Что представляет собой синхронный генератор
Задача генератора – преобразование механической вырабатываемой энергии в электрическую. Работа его двигателя основана на следующем принципе: топливо впрыскивается в цилиндр двигателя и, сгорая, трансформируется в газообразную смесь, которая расширяется и выталкивает поршень. Тот, в свою очередь, заставляет двигаться коленчатый вал, а он уже вращает ведущий. Чем больше поршней, тем быстрее скорость вращения вала. На этой стадии и происходит выработка механической энергии, преобразовываемой в электричество по закону Фарадея.
Устройство генератора
В основу любого генератора заложены два элемента:
- статор – неподвижная деталь, состоящая из медных обмоток, уложенных в пазы вокруг сердечника, представляющего собой комплект пластин из мягкой стали. В однофазном генераторе – одна обмотка, в трехфазном − три;
- ротор – вращающаяся часть, включает механизм образования магнитного поля. В бытовых генераторах обычно применяется двухполюсный ротор. Обмотка соединяется с питающим ее блоком управления (AVR) посредством двух щеточных узлов. Ротор в совокупности с обмоткой составляют индуктор.
В синхронном агрегате частота вращения, которую создает статор магнитного поля, совпадает с частотой роторного вращения.
Принцип работы
Синхронный генератор функционирует следующим образом: магнитное поле при вращении ротора пересекает статорные обмотки, чем возбуждает в них переменное напряжение. Когда подключается нагрузка в виде потребителей, в цепи появляется переменный ток. От скорости, с которой вращается ротор, непосредственно зависит напряжение, частота тока.
Электронагрузка на синхронный агрегат прямо пропорциональна нагрузке на вал двигателя, что способно повлечь изменение частоты вращения ротора, показателя напряжения. Избежать колебаний помогает блок управления, который в автоматическом режиме регулирует ток в обмотке ротора путем влияния на магнитное поле. В асинхронном генераторе электрическая связь с ротором отсутствует, поэтому параметры напряжения и тока искусственно не регулируются.
Преимущества синхронного генератора
Основным преимуществом является стабильность выходного напряжения. У асинхронных аппаратов данный показатель может существенно колебаться.
Синхронный генератор не боится повышенной нагрузки, создаваемой при подключении его во время работы энергоемкого потребителя (нагрузка переходного режима), поскольку сам является источником реактивной мощности. Асинхронные генераторы для этого снабжаются пусковыми конденсаторами.
Синхронный генератор не слишком восприимчив к перегрузкам в процессе работы благодаря системе авторегулирования.
Щеточные и бесщеточные
Щетки представляют собой скользящие контакты − токосъемы, которые прижаты к коллектору. От их качества напрямую зависит вырабатываемое напряжение. Длительная работа при больших перегрузках приводит к «выгоранию» щеток. После замены необходим небольшой период «обкатки», прежде чем подавать полную нагрузку на генератор. Наиболее долговечны и устойчивы к перегрузкам медно-графитовые щетки.
Синхронный генератор может быть бесщеточным при условии, что ток в роторе создается магнитным полем, исходящим от основной, а также от дополнительной статорной обмотки (либо только от дополнительной). То есть схема альтернатора более сложная, чем у щеточных. Преимуществом является отсутствие необходимости замены угольных компонентов (в некоторых моделях – каждые 100 часов работы), а также нет пыли от их износа, которая часто является причиной электрических пробоев.
Выбор в пользу синхронного генератора следует делать, если потребители требовательны к качеству выходного тока. Например, такой тип подойдет для обеспечения резервной электроэнергией загородного дома, где установлены различные типы чувствительных приборов.
Синхронные машины — двигатели, генераторы и компенсаторы
Синхронные машины – это электрические машины переменного тока, в которых ротор и магнитное поле токов статора вращаются синхронно.
Синхронный генератор является основной электрической машиной, генерирующей в электрических системах как активную, так и реактивную мощность.
В качестве двигателя синхронная машина также имеет весьма широкую область применения. Естественно, что при разнообразии условий работы синхронной машины в нормальных и ненормальных режимах, а также в переходных процессах развитию ее теории придается большое значение.
Важнейшими вопросами, связанными с обеспечением надежности работы синхронной машины в эксплуатации, являются:
- поведение синхронной машины в асинхронных режимах;
- устойчивость работы синхронной машины;
- поведение синхронной машины в несимметричных режимах;
- регулирование возбуждения синхронной машины;
- работа синхронной машины на сеть соизмеримой мощности.
