Почему диэлектрики в сильных электрических полях теряют электрическую прочность
Перейти к содержимому

Почему диэлектрики в сильных электрических полях теряют электрическую прочность

  • автор:

Диэлектрики и их свойства, поляризация и пробивная напряженность диэлектриков

Вещества (тела) с ничтожной электропроводностью называются диэлектриками или изоляторами .

Диэлектрики, или непроводники, представляют большой важный для практических целей класс веществ, применяющихся в электротехнике. Они служат для изоляции электрических цепей, а также для сообщения электрическим устройствам особых свойств, позволяющих более полно использовать объем и вес материалов, из которых они изготовлены.

Изоляторы на ВЛ

Диэлектриками могут быть вещества во всех агрегатных состояниях: в газообразном, жидком и твердом. В качестве газообразных диэлектриков в практике используются воздух, углекислота, водород как в нормальном, так и в сжатом состояниях.

Все перечисленные газы имеют практически бесконечно большое сопротивление. Электрические свойства газов изотропны. Из жидких веществ свойствами диэлектрика обладают химически чистая вода, многие органические вещества, естественные и искусственные масла (трансформаторное масло, совол и т. д.).

Жидкие диэлектрики также имеют изотропные свойства. Высокие изоляционные качества этих веществ зависят от чистоты.

Например, изоляционные свойства трансформаторного масла при поглощении из воздуха влаги снижаются. Наиболее широко применяются в практике твердые диэлектрики. К ним относятся вещества неорганического (фарфор, кварц, мрамор, слюда, стекло и т. п.) и органического (бумага, янтарь, резина, различные искусственные органические вещества) происхождения.

Жидкие диэлектрики

Большинство из этих веществ отличаются высокими электрическими и механическими качествами и применяются для изоляции электротехнических устройств, рассчитанных на эксплуатацию внутри помещения и на открытом воздухе.

Ряд веществ сохраняют свои высокие изолирующие свойства не только при нормальной, но и повышенной температуре (кремний, кварц, кремнийорганические соединения). В твердых и жидких диэлектриках имеется некоторое количество свободных электронов, благодаря чему удельное сопротивление хорошего диэлектрика составляет около 10 15 — 10 16 ом х м.

При некоторых условиях в диэлектриках происходит расщепление молекул на ионы (например, под действием высокой температуры или в сильном поле), в этом случае диэлектрики теряют свои изолирующие свойства и становятся проводниками.

Диэлектрики обладают свойством поляризоваться и в них возможно длительное существование электростатического поля.

Отличительной особенностью всех диэлектриков является не только большое сопротивление прохождению электрического тока, определяемое наличием в них небольшого числа электронов, свободно перемещающихся во всем объеме диэлектрика, но и изменение их свойств под действием электрического поля, которое называется поляризацией. Поляризация оказывает большое влияние на электрическое поле в диэлектрике.

Одним из основных примеров применения диэлектриков в электротехнической практике является изоляция элементов электрических устройств от земли и друг от друга, поэтому пробой изоляции нарушает нормальную работу электрических установок, приводит к авариям.
Чтобы избежать этого, при проектировании электрических машин и установок изоляцию отдельных элементов выбирают с таким расчетом, чтобы, с одной стороны, нигде в диэлектриках напряженность поля не превосходила их электрической прочности, и, с другой стороны, чтобы изоляция в отдельных звеньях устройств использовалась возможно более полно (без излишних запасов).
Для этого в первую очередь необходимо знать, как распределяется электрическое поле в устройстве. Тогда подбором соответствующих материалов и их толщины можно удовлетворительно решить указанную выше задачу.

Изоляторы в электроустановках

Если электрическое поле создается в вакууме, то величина и направление вектора напряженности поля в данной точке зависят только от величины и места расположения зарядов, создающих поле. Если же поле создается в каком-либо диэлектрике, то в молекулах последнего, происходят физические процессы, оказывающие влияние на электрическое поле.

Под действием сил электрического поля электроны на орбитах смещаются в направлении, противоположном полю. В результате ранее нейтральные молекулы становятся диполями с равными зарядами ядра и электронов на орбитах. Это явление называется поляризацией диэлектрика . При исчезновении поля исчезает и смещение. Молекулы опять становятся электрически нейтральными.

Поляризованные молекулы — диполи создают свое электрическое поле, направление которого противоположно направлению основного (внешнего) поля, поэтому добавочное поле, складываясь с основным, ослабляет его.

Чем сильнее поляризуется диэлектрик, тем слабее получается результирующее поле, тем меньше становится его напряженность в каждой точке при тех же зарядах, создающих основное поле, а следовательно, диэлектрическая проницаемость такого диэлектрика больше.

Если диэлектрик находится в переменном электрическом поле, то смещение электронов становится также переменным. Этот процесс приводит к усилению движения частиц и, следовательно, к нагреванию диэлектрика.

Чем чаще изменяется электрическое поле, тем сильнее нагревается диэлектрик. На практике это явление используется для нагрева влажных материалов с целью их сушки или получения химических реакций, происходящих при повышенной температуре.

Изоляция электрических машин

Полярные и неполярные диэлектрики

Хотя диэлектрики практически не проводят электричества, тем не менее под действием электрического поля они изменяют свои свойства. В зависимости от строения молекул и характера воздействия на них электрического поля диэлектрики делятся на два вида: неполярные и полярные (с электронной и ориентационной поляризацией).

В неполярных диэлектриках, если они не находятся в электрическом поле, электроны обращаются по орбитам, имеющим центр, совпадающий с центром ядра. Поэтому действие этих электронов можно рассматривать как действие отрицательных зарядов, находящихся в центре ядра. Поскольку в центре ядра сосредоточены и центры действия положительно заряженных частиц — протонов, то во внешнем пространстве атом воспринимается как электрически нейтральный.

При внесении этих веществ в электростатическое поле электроны под влиянием сил поля смещаются и центры действия электронов и протонов не совпадают. Во внешнем пространстве атом в этом случае воспринимается как диполь, т. е. как система двух равных разнозначных точечных зарядов -q и + q, находящихся друг от друга на некотором малом расстоянии а, равном смещению центра орбиты электронов относительно центра ядра.

В такой системе положительный заряд оказывается смещенным в направлении напряженности поля, отрицательный заряд — в противоположном направлении. Чем больше напряженность внешнего поля, тем больше и относительное смещение зарядов в каждой молекуле.

При исчезновении поля электроны возвращаются в исходные состояния движения относительно ядра атома и диэлектрик опять становится нейтральным. Указанное выше изменение свойств диэлектрика под влиянием поля называется электронной поляризацией.

В полярных диэлектриках молекулы представляют собой диполи. Находясь в хаотическом тепловом движении, дипольный момент все время меняет свое положение. Это приводит к компенсации полей диполей отдельных молекул и к тому, что вне диэлектрика, когда внешнего поля нет, макроскопическое поле отсутствует.

При воздействии на эти вещества внешнего электростатического поля диполи будут поворачиваться и располагаться осями вдоль поля. Этому полностью упорядоченному расположению будет препятствовать тепловое движение.

При небольшой напряженности поля происходит лишь поворот диполей на некоторый угол в направлении поля, определяемый равновесием между действием электрического поля и эффектом от теплового движения.

С возрастанием напряженности поля поворот молекул и соответственно степень поляризации возрастают. В таких случаях расстояние а между зарядами диполей определяется средним значением проекций осей диполей на направление напряженности поля. Кроме такого вида поляризации, которая называется ориентационной, в этих диэлектриках возникает также и электронная поляризация, вызываемая смещением зарядов.

Изоляция в эксплуатации электрооборудования

Описанные выше картины поляризации являются основными для всех изолирующих веществ: газообразных, жидких и твердых. В жидких и твердых диэлектриках, в которых средние расстояния между молекулами меньше, чем в газах, явление поляризации усложняется, так как кроме смещения центра орбиты электронов относительно ядра или поворота полярных диполей наблюдается еще взаимодействие между молекулами.

Поскольку в массе диэлектрика отдельные атомы и молекулы лишь поляризуются, а не распадаются на положительно и отрицательно заряженные ионы, в каждом элементе объема поляризованного диэлектрика заряды обоих знаков равны. Поэтому диэлектрик во всем своем объеме остается электрически нейтральным.

Исключение представляют заряды полюсов молекул, находящихся у граничных поверхностей диэлектрика. Такие заряды образуют тонкие заряженные слои у этих поверхностей. В однородной среде явление поляризации можно представить как стройное расположение диполей.

Средства защиты в электроустановках

Пробивная напряженность диэлектриков

При нормальных условиях диэлектрик обладает незначительной электропроводностью. Это свойство сохраняется, пока напряженность электрического поля не увеличится до некоторого предельного для каждого диэлектрика значения.

В сильном электрическом поле происходит расщепление молекул диэлектрика на ионы и тело, которое в слабом поле было диэлектриком, становится проводником.

Напряженность электрического поля, при которой начинается ионизация молекул диэлектрика, называется пробивной напряженностью (электрической прочностью) диэлектрика .

Величина напряженности электрического поля, которая допускается в диэлектрике при его использовании в электрических установках, называется допустимой напряженностью . Допустимая напряженность обычно в несколько раз меньше пробивной. Отношение пробивной напряженности к допустимой определяет запас прочности . Лучшими непроводниками (диэлектриками) являются вакуум и газы, особенно при высоком давлении.

Пробой диэлектрика

Пробой происходит различно в газообразных, жидких и твердых веществах и зависит от ряда условий: от однородности диэлектрика, давления, температуры, влажности, толщины диэлектрика и т. д. Поэтому, указывая значение электрической прочности, обычно оговаривают эти условия.

Для материалов, работающих, например, в закрытых помещениях и не подвергающихся атмосферному влиянию, устанавливаются нормальные условия (например, температура +20° С, давление 760 мм). Нормируется также влажность, иногда частота и т. д.

Газы обладают сравнительно низкой электрической прочностью. Так, пробивной градиент воздуха при нормальных условиях составляет 30 кв/см. Преимущество газов заключается в том, что после пробоя быстро восстанавливаются их изолирующие свойства.

Жидкие диэлектрики отличаются несколько более высокой электрической прочностью. Отличительным свойством жидкостей является хороший отвод тепла от нагреваемых при прохождении тока по проводникам устройств. Наличие примесей, в частности воды, значительно снижает электрическую прочность жидких диэлектриков. В жидкостях, как и в газах, восстанавливаются их изолирующие свойства после пробоя.

Твердые диэлектрики представляют обширный класс изоляционных материалов как естественного, так и искусственного происхождения. Эти диэлектрики имеют самые различные электрические и механические свойства.

Применение того или другого материала зависит от требований, предъявляемых к изоляции данной установки и условий ее работы. Большой электрической прочностью отличаются слюда, стекло, парафин, эбонит, а также различные волокнистые и синтетические органические вещества, бакелит, гетинакс и т. п.

Применение электротехнического фарфора в качестве материалов для изоляторов

Если кроме требования высокого пробивного градиента к материалу предъявляется и требование большой механической прочности (например, в опорных и подвесных изоляторах, для защиты аппаратуры от механических воздействий), широко применяется электротехнический фарфор.

В таблице приведены значения пробивной напряженности (при нормальных условиях и в однородном постоянном ноле) некоторых наиболее распространенных диэлектриков.

Значения пробивной напряженности диэлектриков

Материал Пробивная напряженность, кв/мм
Бумага, пропитанная парафином 10,0-25,0
Воздух 3,0
Масло минеральное 6,0 -15,0
Мрамор 3,0 — 4,0
Миканит 15,0 — 20,0
Электрокартон 9,0 — 14,0
Слюда 80,0 — 200,0
Стекло 10,0 — 40,0
Фарфор 6,0 — 7,5
Шифер 1,5 — 3,0

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Диэлектрики, поляризация и пробивная напряженность диэлектриков

Вещества (тела) с очень малой электропроводностью (практически несущественной), называются диэлектриками (изоляторами). К диэлектрикам принадлежат газы, некоторая часть жидкостей (как правило это минеральные масла, лаки) и почти все твёрдые материалы, за исключением металлов (которые все обладают разной электропроводностью) и угля (графита).

Однако же, в некоторых случаях в диэлектриках начинается расщепление молекул на ионы (например, под воздействием высокой температуры или в сильном электрическом поле), и тогда диэлектрики теряют свои изолирующие свойства и превращаются в проводники.

Диэлектрики имеют свойство поляризоваться и в них возможно длительное существование электростатического поля.

Поляризация диэлектриков

Если электрическое поле создаётся в вакууме, то величина и направление вектора напряженности поля в данной точке зависят только от величины и места расположения зарядов, создающих поле. Если же поле создается в каком-либо диэлектрике, то в молекулах данного диэлектрика идут физические процессы, которые оказывают влияние на воздействующее электрическое поле.

Под воздействием сил электрического поля электроны на орбитах смещаются в направлении, противоположном направлению воздействующего поля. В результате этого те молекулы, которые ранее были нейтральными, становятся диполями с равными зарядами ядра и электронов на орбитах. Это явление называется поляризацией диэлектрика. При исчезновении поля пропадает и смещение. Молекулы вновь становятся электрически нейтральными.

Поляризованные молекулы — диполи, создают своё электрическое поле, направление которого противоположно направлению основного (внешнего) воздействующего поля, поэтому добавочное поле, складываясь с основным, ослабляет его.

Соответственно, чем сильнее поляризуется диэлектрик, тем слабее будет результирующее поле, и тем меньше становится его напряжённость в каждой точке при тех же зарядах, которые создают основное поле, а следовательно, диэлектрическая проницаемость такого диэлектрика выше.

Когда диэлектрик находится в переменном электрическом поле, тогда и смещение электронов становится тоже переменным. Такой процесс приводит к усилению движения частиц и, соответственно, к нагреву диэлектрика.

И чем чаще изменяется электрическое поле, тем сильнее будет нагреваться диэлектрик. На практике это явление используется для нагрева мокрых (влажных, сырых) материалов с целью их просушки или получения химических реакций, которые происходят при повышенной температуре.

Пробивная напряженность диэлектриков

В нормальных условиях диэлектрик обладает совсем незначительной электропроводностью. Это полезное свойство сохраняется, пока напряженность электрического поля не увеличится до некоторого критического значения. Это значение у каждого диэлектрика своё.

В сильном электрическом поле происходит расщепление молекул диэлектрика на ионы и тело, которое в слабом поле было диэлектриком, становится проводником.

Напряженность электрического поля, при достижении которой начинается ионизация молекул диэлектрика, называется пробивной напряженностью (электрической прочностью) диэлектрика.

Величина напряженности электрического поля, которая допускается в диэлектрике при его использовании в электрических установках, называется допустимой напряженностью. Допустимая напряженность, как правило, в несколько раз меньше пробивной. Отношение пробивной напряженности к допустимой определяет запас прочности диэлектрика.

Лучшими изоляторами (диэлектриками) являются вакуум и газы, особенно при высоком давлении.

Надо сказать, что у газов и жидких диэлектриков изолирующие свойства восстанавливаются при уменьшении напряженности поля до величины, меньшей пробивной напряженности данного диэлектрика.

В таблице ниже указаны значения пробивной напряженности (при нормальных условиях и в однородном постоянном ноле) наиболее распространенных диэлектриков (некоторых).

Значения пробивной напряженности диэлектриков

Материал Пробивная напряженность, кв/мм
Бумага, пропитанная парафином 10,0-25,0
Воздух 3,0
Масло минеральное 6,0 -15,0
Мрамор 3,0 — 4,0
Миканит 15,0 — 20,0
Электрокартон 9,0 — 14,0
Слюда 80,0 — 200,0
Стекло 10,0 — 40,0
Фарфор 6,0 — 7,5
Шифер 1,5 — 3,0

Электротехнические материалы

Процессы в диэлектриках под действием сильных электрических полей

В предыдущей главе мы рассматривали электропроводность диэлектрических материалов под действием слабых электрических полей. В сильных электрических полях появляются новые процессы, ограничивающие применение диэлектриков в качестве электрической изоляции между электропроводными элементами.

Изоляционный промежуток — устройство, или элемент устройства, содержащий электропроводные элементы с диэлектриком между ними.

При повышении напряженности электрического поля в любом диэлектрике, после достижения определенного уровня возникает новое физическое явление — электрический пробой промежутка.

Электрический пробой — образование под действием высокого напряжения электропроводного плазменного канала в диэлектрике между электродами изоляционного промежутка.

При этом диэлектрик перестает быть диэлектриком и напряжение между электродами уменьшается до нуля за счет разряда заряженной емкости диэлектрика через образовавшийся канал. После отключения изоляционного промежутка с жидким или газообразным диэлектриком от источника напряжения канал разряда в жидкости и в газе исчезает и после прошествия некоторого времени напряжение можно снова подавать на устройство. Электрическая изоляция этих материалов восстанавливается. В твердых диэлектриках канал разряда разрушает сам материал и не происходит самовосстановления. Напряжение на устройстве практически невозможно подать после единичного пробоя.

Напряжение, при котором происходит электрический пробой промежутка называется электрической прочностью промежутка.

Электрической прочностью материала называется напряженность, при которой происходит пробой материала.

Она зависит от материала диэлектрика, конфигурации электродов, внешних факторов, качества диэлектрика, типа воздействующего напряжения.

В отличие от слабых электрических полей, в сильных электрических полях, характерных для работы электрической изоляции возникают новые явления, связанные с ионизационными процессами. Зависимость тока в газе при возрастании напряжения имеет три характерных участка (Рис.9.1.). Первый — линейная зависимость, второй — насыщение, третий участок — экспоненциальный рост. В этой области резко начинают расти и диэлектрические потери. Причина заключается в появлении носителей в промежутке за счет нового механизма — ударной ионизации.

Рис.9.1. Зависимость тока в газе от напряжения.

Ударная и онизация -это физическое явление увеличения числа электронов и ионов в промежутке за счет столкновения электронов с повышенной энергией с нейтральными молекулами.

Откуда берутся электроны с повышенной энергией? Электроны появляются из электродов, либо в результате развала отрицательного иона, либо в результате термоионизации. В электрическом поле на электрон действует сила, в результате чего он ускоряется и набирает энергию. После прохождения расстояния l приобретаемая энергия составит D W=eEl. При этом в каждом акте ионизации затрачивается энергия ионизации W. Характерные значения энергии ионизации зависят от типа молекул и составляют для некоторых молекул: для цезия — 3.88 эВ, для азота — 14.5 эВ, для кислорода — 12.5 эВ

Ионизация электронами происходит, в том случае, если кинетическая энергия налетающего электрона mV 2 /2 > W по схеме e+A = A + +e+e. Такой тип ионизации называется прямой ионизацией. Здесь А — молекула или атом газа.

Однако возможна ионизация и при меньшей энергии налетающего электрона, если она превышает энергию возбуждения W возб . Такой тип ионизации называется ассоциативной ионизацией. Она происходит в два этапа, с участием возбужденных молекул A * . Критерием начала ассоциативной ионизации является W>mV 2 /2> W возб . Возможны следующие схемы

e + A = A*+ e, A* + e=A + + e + e

e + A= A* + e, A* + e=A + e + W i , e + W i + A=A + + e

e + A=A* , A* + A*=A + + e

Кроме ионизации молекул электронами возможна фотоионизация , термоионизация и автоионизация.

Фотоионизация — выбивание электронов фотонами при энергии фотона не меньше чем энергия ионизации.

Термоионизация — появление свободных электронов и ионов за счет тепловой энергии. Как можно оценить по выражениям (2.5.), (2.7.), она имеет заметные скорости при температуре несколько тысяч градусов.

Автоионизация — вырывание электрона из молекулы за счет действия сильного электрического поля. Заметную роль в появлении электронов автоионизация начинает играть в полях более 10 МВ / см. В реальной электрической изоляции всегда следует учитывать контакт диэлектрика с электродами. При этом возможно зарождение новых носителей заряда с участием электрода фактически с помощью тех же процессов, т.е. фотоэффекта, автоионизации, выбивания электрона положительным ионом.

Как развиваются ионизационные процессы? Первичный электрон, двигаясь в поле до столкновения с молекулой проходит определенное расстояние, называемое длиной свободного пробега.

Длина свободного пробега , — среднее расстояние, проходимое электроном или ионом до неупругого столкновения с молекулой .

lион = 1/(4 p nr 2 ) (9.1.)

lэлект = 1/( p nr 2 ) = kT/ ( p ·p·r 2 )

где n- концентрация молекул, r- их радиус. Поскольку на каждом столкновении энергия теряется, то электрон не может бесконечно ускоряться и для каждого поля устанавливается определенная скорость V = b ·E, где b — подвижность. Поскольку длина пробега иона в четыре раза меньше длины пробега электронов, то ударная ионизация ионами представляется маловероятной.

Табл.2.1. Подвижность некоторых носителей заряда в воздухе.

Подвижность носителей, 10 -4 м 2 /(В · сек)

Для сравнения оценка подвижности электронов в воздухе 0.1 м 2 /(В · сек). Если энергия на длине пробега достаточна, после первого столкновения в объеме появляются дополнительно 1 электрон и ион, после второго — еще 2 электрона и 2 иона и т.д. Возникает так называемая лавина.

Электронная лавина — экспоненциальный рост количества носителей заряда в промежутке от катода к аноду за счет ударной ионизации молекул электронами n = n0 e a d . Коэффициент a называется коэффициентом ударной ионизации. Он определяется донорно-акцепторными свойствами молекул жидкости, зависит от длины свободного пробега и резко зависит от напряженности поля. Для примера a = 18 1/cм при 30 кВ/см в воздухе.

Возникновение лавины — это еще не пробой. Необходимо, чтобы после прохождения лавины снова появился на катоде электрон. После этого возникает повторная лавина, затем еще лавина и т.д. Возникает самостоятельный многолавинный разряд. Для самостоятельности разряда необходимо вырывание электронов из катода положительными ионами, либо фотонами. Для оценки процесса вводят коэффициент g — т.н. вторичный ионизационный коэффициент. Для плотности электронного тока можно получить выражение j = j0 × e/(1- g (e a d -1)).

Условием самостоятельности разряда является появление на катоде хотя бы одного электрона после прохождения лавины:

1- g (e a d -1) = 0 (9.2.)

Рис.9.2. Кривая Пашена для лавинного пробоя воздушного промежутка.

Поскольку коэффициент ударной ионизации зависит от напряженности поля, длины свободного пробега, а следовательно и давления из условия самостоятельности можно получить зависимость разрядного напряжения от внешних факторов, т.н. закон Пашена

U = f(pd), или в другом виде E/p = F(pd)

Здесь р — давление в газе, d — межэлектродный промежуток. Характерная кривая для пробоя газов приведена на рис.9.2. Она имеет минимум, значение которого и положение зависят от типа жидкости. Например для воздуха минимум пробивного напряжения составляет 300 В и он достигается вблизи pd ~ 1 Па × м.

После пробоя газового промежутка он заполняется газоразрядной плазмой. В дальнейшем, в зависимости от мощности источника напряжения в промежутке развиваются различные виды разрядов. Если источник недостаточно мощен и давление невелико, то развивается тлеющий разряд. Этот разряд происходит во всем объеме, он имеет несколько характерных зон, основные из которых — темное пространство у катода и светящийся анодный столб. В темном пространстве электроны не имеют достаточно энергии для возбуждения молекул и поэтому нет свечения. В положительном столбе свечение вызвано излучением возбужденных молекул. Анодное свечение используется в люминесцентных лампах.

В случае мощного источника напряжения в промежутке после пробоя возникает дуговой разряд. Он характеризуется узким высокотемпературным каналом с высокой плотностью тока. В промышленности используется, в частности при электросварке.

Реально закон Пашена выполняется при не очень высоких давлениях, менее 1 атм и при малых зазорах, менее 1 мм. В больших промежутках при нормальном и повышенном давлении механизм пробоя меняется. Дело в том, что по мере удлинения лавины заряд вблизи фронта развивающейся лавины нарастает, напряженность электрического поля также все более и более возрастает. При некоторой напряженности возможно распространение разряда практически без участия электродов, за счет высокой напряженности. Происходит т.н. лавинно-стримерный переход, переход разряда из многолавинной формы в стримерную форму.

Стример — распространение с высокой скоростью в промежутке проводящего и светящегося плазменного локального образования.

Критерием перехода является выполнение условия a d = 20. Наглядно стример можно представить себе как светящийся шарик из плазмы, пробегающий от одного электрода к другому.

По мере удлинения промежутка, для длинных промежутков, возможно возникновение повторных стримеров в следе первого стримера. Это происходит потому, что место где прошел стример прогревается, плотность газа уменьшается, его электрическая прочность уменьшается, и в следе стримера могут возникать и распространяться новые стримеры со своим дополнительным нагревом и т.д. В результате локального повышения температуры в нем начинается термоионизация, и возрастает электропроводность, по значению выше перехода из диэлектрического состояния в проводящее (см. лекцию 8). Возникающая структура — лидер эквивалентна продвижению электрода в виде острия вглубь промежутка и способствует пробою длинных промежутков. В линиях электропередач реализуется именно этот вид пробоя.

Кроме того, для линий электропередач и других систем с резконеоднородным полем возникает особое явление разряда — корона. Это ионизационные процессы в локальной области вблизи электрода, чаще вблизи острых кромок электродов, где локальное электрическое поле может быть очень большим. Они приводят к потерям энергии, вносят шумы в радиочастотном диапазоне, выделяют озон и вредные оксиды азота.

Для сверхбольших промежутков, а точнее в случае ультравысоких напряжений, возникает новое явление — аномальный разряд . При напряжении положительной полярности относительно земли выше 3.3 МВ или отрицательной полярности относительно земли выше 5.5 МВ разряд в воздухе приобретает новые свойства, а именно, способность развиваться не в направлении поля, а в произвольном направлении. Это было обнаружено в экспериментах с генератором импульсных напряжений ГИН 7.0 МВ на высоковольтном стенде Сибирского НИИ Энергетики. Было замечено. что при воздействии напряжением положительной полярности 3.5 МВ на промежуток 8 м в некоторых случаях разряд не пробивал промежуток, а уходил в произвольном направлении: в сторону оврага, в облака, в сторону ЛЭП. Однажды, в середине января, в диспетчерском журнале РЭУ Новосибирскэнерго был отмечен “неизвестный случай грозовой активности”. Этот случай произошел из-за экспериментов СибНИИЭ после того, как однажды разряд повернул в сторону ЛЭП. Произошел пробой 150 метрового промежутка “ГИН- грозозащитный трос над ЛЭП”, затем пробой с троса на фазу, после чего в РЭУ «Новосибирскэнерго сработали регистраторы разряда. Подобные эксперименты указывают на предельные возможности воздуха, как изолятора и запрещают переход на повышенные классы напряжения при проектировании и строительстве линий электропередач.

Из эмпирических зависимостей электрической прочности газов от внешних факторов отметим следующие:

Рис.9.3. Зависимость электрической прочности воздуха при нормальных условиях от температуры

Температурная зависимость . Она обусловлена уменьшением плотности газов при росте температуры в условиях постоянного давления в соответствии с уравнением идеального газа PV = RT или n = P/kT. Для атмосферных условий влияние изменения и давления и температуры можно учесть так: E = E0 d , где d -относительная плотность d = 0.386Р/(t + 273) (рис.9.3.).

Рис.9.4. Электрическая прочность воздушного промежутка 1 мм при высоких давлениях [2]/

Зависимость от межэлектродного зазора . Для лавинного пробоя — аналогична кривой Пашена при р = const. При повышенных давлениях и малых зазорах E = 30 + A/d, где А — постоянная . Экспериментальные данные по пробою микронных зазоров показывают, что пробивная напряженность доходит до 200 кВ/см.
Зависимость от площади электродов . Эта зависимость — чисто эмпирическая, имеет вид Е = Е0S -1/10 . Обычно эту зависимость объясняют наличием т.н. «слабых мест» на поверхности в виде неоднородностей, пленок и т.п., возрастание числа которых с ростом площади приводит к уменьшению электрической прочности .
Зависимость от влажности . Эта зависимость проявляется только при разряде по поверхности раздела твердого изолятора и газа и выражается в уменьшении пробивного напряжения с ростом влажности, особенно при некотором уровне влажности, когда образуется пленка на поверхности.

Закономерности импульсного пробоя газов

При импульсном пробое газов увеличивается электрическая прочность относительно статического уровня. Это связано с конечным временем формирования разряда, которое, в свою очередь, обусловлено вероятностными характеристиками появления первичных электронов в промежутке, появления вторичных лавин и стримеров и т.д. Значения возникающего перенапряжения, т.е. увеличения пробивного напряжения относительно статического уровня может достигать двухкратного и более уровня.

Механизм электрического пробоя жидкостей вначале считался аналогичным механизму пробоя газов, считая жидкость плотным газом. Это основывалось на схожести картины разряда и на некоторой схожести разрядных зависимостей. Однако прямое, непосредственное применение газовых аналогий неправильно. Дело в том, что поведение электронов в жидкости кардинально отличается от поведения электронов в газе. Молекулы жидкости расположены столь близко друг другу, столь сильно взаимодействуют друг с другом, что электрон не может свободно двигаться и ускоряться в электрическом поле. В жидкости, кроме особо чистых сжиженных благородных газов, свободные электроны не могут существовать. При попадании свободных электронов в жидкость они сначала сольватируются, затем прилипают к нейтральным молекулам, образуя тем самым, отрицательные ионы. Поэтому понятие длины свободного пробега для жидкости невозможно ввести. Грубая оценка принципиальных ограничений электрической прочности может быть сделана из следующих соображений. Считаем, что электрон может ускоряться на протяжении межмолекулярного расстояния. Используя в качестве длины пробега lэлект межмолекулярное расстояние l можно получить оценку предельной электрической прочности жидкости :

Подставляя значения l ~ 5 × 10 -10 м, W ~ 5 эВ, получим, что E пред ~ 10 10 В / м. Эксперименты дают значения на 3-4 порядка меньше.

Рассмотрим характер некоторых эмпирических зависимостей электрической прочности жидких диэлектриков от различных факторов.

Зависимость от давления Электрическая прочность жидкостей зависит от давления достаточно слабо Е ~p 1/6-1/12 . Иногда эту зависимость представляют в виде кривой с насыщением.

Температурная зависимость . Эта зависимость зачастую имеет достаточно сложный вид. Например для технически чистого трансформаторного масла электрическая прочность с ростом температуры от отрицательных температур до 30-40 ° С уменьшается, затем возрастает в диапазоне до 50-70 ° С и потом снова убывает. Для чистых жидкостей, как правило, наблюдаются три области зависимостей: при низких температурах электрическая прочность падает по мере роста температуры, затем очень слабо меняется и вблизи температуры кипения опять заметное падение. Объяснение этому будет дано ниже.

Зависимость от межэлектродного зазора. При малых зазорах пробивная напряженность поля резко нарастает с уменьшением зазора. Согласно экспериментальным данным в микронных зазорах пробивная напряженность доходит до 10 МВ/см.

Зависимость от площади Эта зависимость — чисто эмпирическая, имеет вид Е = Е0S -1/10 . Несомненно, что как и в случае пробоя газа она обусловлена вероятностными характеристиками инициирования пробоя.

Зависимость от влажности . Эта зависимость проявляется при малой влажности, менее 0.01% и выражается в резком уменьшении пробивного напряжения с ростом содержания воды.

Закономерности импульсного пробоя жидкости

При импульсном пробое жидкостей также увеличивается пробивное напряжение по мере укорочения длительности импульса. Электрическая прочность в наносекундном диапазоне может превышать 10-20 МВ/см.

Для практических целей предложено и широко используется обобщение эмпирических зависимостей в виде т.н. формулы Мартина .

(9.3)

где постоянная M зависит от сорта жидкости и имеет размерность МВ/см. В этом выражении длительность импульса t следует подставлять в микросекундах, давление в атм., а площадь электродов S — в см 2 . Постоянная А составляет 0.7 МВ/см для гексана и трансформаторного масла, 0.6 МВ/см для глицерина, 0.5 МВ/см для этилового спирта, 0.6 МВ/см для воды в случае пробоя с катода, 0.3 МВ/см в случае пробоя с анода.

Для пробоя жидкостей существуют специфические зависимости электрической прочности от наличия примесей. В принципе увеличение количества таких примесей, как механические твердые частицы, пузырьки, примеси, увеличивающие электропроводность приводит к уменьшению электрической прочности. Зачастую электрическая прочность является не физической характеристикой жидкости, а технологической характеристикой жидкости и способа ее приготовления.

К настоящему времени не существует теории, позволяющей получать оценки электрической прочности из «первых принципов», т.е. из физической картины предпробивных явлений. Наиболее очевидной представляется гипотеза об ударной ионизации электронами молекул жидкости. На основе этой гипотезы разработан ряд моделей пробоя, позволяющих оценить электрическую прочность простых углеводородных жидкостей и даже предсказать характер изменения электрической прочности с разветвлением структуры молекул. Например, в одной из моделей считается , что электроны при движении в жидкости взаимодействуют с колебаниями связи С-С или С-Н. Энергия колебаний Wv= h n ~10 -2 -10 -1 эВ много меньше чем энергия ионизации 10 эВ. Если электрон набирает энергию больше Wv , то по мнению авторов, он может двигаться без потерь до достижения энергии ионизации. Подбор параметров дает возможность получить значения электрической прочности Eпр, близкие к экспериментальным данным. Однако при слабых изменениях внешних условий: температуры Т, давления Р, длительности импульса t теоретические оценки существенно расходятся с экспериментом. Согласно моделям Eпр является характеристикой жидкости и не зависит от Т и Р, тогда как в эксперименте Eпр может изменяться в несколько раз при изменении температуры и давления. Столь явное расхождение требует учета других процессов, зависящих от внешних условий.

Появление моделей, связанных с зарождением в жидкости парогазовой фазы, позволило объяснить на качественном уровне ряд зависимостей. Критерии пробоя основаны на создании условий для появления пузырьков за счет кипения жидкости при протекании тока, либо за счет кавитации под действием электростатических или кулоновских сил. Принципиальными недостатками моделей являются несоответствие эксперименту расчетных зависимостей Eпр(t,P). Расчетная электрическая прочность оказывается одинаковой для импульсов любой длительности, что противоречит практике. Согласно экспериментальным данным Eпр(t) в микро- и субмикро-секундном диапазоне меняется как t -(1/3-1/5) . Что касается давления, то в моделях зависимость Е(P)~P 1/2 , что значительно расходится с экспериментом Е(P) ~ P (1/6-1/8) .

Модель развития предпробивных процессов можно представить следующим образом. Под действием электрического поля на пузырьки, заранее существующие в жидкости, в них возникают ионизационные процессы (частичные разряды) после достижении на их размере падения напряжения Up. После разряда поле в пузырьке уменьшается вследствие экранирования осевшими зарядами внешнего поля, что вызывает ослабление, либо прекращение ионизационных процессов. Действие электрического поля на осевший заряд приводит к движению стенки пузырька и его вытягиванию вдоль поля, а также к продвижению заряда вглубь жидкости со скоростью, определяемой подвижностью носителей заряда. При этом возможны две ситуации: поддержание разряда в виде “тлеющего разряда”, либо прекращение разряда. В первом случае на пузырьке поддерживается некоторое напряжение, по-видимому, соответствующее закону Пашена. В последнем случае напряжение на пузырьке растет, что ведет к повторному частичному разряду и движению в жидкости новой волны зарядов. Определяющий параметр — давление на стенку пузырька, обусловлен действием кулоновских сил на инжектированный заряд и ростом давления в пузырьке за счет нагрева газа в нем. Зажигание разряда в жидкости произойдет тогда, когда напряженность поля в жидкости, вблизи полюса пузырька, достигнет критического значения. Пробой произойдет после пересечения промежутка каналом разряда. Эта модель позволяет, полуколичественно, объяснить практически все экспериментальные зависимости: от давления, от температуры, от вязкости, от длительности воздействующего импульса (рис.9.5) и т.д.

Рис.9.5 Расчетная (пузырьковая модель) и эмпирическая зависимости предпробивного времени от напряженности поля

Трансформаторные подстанции высочайшего качества

При напряженности электрического поля, превосходящей предел электрической прочности диэлектрика, наступает пробой. Пробой представляет собой процесс разрушения диэлектрика, в результате чего диэлектрик теряет электроизоляционные свойства в месте пробоя.
Величину напряжения, при котором происходит пробой диэлектрика, называют пробивным напряжением , а соответствующее значение напряженности электрического поля называется электрической прочностью диэлектрика .
Для равномерного электрического поля электрическая прочность (пробивная напряженность) диэлектрика определяется по формуле

где d — толщина диэлектрика в месте пробоя, м.
Пробой газообразных диэлектриков см. раздел.
Пробой жидких диэлектриков — явление сложное, что объясняется сложным составом жидких диэлектриков и сильным влиянием загрязнений на развитие пробоя. На рис. 5-13 показана зависимость изменения электрической прочности трансформаторного масла от содержания влаги. Наиболее резкое снижение электрической прочности жидких диэлектриков вызывает эмульсионная вода. С повышением температуры эмульсионная вода переходит в растворенную; при этом жидкий диэлектрик становится более однородным и электрическая прочность его повышается.
Другие загрязнения (волокна, смолистые вещества и др.) подобно воде понижают электрическую прочность жидких диэлектриков.
Чистота поверхности электродов оказывает существенное влияние на электрическую прочность жидких диэлектриков.
Большая продолжительность воздействия электрического поля на жидкий диэлектрик вызывает резкое снижение пробивного напряжения (рис. 5-14).
Конфигурация электрического поля и полярность электродов также вызывают изменение пробивных характеристик жидких диэлектриков (рис. 5-15 и 5-16).
Пробивное напряжение жидких диэлектриков повышается с увеличением давления (рис. 5-17). Зависимость пробивного напряжения от давления заметно уменьшается с повышением степени очистки электроизоляционных жидкостей, что указывает на большое влияние газообразных примесей.
При импульсных воздействиях напряжения на слой жидкого диэлектрика зависимости пробивного напряжения от давления практически не наблюдается. С увеличением плотности жидкого диэлектрика его электрическая прочность линейно возрастает.
Влияние температуры на пробивные характеристики жидких диэлектриков различно в зависимости от их химического состава и степени загрязнения примесями. Заметные изменения электрической прочности с температурой наблюдаются у электроизоляционных жидкостей сложного химического состава, особенно при наличии в них загрязнений (влага, газы и др.). По мере приближения к температуре кипения электрическая прочность жидких диэлектриков резко понижается.
Наибольший практический интерес представляют теории, посвященные процессам пробоя технических электроизоляционных жидкостей. В большинстве этих теорий (авторы Н. Н. Семенов и А. Ф. Вальтер, Эдлер и др.) пробой жидких диэлектриков рассматривается как тепловой процесс, в результате которого в слое жидкого диэлектрика образуются газовые или паровые каналы. Паровая и газовая фазы в жидком диэлектрике возникают при нагреве его токами проводимости, повышенные значения которых наблюдаются в наиболее загрязненных частях диэлектрика. При критических значениях напряженности электрического поля в газовых и паровых каналах начинает развиваться процесс ударной ионизации газа, завершающийся пробоем.
Пробой твердых диэлектриков представляет собой или чисто электрический процесс (электрическая форма пробоя), или тепловой процесс (тепловая форма пробоя). В основе электрического пробоя лежат явления, в результате которых в твердых диэлектриках имеет место лавинное возрастание электронного тока, подобно тому как это наблюдается в процессе ударной ионизации в газообразных диэлектриках.

Характерными признаками электрического пробоя твердых диэлектриков являются:
1. Независимость или очень слабая зависимость электрической прочности диэлектрика от температуры и длительности приложенного напряжения (до с).
2. Электрическая прочность твердого диэлектрика в однородном поле не зависит от толщины диэлектрика (до толщин см).
3. Электрическая прочность твердых диэлектриков находится в сравнительно узких пределах: В/см; причем она больше, чем при тепловой форме пробоя.
4. Перед пробоем ток в твердом диэлектрике увеличивается по экспоненциальному закону, а непосредственно перед наступлением пробоя наблюдается скачкообразное возрастание тока.
5. При наличии неоднородного поля электрический пробой происходит в месте наибольшей напряженности поля (краевой эффект).

Тепловой пробой имеет место при повышенной проводимости твердых диэлектриков и больших диэлектрических потерях, а также при подогреве диэлектрика посторонними источниками тепла или при плохом теплоотводе. Процесс теплового пробоя твердого диэлектрика состоит в следующем. Вследствие неоднородности состава отдельные части объема диэлектрика обладают повышенной проводимостью. Они представляют собой тонкие каналы, проходящие через всю толщину диэлектрика. Вследствие повышенной плотности тока в одном из таких каналов будут выделяться значительные количества тепла. Это повлечет за собой еще большее нарастание тока вследствие резкого уменьшения сопротивления этого участка в диэлектрике. Процесс нарастания тепла будет продолжаться до тех пор, пока не произойдет тепловое разрушение материала (расплавление, науглероживание) по всей его толщине — по ослабленному месту.

Характерными признаками теплового пробоя твердых диэлектриков являются:
1. Пробой наблюдается в месте наихудшего теплоотвода от диэлектрика в окружающую среду.
2. Пробивное напряжение диэлектрика снижается с повышением температуры окружающей среды (рис. 5-18).
3. Пробивное напряжение снижается с увеличением длительности приложенного напряжения (рис. 5-19).
4. Электрическая прочность уменьшается с увеличением толщины диэлектрика.
5. Электрическая прочность твердого диэлектрика уменьшается с ростом частоты приложенного переменного напряжения.
При пробое твердых диэлектриков часто наблюдаются случаи, когда до определенной температуры имеет место электрический пробой, а затем в связи с дополнительным нагревом диэлектрика наступает процесс теплового пробоя диэлектрика (рис. 5-20).
Аналогичный переход электрической формы пробоя в тепловую происходит в зависимости от времени выдержки твердого диэлектрика под напряжением.
Согласно выводам теории теплового пробоя твердых диэлектриков (В. А. Фок, Н. Н. Семенов) можно подсчитать величину пробивного напряжения для простых электроизоляционных конструкций (пластины) по формулам
а) для постоянного напряжения

б) для переменного напряжения

где — функция величины,

— коэффициент теплоотдачи в окружающую среду; — коэффициент теплопроводности электродов, Дж/(с м °С); — коэффициент теплопроводности диэлектрика Дж/(с м °С); h — половина толщины диэлектрика, м; — толщина электрода, м; а — постоянная, характеризующая рост проводимости диэлектрика с температурой; — диэлектрическая проницаемость твердого диэлектрика (при температуре окружающей среды); — тангенс угла диэлектрических потерь твердого диэлектрика (при температуре окружающей среды); f — частота, Гц.
По известным значениям вычисляют величину с и, воспользовавшись графиком (рис. 5-21), находят .
При неограниченном возрастании с величина стремится к пределу, равному 0,66.

Рис. 5-13. Изменение электрической прочности трансформаторного масла от содержания в нем воды.

Рис. 5-14. Зависимость пробивного напряжения жидкого диэлектрика от времени воздействия на него электрического поля.

Рис. 5-15. Зависимость пробивного напряжения трансформаторного масла от расстояния между электродами.1 — плоскость против шара диаметром 125 мм; 2 — плоскость против острия.

Рис. 5-16. То же, что рис. 5-15, но для постоянного напряжения. Электроды острие — плоскость: 1 — острие отрицательное; 2 — острие положительное.

Рис. 5-17. Зависимость пробивного напряжения трансформаторного масла от давления при 50 Гц.1-невакуумированное масло; 2-вакуумированное масло.

Рис. 5-18. Зависимость пробивного напряжения твердого диэлектрика от температуры (при тепловом пробое).

Рис. 5-19. Зависимость пробивного напряжения твердого диэлектрика от длительности приложенного напряжения (при тепловом пробое).

Рис. 5-20. Зависимость пробивного напряжения от температуры для электротехнического фарфора (а — точка перехода к тепловому пробою).

Рис. 5-21. Значения функции. К расчету пробивного напряжения твердого диэлектрика при тепловом пробое (по В. А. Фоку).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *