Начальный модуль упругости бетона в30
Перейти к содержимому

Начальный модуль упругости бетона в30

  • автор:

Модуль (коэффициент) упругости бетона

Главной характеристикой, определяющей прочность бетона, является коэффициент его упругости. Он важен для профессиональных проектировщиков, которые проводят расчеты нагрузочных способностей бетонных конструкций.

Железобетонные строительные конструкции постоянно испытывают большие нагрузки. Это необходимо учитывать еще на этапе их планирования. Поэтому технологами была разработана система придания бетону способности упруго деформироваться под воздействием таких факторов, как давление и сила. Величина, характеризующая данный показатель, получила название модуль упругости бетона.

Модуль упругости бетона — это коэффициент пропорциональности между нормальным напряжением и соответствующей ему относительной продольной упругомгновенной деформацией при σ1=0,3Rпр при осевом сжатии образцов. (ГОСТ 24452-80 Бетоны, Rпр — призменная прочность бетона)

Значение начального модуля упругости тяжелого бетона при сжатии и растяжении приведено в СП 63.13330.2018 Бетонные и железобетонные конструкции. Актуализированная редакция СНиП 52-01-2003.

Таблица

Значения начального модуля упругости бетона при сжатии и растяжении Eb, МПа · 10 -3 , согласно таблицы 6.11 п.6.1.15 СП 63.13330.2018 для тяжелого бетона
B10 B15 B20 B25 B30 B35 B40 B45 B50 B55 B60 B80
19,0 24,0 27,5 30,0 32,5 34,5 36,0 37,0 38,0 39,0 39,5 42,0
Значения в МПа
B10 B12,5 B15 B20 B25 B30 B35 B40 B45 B50 B55 B60 B80
19 000 21 500 24 000 27 500 3 000 32 500 34 500 36 000 37 000 38 000 39 000 39 500 42 000

Определение упругости и единицы измерения

В литературе для профессионалов параметр упругости принято обозначать буквой Е. На его величину влияет действующая нагрузка и структура бетона. За единицу измерения взят паскаль, поскольку напряжение, вызванное в опытном образце действующей на него силой, измеряется в паскалях. На модуль упругости В20 и других видов влияет технология производства, в частности способ твердения: естественный, автоклавный или тепловой обработки. Важную роль играют эксплуатационные характеристики материала.

Поэтому такой показатель, как упругость не одинаковый у одного класса. Например, если рассматривать ячеистые или тяжелые материалы, имеющие одно и то же значение прочности на м2, то величины их модулей будут разные.

От чего зависит упругость бетона

1. СОСТАВ. Бетон с более высоким модулем упругости подвергается меньшей относительной деформации. Значительную роль в этом играет качество цементного камня и наполнителя – двух компонентов, из которых и состоит бетон. И раствор, и заполнитель берут на себя всю нагрузку. При анализе зависимости модуля упругости бетона от модуля упругости его составляющих, исследователи выяснили, что прочность заполнителя не всегда задействуется для улучшения характеристик готового материала, а вот показатель упругости оказывает значительное влияние.

2. КЛАСС. Начальный модуль упругости бетона при сжатии и расширении зависит от класса изделия по прочности на сжатие. Эта зависимость устанавливается путем применения эмпирических формул, поэтому для практических целей проще всего получать информацию из готовой таблицы. Даже без сложных математических расчетов можно заметить, что модуль упругости увеличивается пропорционально прочности материала. Другими словами, чем выше класс, тем больше модуль упругости бетона. Так, у бетона класса В10 величина упругости равна 19, а у В30 она составляет 32,5, т. е. бетон В30 является более устойчивым к относительным деформациям по сравнению с В10.

Расчет модуля упругости

Когда речь идет о модуле упругости, принимают во внимание оба его варианта – динамический и статический. У первого значение выше и определяется в ходе вибрации образца.

Статический модуль, помимо основной информации, предоставляет данные о такой характеристике, как ползучесть бетона – динамика образования деформаций при постоянной нагрузке.

Значения коэффициента ползучести бетона

При расчетах учитывают тождество модулей упругости материала как на растяжение, так и на сжатие. Если материал не имеет армирования, то он не способен к растяжению. Замечено, что если напряжение составляет 0,2 и более максимальной прочности бетона, происходят остаточные деформации. Это приводит к тому, что при сцеплении раствора и наполнителей возникают микротрещины, а это становится причиной крошения и в конечном итоге разрушения.

Во время эксперимента образец подвергают непрерывной нагрузке, имеющей тенденцию к возрастанию, до полного разрушения. Для этого используют особое оборудование – нагружающие установки. В диаграмму вносят данные, показывающие влияние нагрузок на степень деформаций. На завершающем этапе производится расчет среднего модуля упругости всех образцов. С учетом результатов экспериментов строится график, отражающий показатели зависимости прикладываемого воздействия и разрушения опытного образца.

Методика расчета бетонных конструкций содержится в СНиП 52-01-2003, распространяющихся на все строительные бетонные и железобетонные конструкции.

Значения начального модуля упругости бетона

6.1.15 Значения начального модуля упругости бетона при сжатии и растяжении принимают в зависимости от класса бетона по прочности на сжатие В согласно таблице 6.11. Значения модуля сдвига бетона принимают равным 0,4Еb.

При продолжительном действии нагрузки значения модуля деформаций бетона определяют по формуле:

где φb,cr — коэффициент ползучести бетона, принимаемый согласно 6.1.16.

Бетон Значения начального модуля упругости бетона при сжатии и растяжении Eb, МПа × 10 -3 , при классе бетона по прочности на сжатие
В1,5 В2 В2,5 В3,5 В5 В7,5 в10 В12,5 B15 B20 B25 в30 В35 В40 В45 В50 В55 В60 В70 В80 В90 В100
Тяжелый 9,5 13,0 16,0 19,0 21,5 24,0 27,5 30,0 32,5 34,5 36,0 37,0 38,0 39,0 39,5 41,0 42,0 42,5 43
Мелкозернистый групп:
А — естественного твердения 7,0 10 13,5 15,5 17,5 19,5 22,0 24,0 26,0 27,5 28,5
Б — автоклавного твердения 16,5 18,0 19,5 21,0 22,0 23,0 23,5 24,0 24,5 25,0
Легкий и порисованный марки по средней плотности:
D800 4,0 4,5 5,0 5,5
D1000 5,0 5,5 6,3 7,2 8,0 8,4
D1200 6,0 6,7 7,6 8,7 9,5 10,0 10,5
D1400 7,0 7,8 8,8 10,0 11,0 11,7 12,5 13,5 14,5 15,5
D1600 9,0 10,0 11,5 12,5 13,2 14,0 15,5 16,5 17,5 18,0
D1800 11,2 13,0 14,0 14,7 15,5 17,0 18,5 19,5 20,5 21,0
D2000 14,5 16,0 17,0 18,0 19,5 21,0 22,0 23,0 23,5
Ячеистый автоклавного твердения марки по средней плотности:
D500 1,4
D600 1,7 1,8 2,1
D700 1,9 2,2 2,5 2,9
D800 2,9 3,4 4,0
D900 3,8 4,5 5,5
D1000 5,0 6,0 7,0
D1100 6,8 7,9 8,3 8,6
D1200 8,4 8,8 9,3
Примечания

1 Для мелкозернистого бетона группы А, подвергнутого тепловой обработке или при атмосферном давлении, значения начальных модулей упругости бетона следует принимать с коэффициентом 0,89.

2 Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.

3 Для ячеистого бетона неавтоклавного твердения значения Еb принимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.

6.1.16 Значения коэффициента ползучести бетона φb,cr принимают в зависимости от условий окружающей среды (относительной влажности воздуха) и класса бетона. Значения коэффициентов ползучести тяжелого, мелкозернистого и напрягающего бетонов приведены в таблице 6.12.

Значения коэффициента ползучести легких, ячеистых и поризованных бетонов следует принимать по специальным указаниям.

Допускается принимать значения коэффициента ползучести легких бетонов по таблице 6.12 с понижающим коэффициентом (ρ/2200) 2 .

Относительная влажность воздуха окружающей среды, % Значения коэффициента ползучести бетона φb,cr при классе тяжелого бетона на сжатие
В10 В15 В20 В25 взо В35 В40 В45 В50 В55 В60 — В100
Выше 75 2,8 2,4 2,0 1,8 1,6 1,5 1,4 1,3 1,2 1,1 1,0
40 — 75 3,9 3,4 2,8 2,5 2,3 2,1 1,9 1,8 1,6 1,5 1,4
Ниже 40 5,6 4,8 4,0 3,6 3,2 3,0 2,8 2,6 2,4 2,2 2,0
Примечание — Относительную влажность воздуха окружающей среды принимают по СП 131.13330 как среднюю месячную относительную влажность наиболее теплого месяца для района строительства.

Определение модуля упругости бетона

Изделия и конструкции из бетона подвергаются большим нагрузкам, причем этот процесс происходит постоянно. Технологи нашли возможность придать бетону упругость, т. е. способность упруго деформироваться при воздействии давления и силы, направленной на сжатие и расширение. Величина, которая характеризует этот показатель, называется модулем упругости бетона и по определению вычисляется с помощью формулы соотношения напряжения и упругой деформации образца: данные занесены в специальную таблицу.

Нормативные сведения также включают данные о:

  • классе материала,
  • его видах (тяжелый, мелкозернистый, легкий, пористый бетон и т. д:.),
  • технологии производства, в частности способах твердения (естественное, автоклавная или тепловая обработка).

В связи с этим модуль упругости бетона В30 может быть различным и определяться исходя из других характеристик. Если взять в качестве примера тяжелые и ячеистые бетоны одного и того же класса прочности, их модули будут иметь абсолютно разные значения.

Таблица утверждена СНиП и составлена на основе результатов опытных исследований.

Таблица начальных модулей упругости E (МПа*10 -3 ) при сжатии и растяжении бетонов с различными эксплуатационными характеристиками

Классы по прочности на сжатие

Тепловая обработка при атмосферном давлении

Естественное твердение, А-группа

Тепловая обработка при атмосферном давлении

Естественное твердение, Б-группа

Автоклавное твердение, В-группа

Легкие и поризованные

Марка средней плотности, D

Ячеистые автоклавного твердения

Марка средней плотности, D

От чего зависит упругость бетона

1. Состав

Бетон с более высоким модулем упругости подвергается меньшей относительной деформации.

Значительную роль в этом играет качество цементного камня и наполнителя – двух компонентов, из которых и состоит бетон. И раствор, и заполнитель берут на себя всю нагрузку. При анализе зависимости модуля упругости бетона от модуля упругости его составляющих, исследователи выяснили, что прочность заполнителя не всегда задействуется для улучшения характеристик готового материала, а вот показатель упругости оказывает значительное влияние.

2. Класс

Начальный модуль упругости бетона при сжатии и расширении зависит от класса изделия по прочности на сжатие.

Эта зависимость устанавливается путем применения эмпирических формул, поэтому для практических целей проще всего получать информацию из готовой таблицы. Даже без сложных математических расчетов можно заметить, что модуль упругости увеличивается пропорционально прочности материала. Другими словами, чем выше класс, тем больше модуль упругости бетона, т. е. материал класса В25 является более устойчивым к относительным деформациям по сравнению с В20.

Расчет модуля упругости в лабораторных условиях

Когда речь идет о модуле упругости, принимают во внимание оба его варианта – динамический и статический. У первого значение выше и определяется в ходе вибрации образца.

Статический модуль, помимо основной информации, предоставляет данные о такой характеристике, как ползучесть бетона – динамика образования деформаций при постоянной нагрузке.

При расчетах учитывают тождество модулей упругости материала как на растяжение, так и на сжатие. Замечено, что если напряжение составляет 0,2 и более максимальной прочности бетона, происходят остаточные деформации. Это приводит к тому, что при сцеплении раствора и наполнителей возникают микротрещины, а это становится причиной крошения и в конечном итоге разрушения.

Во время эксперимента образец подвергают непрерывной нагрузке, имеющей тенденцию к возрастанию, до полного разрушения. Для этого используют особое оборудование – нагружающие установки. В диаграмму вносят данные, показывающие влияние нагрузок на степень деформаций. На завершающем этапе производится расчет среднего модуля упругости всех образцов.

Популярные теги

Андрей Васильев

Автор: Андрей Васильев

  • Строитель с 20-летним стажем
  • Эксперт завода «Молодой Ударник»

В 1998 году окончил СПбГПУ, учился на кафедре гражданского строительства и прикладной экологии.

Занимается разработкой и внедрением мероприятий по предупреждению выпуска низкокачественной продукции.

Разрабатывает предложения по совершенствованию производства бетона и строительных растворов.

Модуль упругости бетона – как определить

При возведении масштабных бетонных конструкций, еще на этапе планирования необходимо определить возможность бетона противостоять постоянному воздействию высоких нагрузок. Это свойство можно узнать, изучив модель упругости, показывающий способность сохранять целостность застывшей бетонной массы под воздействием деформационных процессов. Данная величина варьируется в зависимости от состава бетона и может меняться под воздействием внешних факторов в процессе эксплуатации сооружения.

От чего зависит модуль упругости бетона

Величина этого показателя в первую очередь зависит от класса бетона – чем он выше, тем больше плотность и сжатие, благодаря которым материал лучше сопротивляется деформации при нагрузках. Модуль упругости бетона В25 находится в пределах 30 Мпа, а самый высокий показатель принадлежит бетону В60 и составляет 39,5 Мпа. Более подробно с этой величиной для каждого класса бетона можно ознакомиться в таблице:

Класс бетона В10 (М150) В15 (М200) В20 (М250) В25 (М350) В30 (М400) В35 (М450) В40 (М550) В45 (М600)
Начальный модуль упругости (МПа) 19 24 27,5 30 32,5 34,5 36 37
Расчетное осевое сопротивление сжатию (Мпа) 6 8,5 11,5 14,5 17,5 19,5 22,5 25
Расчетное осевое сопротивление растяжению (Мпа) 0,56 0,75 0,90 1,05 1,15 1,30 1,40 1,50

Помимо класса бетона, модуль его упругости зависит и от других факторов:

  • Типа заполнителя – из-за неоднородности бетонной смеси в ней возникает сложное напряженное состояние и жесткие частицы воспринимают на себя большую часть нагрузки. Поэтому наибольший показатель модуля будет у бетона, в состав которого входит заполнитель с крупной фракцией.
  • Влажности – чем больше содержится водяного пара в окружающей среде, тем становится ниже начальный модуль упругости бетона В20 и других классов этого строительного материала.
  • Температуры и ультрафиолетового воздействия – при больших температурных колебаниях, превышающих 20℃ и высокой интенсивности солнечной радиации, происходит линейное расширение материала. Это приводит к уменьшению упругости материала и росту деформации.
  • Армирование конструкции – каркасы из древесины, композитов, металлической арматуры, помещенные внутрь бетона, усиливают его упругость и прочность на растяжение и сжатие при изгибе.
  • Возраста – наибольшая твердость и упругость характерна для состава, только через 200-250 дней после заливки бетона.

Методы определения модуля упругости

Для того чтобы понять, как определить модуль упругости, необходимо изучить особенности двух методов, которые используют для получения данного показателя и применяют как в условиях лаборатории, так и в естественной среде:

  • Разрушающего контроля путем механического испытания материала. Для этого используют специальные образцы квадратного или круглого сечения, которые высверливают или выпиливают из готовой бетонной конструкции. Чтобы определить модуль упругости на образцы фиксируют индикаторы и помещают под пресс, постепенно увеличивая нагрузку. Испытания проводят ступенчато с интервалом в 5 минут, доводя усилия до 50% от максимально допустимого значения. На втором этапе механического метода определения данного показателя на образцы воздействуют уже с постоянной скоростью. Данная методика дает наиболее точные результаты с минимальной погрешностью, но требует локального разрушения строительной конструкции.
  • Неразрушающего контроля с применением ультразвукового оборудования. Для этого в бетоне в условиях повышенной влажности, с помощью специального оборудования сравнивают скорость распространения волн в готовой бетонной конструкции и опытных образцах с различной степенью водонасышенности. Данный метод позволяет изучить модуль упругости сохраняя целостность сооружения, но имеет погрешность, которая в зависимости от окружающей среды может составлять 15-75%.

На основе полученных результатов и показателя действующего усилия рассчитывают абсолютную деформацию бетона.

Для этого используется следующая формула: ∆l= σ×l0/EA

Виктор Филонцев

Образование:
НИУ МСГУ, Кафедра Технологии вяжущих веществ и бетонов, 2003.

Опыт работы:
12 лет в сфере производства бетона.

Текущая деятельность:
независимые консультации в сфере строительства.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *