Большая Энциклопедия Нефти и Газа
Пусковые свойства асинхронных двигателей характеризуются начальным пусковым и максимальным моментами и начальным пусковым током. В двигателях с фазными роторами начальный момент и пусковой ток определяются сопротивлением пускового реостата. [1]
Пусковые свойства асинхронных двигателей с контактными кольцами зависят от сопротивления пускового реостата, включаемого в цепь обмотки ротора, поэтому кратности Ми / Мп и / ш / Лн в каталогах не приводятся. [3]
Пусковые свойства асинхронного двигателя определяются особенностями его конструкции, в частности устройством ротора. [4]
Пусковые свойства асинхронного двигателя определяются зависимостями вращающего момента и тока от частоты вращения. Эти характеристики определяют и другие показатели: длительность пуска, потери энергии в обмотках и, следовательно, их нагрев. Для уменьшения длительности пуска, потерь энергии в обмотках двигателя и их нагрева стремятся к увеличению пускового момента и снижению пускового тока. [5]
Начальный пусковой момент Мпуск характеризует пусковые свойства асинхронного двигателя . [6]
Коэффициент качества пуска у может характеризовать пусковые свойства асинхронных двигателей . Однако большое значение коэффициента у может оказаться у двигателя с недостаточно высокими энергетическими показателями. [7]
Как было отмечено ранее, коэффициент качества пуска у [ см. формулу (3.48) ] может характеризовать пусковые свойства асинхронных двигателей . Однако большое значение коэффициента у может оказаться у двигателя с недостаточно высокими энергетическими показателями. [8]
17. Укажите, какими показателями характеризуются пусковые свойства асинхронных двигателей. Приведите схему и объясните способ пуска асинхронного двигателя с фазным ротором.
Пусковые свойства асинхронного двигателя оцениваются следующими пусковыми характеристиками:
а) величиной пускового тока Iп или его кратностью Iп/Iн;
б) величиной пускового момента Мп или его кратностью Мп/Мн;
в) продолжительностью и плавностью пуска двигателя в ход;
г) сложностью пусковой операции;
д) экономичностью пусковой операции (стоимость и надежность пусковой аппаратуры).
Реостатный пуск. Пуск двигателей с фазным ротором производится с помощью пускового реостата в цепи ротора. Применяются проволочные, с литыми чугунными элементами, а также жидкостные реостаты. По условиям нагрева реостаты рассчитываются на кратковременную работу.
С увеличением активного сопротивления ротора растет пусковой момент. Это свойство положено в основу пуска асинхронных двигателей с фазным ротором. Схема пуска двигателя показана на рис.1, а, процесс разгона — на рис.1, б.
На схеме пусковой реостат состоит из двух секций. Сопротивление пускового реостата Rп подбирается такое, чтобы пусковой момент был близок к максимальному (кривая 3 на рис.1, б). Пуск двигателя начинается при полностью введенном пусковом сопротивлении (контакты 1 и 2 на рис.1, а разомкнуты). Двигатель разгоняется до частоты, соответствующей скольжению S1. В этот момент замыкаются контакты 2, и в цепи ротора оказывается только одна секция пускового сопротивления, что соответствует характеристике 2, и двигатель продолжает разгоняться до частоты, определяемой скольжением S2. Когда все контакты замкнутся, они отключат пусковой реостат, и двигатель «выйдет» на естественную характеристику. На рис.1, а показан пусковой реостат, состоящий из двух секций. В общем случае количество секций может быть больше.
Пусковые характеристики асинхронного, двигателя при реостатном пуске наиболее благоприятны, так как высокие значения моментов достигаются при невысоких значениях пусковых токов. К сожалению, для асинхронных двигателей с короткозамкнутым ротором такой пуск нево
18. Приведите схемы и объясните способы пуска асинхронного двигателя с короткозамкнутым ротором.
Различают следующие способы пуска в ход асинхронных двигателей с короткозамкнутым ротором: прямое включение в цепь, реакторный, автотрансформаторный, с переключением звезды на треугольник.
Рис. 1 — Схемы способов пуска двигателей с короткозамкнутым ротором: а — прямой; б — реакторный; в —автотрансформаторный; г — с переключением со звезды на треугольник.
Прямой пуск. При прямом пуске двигатель подключается к сети без пусковых устройств. Благодаря своей простоте он является одним из основных способов пуска трехфазных асинхронных двигателей с короткозамкнутым ротором.
Двигатели малой и средней мощности спроектированы на прямой пуск. Пусковой момент их составляет 100-130% от номинального, а пусковой ток превышает номинальный в 4-7 раз. Длительность пуска составляет доли секунд у двигателей небольшой мощности и несколько секунд у более мощных двигателей. Обмотки двигателей при этом не успевают нагреться, а крепления обмоток рассчитаны на динамические усилия, возникающие при пуске.
Прямой пуск всегда возможен, когда сеть достаточно мощна и пусковые токи двигателей не вызывают недопустимо больших падений напряжения в сети (не более 10-15%).
Если по условиям падения напряжения в сети прямой пуск двигателя с короткозамкнутым ротором невозможен, применяются различные способы пуска двигателя при пониженном напряжении (рис. 1. б, в и г). Однако при этом пропорционально квадрату напряжения на зажимах обмотки статора или квадрату пускового тока двигателя понижается также пусковой момент, что является недостатком пуска при пониженном напряжении, Поэтому эти способы пуска применимы, когда возможен пуск двигателя на х.х. или под неполной нагрузкой. Необходимость пуска при пониженном напряжении встречается чаще всего у мощных высоковольтных двигателей.
Реакторный пуск осуществляется согласно, схеме (рис. 1.б). Сначала включается выключатель В1, и двигатель получает питание через трехфазный реактор (реактивную или индуктивную катушку) Р, сопротивление которого хр ограничивает величину пускового тока. По достижении нормальной скорости вращения включается выключатель В2, который шунтирует реактор, в результате чего на двигатель подается нормальное напряжение сети.
Пусковые реакторы строятся обычно с ферромагнитным сердечником и рассчитываются по нагреву только на кратковременную работу, что позволяет снизить их вес и стоимость. Для весьма мощных двигателей применяются также реакторы без ферромагнитного сердечника, с обмотками, укрепленными на бетонном каркасе. Выключатель В1 выбирается на такую отключающую мощность, которая позволяет отключить двигатель при глухом коротком замыкании за выключателем, а выключатель В2 может иметь низкую отключающую мощность.
Автотрансформаторный пуск осуществляется по схеме (рис. 1.в) в следующем порядке. Сначала включается выключатели В1 и В2, и на двигатель через автотрансформаторе Г подается пониженное напряжение. После достижения двигателем определенной скорости выключатель В2 отключается, и двигатель получает питание через часть обмотки автотрансформатора AT, который в этом случае работает как реактор. Наконец включается выключатель ВЗ, в результате чего двигатель получает полное напряжение.
Выключатель В1 должен быть выбран на отключающую мощность при коротком замыкании, а выключатели В2 и ВЗ могут иметь, меньшие отключающие мощности. Пусковые автотрансформаторы рассчитываются на кратковременную работу. Согласно ГССТ 3211 46, пусковые автотрансформаторы должны иметь ответвления, соответствующие величинам вторичного напряжения, равным 73, 64 и 55% от первичного при прямой схеме включения и 45, 36 и 27% при обратной схеме включения. В каждом конкретном случае выбирается подходящая ступень напряжения.
Пуск переключением «звезда — треугольник» (рис. 1,г) может применяться в случаях, когда выведены все шесть концов обмотки статора и двигатель нормально работает с соединением обмотки статора в треугольник, например, когда двигатель на 380/220 Вис соединением обмоток Y/Δ работает от сети 220 В. В этом случае при пуске обмотка статора включается в звезду (нижнее положение переключателя П на рис. 1.г) а при достижении нормальной скорости вращения переключается в треугольник (верхнее положение переключателя П на рис. 1.г).
Недостатком этого способа пуска по сравнению с реакторным и автотрансформаторным является то, что при пусковых переключениях цепь двигателя разрывается, что связано с возникновением коммутационных перенапряжений. Этот способ ранее широко применялся при пуске низковольтных двигателей, однако с увеличением мощности сетей потерял свое прежнее значение и в настоящее время используется сравнительно редко.
Вопрос 46. Пусковые свойства асинхронных двигателей. Пуск двигателя с фазным ротором. Схема и процесс пуска.
Пусковые свойства двигателя определяются в первую очередь значением пускового тока Iп или его кратностью Iп/ Iном и значением пускового момента Мп или его кратностью Мп/Мном. Двигатель, обладающий хорошими пусковыми свойствами, развивает значительный пусковой момент при сравнительно небольшом пусковом токе. Однако получение такого сочетания пусковых параметров в асинхронном двигателе сопряжено с определенными трудностями. В начальный момент пуска скольжение s = 1, поэтому, пренебрегая током х.х., пусковой ток можно определить подставив s = 1:
Iп = U1/.
Пусковой момент по
Mп =
Улучшить пусковые свойства двигателя можно увеличением активного сопротивления цепи ротора r2‘, так как в этом случае уменьшение пускового тока сопровождается увеличением пускового момента. В то же время напряжение U1 по-разному влияет на пусковые параметры двигателя: с уменьшением U1 пусковой ток уменьшается, что благоприятно влияет на пусковые свойства двигателя, но одновременно уменьшается пусковой момент. Целесообразность применения того или иного способа улучшения пусковых свойств двигателя определяется конкретными условиями эксплуатации двигателя и требованиями, которые предъявляются к его пусковым свойствам. Помимо пусковых значений тока Iп и момента Мп пусковые свойства двигателей оцениваются еще и такими показателями: продолжительность и плавность пуска, сложность пусковой операции, ее экономичность (стоимость и надежность пусковой аппаратуры и потерь энергии в ней).
Пуск двигателя с фазным ротором.
Наличие контактных колец у двигателей с фазным ротором позволяет подключить к обмотке ротора пусковой реостат. При этом активное сопротивление цепи ротора увеличивается до значения R2 = r2‘ + rд‘, где rд‘ — электрическое сопротивление пускового реостата, приведенное к обмотке статора. При выборе сопротивления пускового реостата rдоб исходят из условий пуска двигателя: если двигатель включают при значительном нагрузочном моменте на валу, сопротивление пускового реостата rдо6 выбирают таким, чтобы обеспечить наибольший пусковой момент; если же двигатель включают при небольшом нагрузочном моменте на валу, когда пусковой момент не имеет решающего значения для пуска, оказывается целесообразным сопротивление ПР rдоб выбирать несколько больше значения, соответствующего наибольшему пусковому моменту. В этом случае пусковой момент оказывается несколько меньшим наибольшего значения М п.mах, но зато пусковой ток значительно уменьшается.
Вопрос 47. Пуск асинхронных двигателей с короткозамкнутым ротором. Различные способы пуска, их схемы, достоинства и недостатки.
Пуск непосредственным включением в сеть. Этот способ пуска, отличаясь простотой, имеет существенный недостаток: в момент подключения двигателя к сети в обмотке статора возникает большой пусковой ток, в 5—7 раз превышающий номинальный ток двигателя. При небольшой инерционности исполнительного механизма частота вращения двигателя быстро достигает установившегося значения и пусковой ток также быстро спадает, не вызывая перегрева обмотки статора. Но такой значительный бросок тока в питающей сети может вызвать в ней заметное падение напряжения. Однако этот способ пуска благодаря своей простоте получил наибольшее применение для двигателей мощностью до 38—50 кВт и более (при достаточном сечении жил токоподводящего кабеля). При необходимости уменьшения пускового тока двигателя применяют какой-либо из способов пуска короткозамкнутых двигателей при пониженном напряжении.
Схема непосредственного включения в сеть (а) и графики изменения тока и момента при пуске (б) асинхронного двигателя с короткозамкнутым ротором
Пуск при пониженном напряжении.
Пусковой ток двигателя пропорционален подведенному напряжению U1, уменьшение которого вызывает соответствующее уменьшение пускового тока.
Для асинхронных двигателей, работающих при соединении обмоток статора треугольником, можно применить пуск переключением обмотки статора со звезды на треугольник. В момент подключения двигателя к сети переключатель ставят в положение «звезда», при котором обмотка статора оказывается соединенной в звезду. При этом фазное напряжение на статоре понижается в раз. Во столько же раз уменьшается и ток в фазных обмотках двигателя. Кроме того, при соединении обмоток звездой линейный ток равен фазному, в то время как при соединении этих же обмоток треугольником линейный ток больше фазного в раз. Следовательно, переключив обмотки статора звездой, мы добиваемся уменьшения линейного тока в () 2 = 3 раза. После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, переключатель быстро переводят в положение «треугольник» и фазные обмотки двигателя оказываются под номинальным напряжением.
Рассмотренный способ пуска имеет существенный недостаток — уменьшение фазного напряжения в раз сопровождается уменьшением пускового момента в три раза, так как, согласно (13.19), пусковой момент асинхронного двигателя прямо пропорционален квадрату напряжения U1. Такое значительное уменьшение пускового момента не позволяет применять этот способ пуска для двигателей, включаемых в сеть при значительной нагрузке на валу.
Схема включения (а) и графики изменения момента и тока (фазного) при пуске (б) асинхронного двигателя с короткозамкнутым ротором переключением обмотки статора со звезды на треугольник
Более универсальным является способ с понижением подводимого к двигателю напряжения посредством реакторов (реактивных катушек — дросселей). При разомкнутом рубильнике 2 включают рубильник 7. При этом ток из сети поступает в обмотку статора через реакторы Р, на которых происходит падение напряжения jхр (где хр — индуктивное сопротивление реактора, Ом). В результате на обмотку статора подается пониженное напряжение. После разгона ротора двигателя включают рубильник 2 и подводимое к обмотке статора напряжение оказывается номинальным. Недостаток этого способа пуска состоит в том, что уменьшение напряжения в U / 1/ U1ном раз сопровождается уменьшением пускового момента Мп в (U / 1/ U1ном) 2 раз.
Схемы реакторного (а) и автотрансформаторного (б) способов пуска асинхронных двигателей с короткозамкнутым ротором
При пуске двигателя через понижающий автотрансформатор вначале замыкают рубильник 1, соединяющий обмотки автотрансформатора звездой, а затем включают рубильник 2 и двигатель оказывается подключенным на пониженное напряжение U / 1 . При этом пусковой ток двигателя, измеренный на выходе автотрансформатора, уменьшается в КА раз, где КА — коэффициент трансформации автотрансформатора. Что же касается тока в питающей двигатель сети, т. е. тока на входе автотрансформатора, то он уменьшается в К 2 А раз по сравнению с пусковым током при непосредственном включении двигателя в сеть. Дело в том, что в понижающем автотрансформаторе первичный ток меньше вторичного в КА раз и поэтому уменьшение пускового тока при автотрансформаторном пуске составляет КАКА = К 2 А раз. После первоначального разгона ротора двигателя рубильник 1 размыкают и автотрансформатор превращается в реактор. При этом напряжение на выводах обмотки статора несколько повышается, но все же остается меньше номинального. Включением рубильника 3 на двигатель подается полное напряжение сети. Таким образом, автотрансформаторный пуск проходит тремя ступенями: на первой ступени к двигателю подводится напряжение U1 = (0,50÷0,60)U1ном, на второй — U1 = (0,70÷0,80)U1ном и, наконец, на третьей ступени к двигателю подводится номинальное напряжение U1ном.
Как и предыдущие способы пуска при пониженном напряжении, автотрансформаторный способ пуска сопровождается уменьшением пускового момента, так как значение последнего прямо пропорционально квадрату напряжения. С точки зрения уменьшения пускового тока автотрансформаторный способ пуска лучше реакторного, так как при реакторном пуске пусковой ток в питающей сети уменьшается в U / 1/ U1ном раз, а при автотрансформаторном — в (U / 1/ U1ном) 2 раз.
Вопрос 48. Короткозамкнутые АД с улучшенными пусковыми характеристиками. Двигатель с глубокими пазами пазами на роторе и с двумя клетками на роторе. Конструкция, принцип действия, достоинства и недостатки.
Двигатель с глубокими пазами на роторе. От обычного асинхронного двигателя этот двигатель отличается тем, что у него пазы ротора сделаны в виде узких глубоких щелей, в которые уложены стержни обмотки ротора, представляющие собой узкие полосы. С обеих сторон эти стержни приварены к замыкающим кольцам. Обычно глубокий паз имеет соотношение размеров hп/ bп = 9÷10, где hп, bп — высота и ширина паза.
В момент включения двигателя, когда частота тока в роторе имеет наибольшее значение (f2 = f1), индуктивное сопротивление нижней части каждого стержня значительно больше верхней. Объясняется это тем, что нижняя часть стержня сцеплена с большим числом магнитных силовых линий поля рассеяния. Почти весь ток ротора проходит по верхней части стержня, поперечное сечение которой намного меньше сечения всего стержня. Это равноценно увеличению активного сопротивления стержня ротора, что, как известно, способствует росту пускового момента двигателя и некоторому ограничению пускового тока. Таким образом, двигатель с глубокими пазами на роторе обладает благоприятным соотношением пусковых параметров: большим пусковым моментом при сравнительно небольшом пусковом токе.
Двигатель с двумя клетками на роторе. Еще лучшими пусковыми свойствами обладают асинхронные двигатели с двумя короткозамкнутыми клетками на роторе: рабочей клеткой 1, стержни которой расположены в нижнем слое, и пусковой клеткой 2, стержни которой расположены в верхнем слое, ближе к воздушному зазору.
В момент пуска двигателя ток ротора проходит в основном по верхней (пусковой) клетке, обладающей малым индуктивным сопротивлением. При этом плотность тока в стержнях пусковой клетки намного больше плотности тока в стержнях рабочей клетки. Повышенное активное сопротивление этой клетки обеспечивает двигателю значительный пусковой момент при пониженном пусковом токе. По мере увеличения частоты вращения ротора уменьшается частота тока в роторе, при этом индуктивное сопротивление рабочей клетки уменьшается, и распределение плотности тока в стержнях пусковой и рабочей клеток становится почти одинаковым. В итоге происходит перераспределение вращающего момента между клетками: если в начальный период пуска момент создается главным образом токами пусковой клетки, то по окончании периода пуска вращающий момент создается в основном токами рабочей клетки. Максимальное значение момента пусковой клетки вследствие ее повышенного активного сопротивления смещено в сторону скольжений, близких к единице. Вращающие моменты от обеих клеток направлены в одну сторону, поэтому результирующий момент двигателя равен сумме моментов пусковой Мпк и рабочей Мраб.к клеток М = Мп.к + Мраб.к
Двигатели с двумя клетками на роторе по сравнению с асинхронными двигателями обычной конструкции имеют повышенную стоимость, что объясняется сложностью конструкции.
Пусковой момент асинхронного двигателя
Вращающий момент, развиваемый на валу асинхронного электродвигателя в условиях нулевой скорости вращения ротора (когда ротор еще неподвижен) и установившегося в обмотках статора тока, — называется пусковым моментом асинхронного двигателя.
Пусковой момент иногда называют еще моментом трогания или начальным моментом. При этом подразумевается, что напряжение и частота питающего напряжения приближены к номиналу, причем соединение обмоток выполнено правильно. В номинальном режиме работы данный двигатель будет работать именно так, как предполагали разработчики.
Численное значение пускового момента
Пусковой момент вычисляется по приведенной формуле. В паспорте электродвигателя (паспорт предоставляется производителем) указана кратность пускового момента.
Обычно значение величины кратности лежит в пределах от 1,5 до 6, в зависимости от типа двигателя. И при выборе электродвигателя для своих нужд, важно убедиться, что пусковой момент окажется больше статического момента планируемой проектной нагрузки на валу. Если это условие не соблюсти, то двигатель попросту не сможет развить рабочий момент при вашей нагрузке, то есть не сможет нормально стартонуть и разогнаться до номинальных оборотов.
Давайте рассмотрим еще одну формулу для нахождения пускового момента. Она будет вам полезной для теоретических расчетов. Здесь достаточно знать мощность на валу в киловаттах и номинальные обороты, — все эти данные указаны на табличке (на шильдике). P2-номинальная мощность, F1-номинальные обороты. Итак, вот эта формула:
Для нахождения P2 применяют следующую формулу. Здесь необходимо учесть скольжение, пусковой ток и напряжение питания, все эти данные указаны на шильдике. Как видите, все довольно просто. Из формулы очевидно, что пусковой момент в принципе можно повысить двумя путями: увеличением стартового тока или повышением питающего напряжения.
Попробуем, однако, пойти наиболее простым путем, и рассчитаем значения пусковых моментов для трех двигателей серии АИР. Воспользуемся параметрами кратности пускового момента и величинами номинального момента, то есть пользоваться будем самой первой формулой. Результаты расчетов приведены в таблице:
Тип двигателя | Номинальный момент, Нм | Отношение пускового момента к номинальному моменту | Пусковой момент, Нм |
АИРМ132М2 | 36 | 2,5 | 90 |
АИР180 S2 | 72 | 2 | 144 |
АИР180М2 | 97 | 2,4 | 232,8 |
Роль пускового момента асинхронного электродвигателя (пусковой ток)
Часто двигатели включают напрямую в сеть, осуществляя коммутацию магнитным пускателем: на обмотки подается линейное напряжение, создается вращающееся магнитное поле статора, оборудование начинает работать.
Бросок тока в момент старта в данном случае неизбежен, и он превышает номинальный ток в 5-7 раз, причем длительность превышения зависит от мощности двигателя и от мощности нагрузки: более мощные двигатели стартуют дольше, их обмотки статора дольше принимают токовую перегрузку.
Маломощные двигатели (до 3 кВт) легко переносят данные броски, и сеть так же легко выдерживает эти незначительные кратковременные всплески мощности, ибо у сети всегда есть некоторый мощностный резерв. Вот почему небольшие насосы и вентиляторы, станки и бытовые электроприборы обычно включают напрямую, не заботясь особо о токовых перегрузках. Как правило обмотки статоров двигателей оборудования такого рода соединяются по схеме «звезда» из расчета на трехфазное напряжение 380 вольт или «треугольник» — для 220 вольт.
Если же вы имеете дело с мощным двигателем на 10 и более кВт, то включать напрямую такой двигатель в сеть нельзя. Бросок тока в момент пуска необходимо ограничить, иначе сеть испытает значительную перегрузку, что может привести к опасной «нештатной просадке напряжения».
Пути ограничения пускового тока
Наиболее простой способ ограничения пускового тока — пуск при пониженном напряжении. Обмотки просто переключаются с треугольника на звезду в момент пуска, а затем, когда двигатель набрал какие-то обороты — обратно на треугольник. Переключение осуществляется через несколько секунд после старта с помощью реле времени, например.
В таком решении пусковой момент также понижается, причем зависимость квадратичная: при снижении напряжения в будет в 1,72 раза, момент снизится в 3 раза. По этой причине пуск при пониженном напряжении подходит для такого оборудования, где пуск возможен с минимальной нагрузкой на валу асинхронного двигателя (например пуск многопильного станка).
Мощным нагрузкам, например ленточному конвейеру, необходим другой способ ограничения пускового тока. Здесь лучше подойдет реостатный метод, позволяющий снизить пусковой ток без уменьшения крутящего момента.
Такой способ очень подходит асинхронным двигателям с фазным ротором, где реостат удобно включается в цепь обмотки ротора, и регулировка рабочего тока осуществляется ступенчато, получается очень плавный пуск. С помощью реостата тут же можно регулировать и рабочую скорость двигателя (не только в момент запуска).
Но наиболее эффективным способом безопасного пуска асинхронных двигателей является все же пуск посредством частотного преобразователя. Величину напряжения и частоту регулирует сам преобразователь автоматически, создавая оптимальные условия двигателю. Обороты получаются стабильными, при этом броски тока принципиально исключены.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети: