярное устройство можно при визуальном осмотре: на корпусе отсутствием маркировка полярности.
Технология проведения тестирования конденсатора неполярного типа в режиме омметра следующая:
- переключение мультиметра в режим замера показателей сопротивления;
- установка максимальных пределов из возможно допустимых показателей;
- подключение измерительных щупов на выводы тестируемого конденсаторного устройства;
- замер при помощи прибора уровня сопротивления утечки.
Работоспособные кондиционеры не показывают никаких значений, поэтому на дисплее высвечивается единица, свидетельствующая о сопротивлении утечки выше 2.0 мегаом. Фиксация измерительным прибором сопротивления ниже 2.0 мегаом свидетельствует о большой утечке.
Важно помнить, что держать двумя руками конденсаторные выводов и металлические щупы измерительного прибора категорически запрещается, так как в этом случае будут получены некорректные данные тестирования.
Проверка полярного конденсатора
К категории конденсаторных устройств полярного типа относятся электролитические элементы, которые по сравнению с неполярными приборами, подвержены достаточно быстрому процессу старения. При подаче избыточного напряжения устройство может взрываться. Чтобы избежать подобной проблемы, в процессе изготовления на крышку корпуса наносится несколько специальных насечек.
Тестирование полярных конденсаторных элементов электролитического типа посредством омметра имеет несколько важных отличий. Показатели стандартного сопротивления утечки конденсаторного устройства полярного типа, как правило, составляют 100 килoOм или более, поэтому перед выполнением проверки, элемент требуется разрядить, замыкая выводы накоротко. В противном случае значительно возрастает риск поломки измерительного прибора.
Проверка полярного конденсатора
Технология проведения тестирования конденсатора полярного типа в режиме омметра следующая:
- переключение мультиметра в режим замера показателей сопротивления;
- установка предела измерения уровня сопротивления на показатели 200К (200000 Ом);
- фиксация щупов на выводы с соблюдением полярности;
- измерение прибором уровня сопротивления утечки.
Вне зависимости от модельных особенностей, все разновидности современных конденсаторов электролитического типа обладают достаточно большой емкостью, поэтому в процессе выполнения проверки происходит стандартная подзарядка устройства.
Продолжительность такого процесса составляет всего несколько секунд. При этом отмечается рост изначального уровня сопротивления, который сопровождается увеличением цифровых показателей на дисплее.
Исправность проверяемых устройств оценивается по значениям замеряемого мультиметром сопротивления. Если показатели равны 100 килоОм или более, то конденсатор полярного типа исправен и не потребует замены.
Как проверить пленочный конденсатор мультиметром
Основные неисправности пленочных устройств могут быть представлены:
- пожением номинальных показателей емкости в процессе высыхания;
- превышением заданных значений тока утечки;
- повышением потерь активного типа внутри цепи;
- появлением короткого замыкания на обкладках;
- утерей контакта или обрывом.
Выполненные на разные пределы напряжения пленочные устройства могут применяться не только в цепях с постоянными показателями тока, но и внутри фильтров или стандартных резонансных схем.
Емкость и работоспособность конденсатора
Проверка устройства на исправность выполняется мультиметром, установленным на режим тестирования ёмкости. В стрелочных моделях тестеров отслеживается уровень отклонения стрелки или «скачок» с возвратом на «0».
В этом случае можно предположить наличие пробоя, который часто является основной причиной короткого замыкания в цепи. При достаточно легком отклонении стрелки, не достигающей показателей «∞», диагностируется токовая утечка при недостаточной емкости элемента.
Неэффективная работоспособность прибора с малым уровнем мощности при токовой утечке не позволяет устройству реализовать свой потенциал на 100%, поэтому использование такой модели конденсаторного элемента является нецелесообразным.
Пробой конденсатора
Конденсаторный пробой – один из основных вариантов нарушения работоспособности устройства. Пробой является достаточно распространённым типом поломки, и напрямую связан с выраженными изменениями в показателях сопротивления диэлектрика, который располагается между конденсаторными обкладками. Чаще всего подобная ситуация возникает при ощутимом превышении уровня рабочего напряжения.
Вздутие и разгерметизация конденсатора
Корпус устройства с пробоем характеризуется наличием очень хорошо заметных потемнений и вздутий, а также появлением тёмных пятен или различных деформаций. Не пропускающий постоянный электрический ток конденсатор имеет очень высокие показатели сопротивления между обкладками, а ограничение, в этом случае, представлено только так называемым уровнем сопротивления утечки.
Реальные конденсаторы обладают изолятором в виде диэлектрика, пропускающего незначительные электрические токи, и именно такой тип тока носит называние «ток утечки».
Перед тем, как проверить напряжение в розетке мультиметром, необходимо ознакомиться с правилами использования оборудования, предназначенного для выполнения тестирования.
Как проверить диод мультиметром, читайте тут и действуйте предложенной схеме.
Заключение
Работающий в штатном режиме электронный элемент пассивного типа способен в процессе аккумуляции некоторого количества энергии накапливать и отдавать заряд.
Сбои в работе устройства определяются не только по внешним признакам, но и посредством применения мультиметра в режим измерения показателей сопротивления.
Именно тестирование измерительным прибором позволяет максимально точно определить неисправность и решить вопрос о необходимости замены пришедшего в негодность элемента.