Трехфазные синхронные генераторы – самые мощные электрические машины. Единичная мощность — синхронных генераторов на ГЭС — 640 МВт, а на ТЭС – 8 — 1200 МВт.
У синхронной машины одна из обмоток присоединена к электрической сети переменного тока, а вторая — возбуждается постоянным током. Обмотку переменного тока называют якорной.
Обмотка якоря преобразует всю электромагнитную мощность синхронной машины в электрическую и наоборот. Поэтому ее обычно располагают на статоре, который называют якорем.
Обмотка возбуждения потребляет 0,3 — 2% от преобразуемой мощности, поэтому ее располагают обычно на вращающемся роторе, который называют индуктором и малую мощность возбуждения подводят через контактные кольца или устройства бесконтактного возбуждения.
Магнитное поле якоря вращается с синхронной скоростью n1 = 60f1/p, об/мин,
где p =1,2,3 . 64 и т.д. — число пар полюсов.
При частоте промышленной сети f1 = 50 гц, ряд синхронных скоростей при различных числах полюсов: 3000, 1500, 1000 и т.д.). Так как магнитное поле индуктора неподвижно относительно ротора, то для непрерывного взаимодействия полей индуктора и якоря ротор должен вращаться с той же синхронной скоростью.
Конструкция синхронных машин
Статор синхронной машины с трехфазной обмоткой не отличается от конструкции статора асинхронной машины, а ротор с обмоткой возбуждения бывает двух видов — явнополюсный и неявнополюсный.
При больших скоростях и малом числе полюсов применяют неявнополюсные роторы, как имеющие более прочную конструкцию, а при малых скоростях и большом числе полюсов применяют явнополюсные роторы сборной конструкции. Прочность таких роторов меньше, но они проще в изготовлении и в ремонте.
Явнополюсный ротор:
Применяются в синхронных машинах с большим числом полюсов и соответственно относительно низкой n. ГЭС (гидрогенераторы) — частота n от 60 до нескольких сотен об/мин.
Самые мощные гидрогенераторы имеют диаметр ротора — 12 м при длине – 2,5 м, p – 42 и n= 143 об/мин.
Неявнополюсный ротор:
Обмотка — в пазах ротора диаметр d = 1,2 – 1,3 м, активная длина ротора не более 6,5 м. ТЭС, АЭС (турбогенераторы). S = 500 000 кВА в одной машине n = 3000 или 1500 об/мин (1 или 2 пары полюсов).
Кроме обмотки возбуждения на роторе располагают демпферную или успокоительную обмотку, которую в синхронных двигателях используют для запуска.
Эту обмотку выполняют аналогично короткозамкнутой обмотке типа «беличья клетка», только значительно меньшего сечения, так как основной объем ротора занимает обмотка возбуждения. В неявнополюсных роторах роль демпферной обмотки выполняют поверхности сплошных зубцов ротора и токопроводящие клинья в пазах.
Постоянный ток в обмотку возбуждения синхронной машины может подаваться от специального генератора постоянного тока, установленного на валу машины и называемого возбудителем, или от сети через полупроводниковый выпрямитель.
Смотрите также по этой теме:
Назначение и устройство синхронных машин
Синхронная машина может работать генератором или двигателем. Синхронная машина может работать в качестве двигателя, если подвести к обмотке ее статора трехфазный ток из сети. В этом случае в результате взаимодействия магнитных полей статора и ротора поле статора увлекает за собой ротор. При этом ротор вращается в ту же сторону и с такой же скоростью, как и поле статора.
Наибольшее распространение получил генераторный режим работы синхронных машин, и почти вся электроэнергия вырабатывается синхронными генераторами. Синхронные двигатели применяются при мощности более 600 кВт и до 1 кВт как микродвигатели. Синхронные генераторы на напряжение до 1000 В применяются в агрегатах для автономных систем электроснабжения.
Агрегаты с этими генераторами могут быть стационарными и передвижными. Большинство агрегатов применяются с дизельными двигателями, но приводом их могут быть газовые турбины, электродвигатели и бензиновые двигатели.
Синхронный двигатель отличается от синхронного генератора лишь пусковой успокоительной обмоткой, которая должна обеспечивать хорошие пусковые свойства двигателя.
Схема шестиполюсного синхронного генератора. Показаны сечения обмоток одной фазы (три обмотки, соединенные последовательно). В показанные на рисунке свободные пазы укладываются обмотки двух других фаз. Фазы соединяются в звезду или треугольник.
Режим генератора: двигатель (турбина) вращает ротор, на обмотку которого подается постоянное напряжение и возникает ток, создающий постоянное магнитное поле. Магнитное поле вращается вместе с ротором, пересекает статорные обмотки и наводит в них одинаковые по модулю и частоте ЭДС, но сдвинутые на 1200 (симметричная трехфазная система).
Режим двигателя: обмотку статора подключают к трёхфазной сети, а обмотку ротора к источнику постоянного тока. В результате взаимодействия вращающегося магнитного поля машины с постоянным током обмотки возбуждения, возникает вращающий момент Мвр, который приводит ротор во вращение со скоростью магнитного поля.
Механическая характеристика синхронного двигателя – зависимость n(M)– представляет собой горизонтальный отрезок прямой.
Учебный диафильм — «Синхронные двигатели», созданный фабрикой учебно-наглядных пособий в 1966-году.
Посмотреть его можно здесь: Диафильм «Синхронный двигатель»
Применение синхронных двигателей
Массовое использование асинхронных двигателей с существенными недогрузками осложняет работу энергетических систем и станций: снижается коэффициент мощности в системе, что приводит к дополнительным потерям во всех аппаратах и линиях, а также и к их недоиспользованию по активной мощности. Поэтому возникла необходимость в применении синхронных двигателей, особенно для механизмов с приводами большой мощности.
Синхронные двигатели имеют по сравнению с асинхронными большое преимущество, заключающееся в том, что благодаря возбуждению постоянным током они могут работать с cos фи = 1 и не потребляют при этом реактивной мощности из сети, а при работе, с перевозбуждением даже отдают реактивную мощность в сеть. В результате улучшается коэффициент мощности сети и уменьшаются падение напряжения и потери в ней, а также повышается коэффициент мощности генераторов, работающих на электростанциях.
Максимальный момент синхронного двигателя пропорционален U, а у асинхронного двигателя U 2 .
Поэтому при понижении напряжения синхронный двигатель сохраняет большую нагрузочную способность. Кроме того, использование возможности увеличения тока возбуждения синхронных двигателей позволяет увеличивать их надежность работы при аварийных понижениях напряжения в сети и улучшать в этих случаях условия работы энергосистемы в целом.
Вследствие большей величины воздушного зазора добавочные потери в стали и в клетке ротора синхронных двигателей меньше, чем у асинхронных, благодаря чему к. п. д. синхронных двигателей обычно выше.
С другой стороны, конструкция синхронных двигателей сложнее, чем короткозамкнутых асинхронных двигателей, и, кроме того, синхронные двигатели должны иметь возбудитель или иное устройство для питания обмотки возбуждения постоянным током. Вследствие этого синхронные двигатели в большинстве случаев дороже асинхронных двигателей с короткозамкнутым ротором.
При эксплуатации синхронных двигателей возникли существенные трудности с их пуском. В настоящее время эти трудности преодолены.
Пуск и регулирование скорости вращения синхронных двигателей также сложнее. Тем не менее преимущество синхронных двигателей настолько велико, что при больших мощностях их целесообразно применять всюду, где не требуется частых пусков и остановок и регулирования скорости вращения (двигатель-генераторы, мощные насосы, вентиляторы, компрессоры, мельницы, дробилки и пр.).
Синхронные компенсаторы
Синхронные компенсаторы предназначаются для компенсации коэффициента мощности сети и поддержания нормального уровня напряжения сети в районах сосредоточения потребительских нагрузок. Нормальным являемся перевозбужденный режим работы синхронного компенсатора, когда он отдает в сеть реактивную мощность.
В связи с этим компенсаторы, как и служащие для этих же целей батареи конденсаторов, устанавливаемые на потребительских подстанциях, называют также генераторами реактивной мощности. Однако в периоды спада потребительских нагрузок (например, ночью) нередко возникает необходимость работы синхронных компенсаторов также в недовозбужденном режиме, когда они потребляют из сети индуктивный ток и реактивную мощность, так как в этих случаях напряжение сети стремится возрасти и для поддержания его на нормальном уровне необходимо загрузить сеть индуктивными токами, вызывающими в ней дополнительные падения напряжения.
Для этого каждый синхронный компенсатор снабжается автоматическим регулятором возбуждения или напряжения, который регулирует величину его тока возбуждения так, что напряжение на зажимах компенсатора остается постоянным.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Устройство синхронного генератора переменного тока
Синхронный генератор переменного тока – агрегат, предназначенный для преобразования любого вида энергии, чаще всего механической, в электрическую. В таких электромашинах магнитное поле токов якорной обмотки вращается синхронно с ротором. Может быть одно- или трехфазным, работать самостоятельно, а также параллельно с другими генераторами или централизованной электросетью. Используется режиме как генератора, так и двигателя. Такие аппараты востребованы на предприятиях энергетического комплекса, в транспортной сфере, на объектах производственного назначения.
Конструктивные особенности синхронного генератора
Конструкция синхронных машин может быть разной, но в нее обязательно входят:
- Ротор. Вращающийся узел, образуемый системой вращающихся электромагнитов, которые питаются постоянным электротоком, поступающим от наружных источников. Магниты имеют зубчатую конфигурацию. Роторы могут быть явнополюсными, используемыми в низкоскоростных машинах, и неявнополюсными, востребованными для высокоскоростных моделей.
- Статор. Неподвижный узел, состоящий из сердечника, который набирается из листов электротехнической стали, и обмотки. Витки статорной обмотки равномерно распределены по окружности. В однофазных моделях присутствует одна обмотка, в трехфазных – три, соединяемые по схемам «звезда» или «треугольник».
Принцип работы синхронного электрогенератора
Один из вариантов рабочей схемы синхронной машины переменного тока:
- Механическая энергия от бензинового или дизельного ДВС передается к ротору, что провоцирует вращение поля электромагнита.
- В статорной обмотке генерируется одно- или трехфазное переменное напряжение, величина которого зависит от скорости вращения ротора.
- Блок управления осуществляет автоматическую регулировку электрических параметров генерируемого переменного тока посредством обратной связи.
В синхронных машинах применяют два способа возбуждения: электромагнитное и постоянными магнитами.
Трехфазный СГ может работать в режиме электрогенератора или мотора. В первом случае на входе будет механическая (или другая) энергия, во втором – электрическая энергия будет входящей, а механическая – выходящей.
Виды синхронных генераторов переменного тока
Тип электромашины выбирают в зависимости от запланированной области использования:
- Импульсные. Востребованы для механизмов, работающих импульсном режиме, или для оборудования, функционирующего в стабильном рабочем режиме, но с импульсным руководящим сигналом.
- Безредукторные. Подходят для автономных систем.
- Бесконтактные. Выполняют функции электростанций на водных судах.
- Гистерезисные. Устанавливаются в системах автоматизированного управления, инерционных электроприводах, временных счетчиках.
Области использования синхронных генераторов переменного тока
Такие электромашины при работе в условиях высоких и меняющихся нагрузок эффективно синхронизируются с другим энергооборудованием. Это свойство позволяет в часы пик подключать резервные генераторы.
Синхронные электрогенераторы востребованы:
- в тепловозах и других транспортных системах, в этом случае электромашины работают в комплексе с выпрямителями на полупроводниках;
- на мощных ГЭС, ТЭС, АЭС, мобильных электростанциях;
- на гибридных автомобилях.
СГ могут выполнять функции электромоторов мощностью выше 50 кВт.
В каких случаях используют синхронные электрогенераторы переменного тока
СГ эффективны при:
- высоких требованиям к стабильности напряжения и частоты электротока;
- при большой вероятности возникновения перегрузок у потребителей с реактивной мощностью;
- при вероятности перегрузов, возникающих в рабочем режиме при подключении активных и реактивных нагрузок.
Преимущества применения СГ
Синхронные генераторы широко используются, благодаря комплексу преимуществ, среди которых:
- устойчивость к перегрузкам в сети и КЗ;
- более высокое качество генерируемой электроэнергии, по сравнению с асинхронными машинами, что позволяет использовать СГ для питания дорогостоящего оборудования;
- наличие автоматических регуляторов электрических параметров и выпрямителей, которые отключают электропитание при возникновении аварийных ситуаций.
Современные синхронные генераторы изготавливаются в соответствии с требованиями мировых стандартов качества.
Устройство и принцип работы синхронного генератора
Синхронный генератор – агрегат, назначением которого является преобразование любой энергии (тепловой, солнечной, механической) в электрическую. Отличается простым принципом работы и надежным конструктивным исполнением. Особенность – вращение ротора и магнитного поля статора с одинаковой частотой. СГ с мощностью до нескольких тысяч мегаватт используются практически на всех типах электростанций во всем мире. Агрегаты обратимы, они могут как работать электрогенераторами, так и выполнять функции электромоторов.
Особенности конструкции синхронных генераторов
В устройство синхронных генераторов входят следующие компоненты: статор, ротор, обмотки, система охлаждения.
Статор
Статор – неподвижная часть, состоящая из корпуса и сердечника, собираемого из тонких листов. Между собой листы разделяются изоляционными материалами, например, лаковыми составами. В пазы сердечника укладывается трехфазная обмотка. Качество генерируемого электротока зависит от того, какие листы используются в сердечнике, – цельные или сборные.
Статор имеет вид цельного или набранного из сегментов цилиндра. Статоры мощных машин состоят из двух частей, которые можно разделить вдоль оси ротора. Такой конструктивный вариант облегчает транспортировку, установку, монтаж СГ.
В моделях с самовозбуждением присутствует обмотка возбуждения статора. В дорогих системах ее изготавливают из медного эмаль-провода, в более дешевых – из алюминиевого проводника. В бесщеточных СГ обмотки статора расположены таким образом, что их сердечники совпадают с выступами магнитных полюсов ротора. Электроток снимается непосредственно со статорных обмоток.
В мощных электромашинах всегда устанавливаются только обмотки с независимым возбуждением. Для их электропитания востребованы генераторы постоянного электротока невысокой мощности.
Ротор
Ротор – вращающаяся часть СГ, в которой располагается сердечник с обмоткой возбуждения или магниты. Роторы изготавливаются явно и неявнополюсными. Устройства первого типа востребованы в синхронных машинах, совмещенных с ДВС с низкочастотным валом. В генераторах высокой мощности и частоты устанавливаются роторы второго типа, часто монтируемые на одном валу с паровыми турбинами. СГ такой конструкции называют турбогенераторами.
Система охлаждения
Тепло от статора и ротора отводят с помощью систем охлаждения. В электромашинах невысокой мощности эта проблема решается с помощью вентиляторов. В крупных устройствах предусмотрена водородная система охлаждения.
Преимущества и недостатки синхронных генераторов
Популярность синхронным генераторам обеспечивают следующие технические характеристики:
- возможность поддерживать постоянное напряжение на выходе;
- возможность синхронной работы нескольких синхронных машин, что позволяет оперативно повышать мощность в часы пик подключением резервных генераторов;
- низкая чувствительность к коротким замыканиям;
- возможность управлять загрузкой СГ.
К минусам этого технического решения относят:
- ненадежность щеточного узла (есть и бесщеточные конструкции);
- сложность конструктивных элементов;
- в крупных электромашинах – дорогое обслуживание.
Виды синхронных генераторов
В соответствии с конструктивным исполнением СГ разделяют на типы:
- Гидрогенераторы. В их конструкции предусмотрены роторы с выраженными полюсами. Востребованы в ситуациях, не требующих высоких оборотов.
- Турбогенераторы. В таких агрегатах выраженные полюса отсутствуют. Машины, собранные из нескольких турбин, значительно повышают число оборотов ротора.
- Синхронные компенсаторы. Востребованы на производственных объектах для получения качественного электротока и стабилизации напряжения.
Синхронные генераторы могут работать в режиме электромоторов: на входе присутствует электроэнергия, на выходе – механическая энергия. Обмотка статора подсоединяется к централизованной сати электроснабжения, а ротора – к источнику постоянного электротока. Синхронные электромоторы обычно используются в электроустановках с мощностью более 50 кВт.
Принцип работы СГ
В синхронной электромашины, используемой в режиме электрогенератора, первичной является механическая энергия, вращающая вал.
Принцип работы синхронного генератора переменного тока:
- Первичный двигатель вращает ротор-индуктор. Магнитное поле вращается вместе с ротором, что и обеспечило название такой электрической машине.
- При вращении ротора магнитный поток пересекает статорную обмотку, в результате чего в ней по закону электромагнитной индукции наводится ЭДС. Индуктированная ЭДС прямо пропорциональна магнитному полю электромашины и скорости вращения ротора. Частота переменного тока напрямую зависит от частоты вращения ротора.
- При необходимости параметры магнитной индукции установкой дополнительных реостатов или электронных блоков.
Где применяются синхронные генераторы переменного тока
Трехфазные СГ востребованы в:
- транспортных средствах, переменный ток выпрямляют в полупроводниковых блоках;
- строительстве – на площадках, где отсутствует центральное электроснабжение или его параметры не соответствуют запланированным задачам;
- местах ведения геологоразведочных и добывающих работ;
- мощных ГЭС и ТЭС, мобильных станциях и на объектах атомной энергетики;
- гибридных автомобилях, в этом случае в ТС устанавливают ДВС и синхронный электромотор.
СГ могут использоваться и в других областях, в которых требуются постоянные параметры напряжения и тока на выходе, устойчивость к перегрузам при подключении нагрузок с активной и реактивной мощностью.