Удельное сопротивление железа, алюминия, меди и других металлов
Каждое вещество способно проводить ток в разной степени, на эту величину влияет сопротивление материала. Обозначается удельное сопротивление меди, алюминия, стали и любого другого элемента буквой греческого алфавита ρ. Эта величина не зависит от таких характеристик проводника, как размеры, форма и физическое состояние, обычное же электросопротивление учитывает эти параметры. Измеряется удельное сопротивление в Омах, умноженных на мм² и разделенных на метр.
Категории и их описание
Любой материал способен проявлять два типа сопротивления в зависимости от подаваемого на него электричества. Ток бывает переменным или постоянным, что значительно влияет на технические показатели вещества. Так, существуют такие сопротивления:
- Омическое. Проявляется под воздействием постоянного тока. Характеризует трение, которое создается движением электрически заряженных частиц в проводнике.
- Активное. Определяется по такому же принципу, но создается уже под действием переменного тока.
В связи с этим определений удельной величины тоже два. Для постоянного тока она равна сопротивлению, которое оказывает единица длины проводящего материала единичной фиксированной площади сечения. Потенциальное электрополе воздействует на все проводники, а также полупроводники и растворы, способные проводить ионы. Эта величина определяет проводящие свойства самого материала. Форма проводника и его размеры не учитываются, поэтому ее можно назвать базовой в электротехнике и материаловедении.
При условии прохождения переменного тока удельная величина рассчитывается с учетом толщины проводящего материала. Здесь уже происходит воздействие не только потенциального, но и вихревого тока, кроме того, принимается во внимание частота электрических полей. Удельное сопротивление этого типа больше, чем при постоянном токе, поскольку здесь идет учет положительной величины сопротивления вихревому полю. Также эта величина зависит от формы и размеров самого проводника. Именно эти параметры и определяют характер вихревого движения заряженных частиц.
Переменный ток вызывает в проводниках определенные электромагнитные явления. Они очень важны для электротехнических характеристик проводящего материала:
- Скин-эффект характеризуется ослаблением электромагнитного поля тем больше, чем дальше оно проникает в среду проводника. Это явление также носит название поверхностного эффекта.
- Эффект близости снижает плотность тока благодаря близости соседних проводов и их влиянию.
Эти эффекты являются очень важными при расчете оптимальной толщины проводника, так как при использовании провода, у которого радиус больше глубины проникновения тока в материал, остальная его масса останется незадействованной, а следовательно, такой подход будет неэффективным. В соответствии с проведенными расчетами эффективный диаметр проводящего материала в некоторых ситуациях будет следующим:
- для тока в 50 Гц — 2,8 мм;
- 400 Гц — 1 мм;
- 40 кГц — 0,1 мм.
Ввиду этого для высокочастотных токов активно применяется использование плоских многожильных кабелей, состоящих из множества тонких проводов.
Характеристики металлов
Удельные показатели металлических проводников содержатся в специальных таблицах. По этим данным можно производить необходимые дальнейшие расчеты. Пример такой таблицы удельных сопротивлений можно увидеть на изображении.
На таблице видно, что наибольшей проводимостью обладает серебро — это идеальный проводник среди всех существующих металлов и сплавов. Если рассчитать, сколько потребуется провода из этого материала для получения сопротивления в 1 Ом, то выйдет 62,5 м. Проволоки из железа для такой же величины понадобится целых 7,7 м.
Достоинства меди
Какими бы замечательными свойствами ни обладало серебро, оно является слишком дорогим материалом для массового использования в электросетях, поэтому широкое применение в быту и промышленности нашла медь. По величине удельного показателя она стоит на втором месте после серебра, а по распространенности и простоте добычи намного лучше его. Медь обладает и другими преимуществами, позволившими ей стать самым распространенным проводником. К ним относятся:
- высокая стойкость к коррозии;
- механическая прочность;
- устойчивость к деформациям;
- легкость фиксирования путем пайки и сварки;
- высокая обрабатываемость (благодаря мягкости медь раскатывают в листы любой толщины, а вытягиваемая из нее проволока может быть настолько тонкой, что ее сечение будет иметь значение тысячных миллиметра).
Для применения в электротехнике используют рафинированную медь, которая после плавки из сульфидной руды проходит процессы обжигания и дутья, а далее обязательно подвергается электролитической очистке. После такой обработки можно получить материал очень высокого качества (марки М1 и М0), который будет содержать от 0,1 до 0,05% примесей. Важным нюансом является присутствие кислорода в крайне малых количествах, так как он негативно влияет на механические характеристики меди.
Часто этот металл заменяют более дешевыми материалами — алюминием и железом, а также различными бронзами (сплавами с кремнием, бериллием, магнием, оловом, кадмием, хромом и фосфором). Такие составы обладают более высокой прочностью по сравнению с чистой медью, хотя и меньшей проводимостью.
Преимущества алюминия
Хоть алюминий обладает большим сопротивлением и более хрупок, его широкое использование объясняется тем, что он не настолько дефицитен, как медь, а следовательно, стоит дешевле. Удельное сопротивление алюминия составляет 0,028, а его низкая плотность обеспечивает ему вес в 3,5 раза меньше, чем медь.
Для электрических работ применяют очищенный алюминий марки А1, содержащий не более 0,5% примесей. Более высокую марку АВ00 используют для изготовления электролитических конденсаторов, электродов и алюминиевой фольги. Содержание примесей в этом алюминии составляет не более 0,03%. Существует и чистый металл АВ0000, включающий не более 0,004% добавок. Имеют значение и сами примеси: никель, кремний и цинк незначительно влияют на проводимость алюминия, а содержание в этом металле меди, серебра и магния дает ощутимый эффект. Наиболее сильно уменьшают проводимость таллий и марганец.
Алюминий отличается хорошими антикоррозийными свойствами. При контакте с воздухом он покрывается тонкой пленкой окиси, которая и защищает его от дальнейшего разрушения. Для улучшения механических характеристик металл сплавляют с другими элементами.
Показатели стали и железа
Удельное сопротивление железа по сравнению с медью и алюминием имеет очень высокие показатели, однако благодаря доступности, прочности и устойчивости к деформациям материал широко используют в электротехническом производстве.
Хоть железо и сталь, удельное сопротивление которой еще выше, имеют существенные недостатки, изготовители проводникового материала нашли методы их компенсирования. В частности, низкую стойкость к коррозии преодолевают путем покрытия стальной проволоки цинком или медью.
Свойства натрия
Металлический натрий также очень перспективен в проводниковом производстве. По показателям сопротивления он значительно превышает медь, однако имеет плотность в 9 раз меньше, чем у неё. Это позволяет использовать материал в изготовлении сверхлёгких проводов.
Металлический натрий очень мягкий и совершенно неустойчив к любого рода деформационным воздействиям, что делает его использование проблемным — провод из этого металла должен быть покрыт очень прочной оболочкой с крайне малой гибкостью. Оболочка должна быть герметичной, так как натрий проявляет сильную химическую активность в самых нейтральных условиях. Он моментально окисляется на воздухе и демонстрирует бурную реакцию с водой, в том числе и с содержащейся в воздухе.
Еще одним плюсом использования натрия является его доступность. Его можно получить в процессе электролиза расплавленного хлористого натрия, которого в мире существует неограниченное количество. Другие металлы в этом плане явно проигрывают.
Чтобы рассчитать показатели конкретного проводника, необходимо произведение удельного числа и длины проволоки разделить на площадь ее сечения. В результате получится значение сопротивления в Омах. Например, чтобы определить, чему равно сопротивление 200 м проволоки из железа с номинальным сечением 5 мм², нужно 0,13 умножить на 200 и разделить полученный результат на 5. Ответ — 5,2 Ом.
Правила и особенности вычисления
Для измерения сопротивления металлических сред пользуются микроомметрами. Сегодня их выпускают в цифровом варианте, поэтому проведенные с их помощью измерения отличаются точностью. Объяснить ее можно тем, что металлы обладают высоким уровнем проводимости и имеют крайне маленькое сопротивление. Для примера, нижний порог измерительных приборов имеет значение 10 -7 Ом.
С помощью микроомметров можно быстро определить, насколько качественен контакт и какое сопротивление проявляют обмотки генераторов, электродвигателей и трансформаторов, а также электрические шины. Можно вычислить присутствие включений другого металла в слитке. Например, вольфрамовый кусок, покрытый позолотой, показывает вдвое меньшую проводимость, чем полностью золотой. Тем же способом можно определить внутренние дефекты и полости в проводнике.
Чтобы рассчитать параметры провода — его длину, диаметр и сопротивление — потребуется всего лишь знать величину его удельного значения ρ.
Формула удельного сопротивления выглядит следующим образом: ρ = Ом · мм 2 /м. Словами ее можно описать как сопротивление 1 метра проводника, имеющего площадь сечения 1 мм². Температура подразумевается стандартная — 20 °C.
Влияние температуры на измерение
Нагревание или охлаждение некоторых проводников оказывает значительное влияние на показатели измерительных приборов. В качестве примера можно привести следующий опыт: необходимо подключить к аккумулятору спирально намотанную проволоку и подключить в цепь амперметр.
Чем сильнее нагревается проводник, тем меньше становятся показания прибора. Сила тока имеет обратно пропорциональную зависимость от сопротивления. Следовательно, можно сделать вывод, что в результате нагрева проводимость металла уменьшается. В большей или меньшей степени так ведут себя все металлы, однако изменения проводимости у некоторых сплавов практически не наблюдается.
Примечательно, что жидкие проводники и некоторые твердые неметаллы имеют тенденцию уменьшать свое сопротивление с повышением температуры. Но и эту способность металлов ученые обратили себе на пользу. Зная температурный коэффициент сопротивления (α) при нагреве некоторых материалов, можно определять внешнюю температуру. Например, проволоку из платины, размещенную на каркасе из слюды, помещают в печь, после чего проводят измерение сопротивления. В зависимости от того, насколько оно изменилось, делают вывод о температуре в печи. Такая конструкция называется термометром сопротивления.
Если при температуре t0 сопротивление проводника равно r0, а при температуре t равно rt, то температурный коэффициент сопротивления равен
Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200 °C).
Алюминий или медь: споры и истина
В марте 2019 года Минстрой подписал приказ с правилами проектирования и монтажа электросетей, согласно которому разрешено использовать алюминиевую проводку в строительстве жилых и общественных зданий. В связи с этим возникло много споров, ведь до недавнего времени считалось, что обеспечить необходимую безопасность могут лишь кабели с токопроводящими жилами из меди. Чтобы принять верное решение, необходимо знать свойства и технические характеристики обоих металлов, о чем и пойдет речь далее.
Плюсы и минусы токопроводящей жилы (ТПЖ) из алюминия
Важным преимуществом алюминия является его малый вес и низкая цена. Легкий провод упрощает и удешевляет монтаж проводки. Кроме того, кабель на основе алюминия имеет и другие плюсы:
● Устойчив к окислению. Неизолированная поверхность металла в местах контакта с воздухом покрывается защитной пленкой, которая предотвращает дальнейшую коррозию.
● Пластичен. Кабель из алюминия отлично гнется и сохраняет заданную форму. При монтаже проводки можно получить любую необходимую конфигурацию.
● Не расширяется при нагреве. При условии, что используется токопроводящая жила с достаточно большим сечением.
Важно, что цена алюминиевого кабеля на 30-50% ниже, чем стоимость аналогичных изделий из меди.
К минусам ТПЖ из алюминия относят:
● Высокое удельное сопротивление, которое ведет к нагреву, соответственно, не допускает больших нагрузок. Очень важно правильно подобрать сечение с «запасом» и ПЗУ.
● Хрупкость материала и, как следствие, заниженный срок эксплуатации кабеля при частом перегреве токопроводящей жилы.
● Необходимость специальной смазки или клеммников для устранения образования пленки в местах стыковки проводов.
● Необходимость разделения электрической цепи на несколько линий.
Кроме того, стоит помнить, что согласно приказу Минстроя для проектирования и монтажа электроустановок не допускается использование кабеля на основе алюминия с сечением менее 16 кв.мм.
Также к сплаву предъявляются требования по процентному соотношению компонентов — содержание железа и меди должно быть 0,4-0,5% и 0,15% соответственно.
Какой материал для токопроводящей жилы лучше: сравнение
● Долговечность. И медь, и алюминий имеют идентичный ресурс. Кабели с одинарной изоляцией служат 15 лет, с двойной же рассчитаны на 30 лет.
● Склонность к окислению (в местах соединения). Алюминий хорошо окисляется и создает на поверхности защитную пленку, но при этом ухудшается его проводимость. Проблему решает использование специальных клеммников и токопроводящей пасты.
● Прочность. Провод из меди гораздо прочнее, соответственно, допускает больше перегибов. Согласно ГОСТ медный кабель рассчитан на 80 перегибов, алюминиевый — всего на 12. Если проводка проходит в стене, под полом или потолком, то этот показатель не имеет значения.
● Цена кабеля. Изделия с токопроводящей жилой из алюминия стоят в дешевле, чем аналоги из меди. Важно знать, что медный кабель сечением 2,5 кв.мм рассчитан на ток 27 Ампер. Изделия из алюминия смогут выдержать подобную нагрузку при толщине ТПЖ от 4 кв. мм.
● Сопротивление. Чем ниже этот показатель, тем меньше потери электроэнергии на линии. Удельное сопротивление меди равно 0,018 Ом*кв.мм/м. У алюминия этот показатель выше и составляет 0,028 Ом*кв.мм/м.
● Монтаж. Прокладка проводов из алюминия осуществляется легче ввиду небольшого веса и пластичности материала, но в то же время возникают сложности при соединении кабеля.
Вывод
Выбор в пользу кабеля с ТПЖ из того или иного материала следует делать с учетом назначения кабельной линии. Медные провод а ввиду их высоких эксплуатационных характеристик предпочтительнее использовать для монтажа электросетей на промышленных предприятиях. Благодаря невысокой стоимости современные кабели на основе сплавов алюминия позволят запустить в эксплуатацию ежегодно 80 млн кв. м новой жилой недвижимости.
Кабельный Завод «Эксперт Кабель» осуществляет выпуск новых кабелей из алюминиевой и медной ТПЖ. Они обеспечивают максимальную пожаробезопасность за счет качественного материала жилы и специальной изоляции из полимерных композиций, которая не содержит галогены и не поддерживает горение.
Для заказа новых надежных и качественных кабелей оставляйте заявку на сайте.
Если Вам нужна особая конструкция кабеля, то наши специалисты кратчайшие сроки разработают согласно вашему техническому заданию КПП, отвечающую всем требованиям.
Удельное сопротивление проводников: меди, алюминия, стали
Как нам известно из закона Ома, ток на участке цепи находится в следующей зависимости: I=U/R. Закон был выведен в результате серии экспериментов немецким физиком Георгом Омом в XIX веке. Он заметил закономерность: сила тока на каком-либо участке цепи прямо зависит от напряжения, которое к этому участку приложено, и обратно — от его сопротивления.
Позже было установлено, что сопротивление участка зависит от его геометрических характеристик следующим образом: R=ρl/S,
где l- длина проводника, S — площадь его поперечного сечения, а ρ — некий коэффициент пропорциональности.
Таким образом, сопротивление определяется геометрией проводника, а также таким параметром, как удельное сопротивление (далее — у. с.) — так назвали этот коэффициент. Если взять два проводника с одинаковым сечением и длиной и поставить их в цепь по очереди, то, измеряя силу тока и сопротивление, можно увидеть, что в двух случаях эти показатели будут разными. Таким образом, удельное электрическое сопротивление — это характеристика материала, из которого сделан проводник, а если быть еще более точным, то вещества.
Проводимость и сопротивление
У.с. показывает способность вещества препятствовать прохождению тока. Но в физике есть и обратная величина — проводимость. Она показывает способность проводить электрический ток. Выглядит она так:
σ=1/ρ, где ρ — это и есть удельное сопротивление вещества.
Если говорить о проводимости, то она определяется характеристиками носителей зарядов в этом веществе. Так, в металлах есть свободные электроны. На внешней оболочке их не больше трех, и атому выгоднее их «отдать», что и происходит при химических реакциях с веществами из правой части таблицы Менделеева. В ситуации же, когда мы располагаем чистым металлом, он имеет кристаллическую структуру, в которой эти наружные электроны общие. Они-то и переносят заряд, если приложить к металлу электрическое поле.
В растворах носителями заряда являются ионы.
Если говорить о таких веществах, как кремний, то по своим свойствам он является полупроводником и работает несколько по иному принципу, но об этом позже. А пока разберемся, чем же отличаются такие классы веществ, как:
- Проводники;
- Полупроводники;
- Диэлектрики.
Проводники и диэлектрики
Есть вещества, которые ток почти не проводят. Они называются диэлектриками. Такие вещества способны поляризоваться в электрическом поле, то есть их молекулы могут поворачиваться в этом поле в зависимости от того, как распределены в них электроны. Но поскольку электроны эти не являются свободными, а служат для связи между атомами, ток они не проводят.
Проводимость диэлектриков почти нулевая, хотя идеальных среди них нет (это такая же абстракция, как абсолютно черное тело или идеальный газ).
Между этими двумя классами существуют вещества, называемые полупроводниками. Но выделение их в отдельную группу веществ связано не столько с их промежуточным состоянием в линейке «проводимость — сопротивление», сколько с особенностями этой проводимости в различных условиях.
Зависимость от факторов внешней среды
Проводимость — не совсем постоянная величина. Данные в таблицах, откуда берут ρ для расчетов, существуют для нормальных условий среды, то есть для температуры 20 градусов. В реальности для работы цепи сложно подобрать такие идеальные условия; фактически у.с. (а стало быть, и проводимость) зависят от следующих факторов:
- температура;
- давление;
- наличие магнитных полей;
- свет;
- агрегатное состояние.
Разные вещества имеют свой график изменения этого параметра в разных условиях. Так, ферромагнетики (железо и никель) увеличивают его при совпадении направления тока с направлением силовых линий магнитного поля. Что касается температуры, то зависимость здесь почти линейная (существует даже понятие температурного коэффициента сопротивления, и это тоже табличная величина). Но направление этой зависимости различно: у металлов оно повышается с повышением температуры, а у редкоземельных элементов и растворов электролитов увеличивается — и это в пределах одного агрегатного состояния.
У полупроводников зависимость от температуры не линейная, а гиперболическая и обратная: при повышении температуры их проводимость увеличивается. Это качественно отличает проводники от полупроводников. Вот так выглядит зависимость ρ от температуры у проводников:
Здесь представлены удельное сопротивление меди, платины и железа. Немного другой график у некоторых металлов, например, ртути — при понижении температуры до 4 К она теряет его почти полностью (такое явление называется сверхпроводимостью).
А для полупроводников эта зависимость будет примерно такая:
При переходе в жидкое состояние ρ металла увеличивается, а вот дальше все они ведут себя по-разному. Например, у расплавленного висмута оно ниже, чем при комнатной температуре, а у меди — в 10 раз выше нормального. Никель выходит из линейного графика еще при 400 градусах, после чего ρ падает.
Зато у вольфрама температурная зависимость настолько высока, что это становится причиной перегорания ламп накаливания. При включении ток нагревает спираль, и ее сопротивление увеличивается в несколько раз.
Также у. с. сплавов зависит от технологии их производства. Так, если мы имеем дело с простой механической смесью, то сопротивление такого вещества можно посчитать по среднему, а вот оно же у сплава замещения (это когда два и более элемента складываются в одну кристаллическую решетку) будет иным, как правило, куда большим. Например, нихром, из которого делают спирали для электроплиток, имеет такую цифру этого параметра, что этот проводник при включении в цепь греется до красноты (из-за чего, собственно, и используется).
Вот характеристика ρ углеродистых сталей:
Как видно, при приближении к температуре плавления оно стабилизируется.
Удельное сопротивление различных проводников
Как бы то ни было, а при расчетах используется ρ именно в нормальных условиях. Приведем таблицу, по которой можно сравнить эту характеристику у разных металлов:
металл | удельное сопротивление, Ом·м | температурный коэффициент, 1/°С* 10^-3 |
медь | 1,68*10^-8 | 3,9 |
алюминий | 2,82*10^-8 | 3,9 |
железо | 1*10^-7 | 5 |
серебро | 1,59*10^-8 | 3,8 |
золото | 2,44*10^-8 | 3,4 |
магний | 4,4*10^-8 | 3,9 |
олово | 1,09*10^-7 | 4,5 |
свинец | 2,2*10^-7 | 3,9 |
цинк | 5,9*10^-8 | 3,7 |
Как видно из таблицы, лучший проводник — это серебро. И только его стоимость мешает массово применять его в производстве кабеля. У.с. алюминия тоже небольшое, но меньше, чем у золота. Из таблицы становится понятно, почему проводка в домах либо медная, либо алюминиевая.
В таблицу не включен никель, у которого, как мы уже сказали, немного необычный график зависимости у. с. от температуры. Удельное сопротивление никеля после повышения температуры до 400 градусов начинает не расти, а падать. Интересно он ведет себя и в других сплавах замещения. Вот так ведет себя сплав меди и никеля в зависимости от процентного соотношения того и другого:
А этот интересный график показывает сопротивление сплавов Цинк — магний:
В качестве материалов для изготовления реостатов используют высокоомные сплавы, вот их характеристики:
сплав | удельное сопротивление |
манганин | 4,82*10^-7 |
константан | 4,9*10^-7 |
нихром | 1,1*10^-6 |
фехраль | 1,2*10^-6 |
хромаль | 1,2*10^-6 |
Это сложные сплавы, состоящие из железа, алюминия, хрома, марганца, никеля.
Что касается углеродистых сталей, то оно составляет примерно 1,7*10^-7 Ом · м.
Разница между у. с. различных проводников определяет и их применение. Так, медь и алюминий массово применяются при производстве кабеля, а золото и серебро — в качестве контактов в ряде радиотехнических изделий. Высокоомные проводники нашли свое место среди производителей электроприборов (точнее, они и создавались для этого).
Изменчивость этого параметра в зависимости от условий внешней среды легла в основу таких приборов, как датчики магнитного поля, терморезисторы, тензодатчики, фоторезисторы.
Удельное сопротивление меди и алюминия для расчетов
19 декабря 2015 k-igor
Несмотря на то, что данная тема может показаться совсем банальной, в ней я отвечу на один очень важный вопрос по расчету потери напряжения и расчету токов короткого замыкания. Думаю, для многих из вас это станет таким же открытием, как и для меня.
Недавно я изучал один очень интересный ГОСТ:
ГОСТ Р 50571.5.52-2011 Электроустановки низковольтные. Часть 5-52. Выбор и монтаж электрооборудования. Электропроводки.
Советую почитать данный документ, т.к. там много чего полезного.
В этом документе приводится формула для расчета потери напряжения и указано:
р — удельное сопротивление проводников в нормальных условиях, взятое равным удельному сопротивлению при температуре в нормальных условиях, то есть 1,25 удельного сопротивления при 20 °С, или 0,0225 Ом · мм 2 /м для меди и 0,036 Ом · мм 2 /м для алюминия;
Я ничего не понял=) Видимо, при расчетах потери напряжения да при расчете токов короткого замыкания мы должны учитывать сопротивление проводников, как при нормальных условиях.
Стоит заметить, что все табличные значения приводят при температуре 20 градусов.
А какие нормальные условия? Я думал 30 градусов Цельсия.
Давайте вспомним физику и посчитаем, при какой температуре сопротивление меди (алюминия) увеличится в 1,25 раза.
R1=R0 [1+α (Т1-Т0)]
R0 – сопротивление при 20 градусах Цельсия;
R1 — сопротивление при Т1 градусах Цельсия;
Т0 — 20 градусов Цельсия;
α=0,004 на градус Цельсия (у меди и алюминия почти одинаковые);
Т1=(1,25-1)/ α+Т0=(1,25-1)/0,004+20=82,5 градусов Цельсия.
Как видим, это совсем не 30 градусов. По всей видимости, все расчеты нужно выполнять при максимально допустимых температурах кабелей. Максимальная рабочая температура кабеля 70-90 градусов в зависимости от типа изоляции.
Честно говоря, я с этим не согласен, т.к. данная температура соответствует практически аварийному режиму электроустановки.
В своих программах я заложил удельное сопротивление меди – 0,0175 Ом · мм 2 /м, а для алюминия – 0,028 Ом · мм 2 /м.
Если помните, я писал, что в моей программе по расчету токов короткого замыкания получается результат примерно на 30% меньше от табличных значений. Там сопротивление петли фаза-ноль рассчитывается автоматически. Я пытался найти ошибку, но так и не смог. По всей видимости, неточность расчета
заключается в удельном сопротивлении, которое используется в программе. А удельное сопротивление может задать каждый, поэтому вопросов к программе не должно быть, если указать удельные сопротивления из выше приведенного документа.
А вот в программы по расчету потерь напряжения мне скорее всего придется внести изменения. Это приведет к увеличению на 25% результатов расчета. Хотя в программе ЭЛЕКТРИК, потери напряжения получается практически такие, как у меня.
Если вы впервые попали на этот блог, то ознакомиться со всеми моими программами можно на странице МОИ ПРОГРАММЫ.
Как вы считаете, при какой температуре нужно считать потери напряжения: при 30 или 70-90 градусах? Есть ли нормативные документы, которые ответят на этот вопрос?
Советую почитать:
Характеристики основных типов фундаментов опор
Расчет заземлителя для молниезащиты
Программа для расчета нагрузок жилых зданий
Расчет сечения кабеля от ВУ до рентгенаппарата
Рубрика: Про расчет Метки: сопротивление
комментариев 28 “Удельное сопротивление меди и алюминия для расчетов”
R1=R0 (1+at1) R2=R0 (1+at2) R2=R1*(1+at1)/(1+at2) a=0,0043 R2/R1=(235+t2)/235+t1) 1,25=(235+t2)/(235+t1) t2=1,25 (235-t1) -235=1,25 (235-20) -235=33,75
Проверьте свой расчет, присутствуют математические ошибки. R1=R0 (1+at1) R2=R0 (1+at2) R2=R1*(1+at2)/(1+at1) R2/R1=(1+at2)/(1+at1) 1,25=(1+at2)/(1+at1) 1,25 (1+at1)=1+at2 t2=(1,25 (1+at1) -1)/a=(1,25 (1+0,0043*20) -1)/0,0043=83 Вроде тот же резульатат))
R0 — сопротивление проводника при 0 град. цельсия
А R1 — при одном градусе цельсия)
«удельное сопротивление проводников в нормальных условиях, взятое равным удельному сопротивлению при температуре в нормальных условиях» масло масляное какое-то. В «Руководстве по устройству электроустановок» от Schneider Electric, например, в качестве удельных сопротивлений берутся те же значения 0.0225 и 0.036, и там везде, где они упоминаются, тоже пишут о том, что это значения при нормальных рабочих условиях, хотя что это за условия — не указывается. Всегда считал, что это берутся значения для каких-то наихудших вариантов (мало ли что там у них за медь такая в кабелях на Западе). Сам всегда считал для 35 градусов, а удельное сопротивление для меди беру от кабеля ВВГнг — 0.0185. Кстати, в том же госте в формуле потери напряжения для трехфазной цепи коэф. b берется равным единице, хотя в том же пособии от Schneider Electric это значение равняется корню из 3. Вот и думай теперь, кто прав, а кто виноват. Но я почему-то больше верю ребятам с Запада.
У меня в программах тоже заложен 1,73. Думаю в этом ГОСТе ошибка. Понабирают по объявлению. а потом пишут ГОСТы)))
Я уверен на 99%, что ГОСТы в нашей стране пишутся студентами (далеко не отличниками) под «присмотром» 80-летних профессоров в обмен на халявные зачеты. В наше время, когда у всех под рукой есть интернет, нужно всегда просматривать несколько источников информации по одной и той же теме, в том числе и западных.
«65 градусов — это наибольшая допустимая температура кабеля» Длительно допустимая 70 градусов для ПВХ изоляции. А аварийный режим для кабеля допускает перегрузку до 1,15. Я беру 20*10^-9 Ом*м для меди и 33*10^-9 Ом*м для алюминия. Точно не помню, но если не ошибаюсь, такие значения у Кноринга приняты.
Посмотрел в книгу Кноринга: для меди 1/53=0,01887 Ом*мм2/м; для алюминия 1/32=0,03125 Ом*мм2/м
Странно. Я давно, когда эксельку по Кнорингу составлял, пометил 30,5*10^6 и 50*10^6 См/м для алюминия и меди соответственно. Возможно другое издание. Самой книги у меня не сохранилось. Но вполне возможно, что эти значения я получил решая обратную задачу, по коэффициенту С. Т.к. такие значения дают соответствующие значения С. Например для меди при трехфазной группе, если принять y=53*10^6 См/м, то коэффициент С получается 76,5, тогда как 50*10^6 Cм/м дает 72,2, тогда как в таблице это значение 72.
В общем из всего этого можно сделать один вывод — в разных источниках предлагаются разные значения сопротивления для разных расчетных условий. Кто какие значения хочет, те и берет.
И это мы еще значения сопротивлений нулевой последовательности не рассматривали
По поводу коэффициента. И в ГОСТе правильно и у Шнайдера. Весь вопрос в том, что вы посчитали. Там, где у Шнайдера корень из трех, это дельта линейного напряжения. Чтобы в проценты перевести они и делят на линейное. По ГОСТовской формуле получите дельту на проводнике. Чтобы в проценты ее перевести нужно делить на фазное.
«Рекомендации по расчету сопротивления цепи фаза-нуль» главэлектромонтаж, москва, 1986. Сопротивления подсчитывались при температуре проводов и кабелей 65 градусов
Для расчета КЗ я согласен, а вот для расчета потери напряжения. есть сомнения.
65 градусов — это наибольшая допустимая температура кабеля, то есть по факту — температура при аварийном режиме работы, никак не нормальные рабочие условия. Даже если мы подставим 65 в формулу выше, получим соотношение R1/R0=1.18. Что подразумевалось под значением 1.25 в ГОСТе, если при 1.18 уже как бы авария, остается только догадываться. Возьмем ГОСТ 28249-93, приложение 2 «Увеличение активного сопротивления кабелей». Цитата: «Значения коэффициента, учитывающего увеличение активного сопротивления медного кабеля при нагреве его током КЗ, определяют в зависимости от сечения кабеля, тока КЗ и продолжительности КЗ по кривым (таким-то)». На кривых сечения кабелей начинаются от 16 кв.мм, и при токе КЗ менее 10 кА с сечением меньше 16 кв.мм. кривые отсутствуют, а значит коэффициент стремится к 1, и уж никак не к 1.18, и тем более не к 1.25. По правилам безопасности, автомат должен отключать защищаемую линию от КЗ за время меньше 0.4 с, по факту же по время-токовым характеристикам время отключения составляет не более 0.02 с. Как за такое время кабель может нагреться даже до 65 градусов? То есть мы должны заведомо в расчетах тока КЗ брать увеличенное сопротивление кабеля, тем самым уменьшая ток КЗ в линии, что может повлечь за собой несоответствие номинала автомата сечению кабеля. Ведь так?
Длительно-допустимый ток нагревает изоляцию до допустимой температуры: 70°C (см. табл. 52.1 ГОСТ Р 50571.5.52-2011). Чем меньше допустимая температура изоляции, тем меньше длительно-допустимый ток. Значения вспомогательных таблиц удельных потерь напряжения для расчёта через момент нагрузки (Ма, кВт/км) в литературе приведены при допустимой температуре изоляции 65°C, что соответствует ранее применяемым типам изоляции. Если расчёт по формуле приложения G выполнить при коэффициенте увеличения удельного сопротивления проводников 1,18, то результат, полученный обоими методами, будет отличаться только во втором знаке после запятой. Формула (31) приложения 3 ГОСТ 28249-93 (в которой в качестве расчётной температуры нагрева проводников принимают 65°C) только подтверждает формулу приложения G ГОСТ Р 50571.5.52-2011.
Удельное сопротивление меди при 20°C равно 0,0175 Ом*мм2/м, которое округлили до 0,018 и умножили на 1,25, получив 0,0225 Ом*мм2/м. Табличные значения в ГОСТ Р 50571.5.52-2011 приведены для нормальных условий: при температуре проводников 70°C для PVC и 90°C для XLPE или EPR; и окружающей температуры 30°C в воздухе, 20°C в земле. Допустимые температуры нагрева токопроводящих жил (ТПЖ) кабеля приведены в таблице 18 ГОСТ 31996-2012, где для материала изоляции кабеля из ПВХ-пластиката (например, ВВГнг(А) -LS) и полимерной композиции без галогенов (например, ППГнг(А) -HF) длительно допустимая t=70°C, в режиме перегрузки t=90°C, а для СПЭ t=90 и 130°C соответственно; так же указаны допустимые температуры при КЗ. В справочнике по электрооборудованию ABB в таблицах приведены сопротивление на единицу длины медных кабелей при при 80°C. Противоречия отсутствуют.
В книге Кнорринг Г. М. — Справочная книга для проектирования электрического освещения (1992 г.) написано следующее: Фактическое сечение жил проводов за счет скрутки и удлинения несколько меньше указанных в паспорте, и при расчетах сетей предполагается учитывать этот факт, принимая для меди 53 м/(Ом*мм2), а для алюминия — 32 м/(Ом*мм2) (вместо 55,56 и 33,9).
ГОСТ 22483-2012 ТПЖ кабелей, проводов и шнуров. Жилы подразделены на шесть классов, для которых нормировано электрическое сопротивление. Вместе с тем, точные расчёты требуют значительного времени, поэтому на практике используют номограммы и таблицы при определённых допусках, с достаточной практической точностью.
Мое мнение что надо учитывать удельное сопротивление при максимально возможных температурах кабеля, так как смысл расчета потерь напряжения, обеспечить во всем диапазоне нормируемые параметры, утрируя например кабель у вас нагрелся до 60 градусов что для него нормально, а вы рассчитываете потери с данными кабеля при 30 градусов и следовательно потери больше нормируемых, с оговоркой что считается минимально возможные отклонение напряжения в аварийном режиме ±10% по ГОСТ, если расчет ведется как обычно на ± 5%, то можно брать и сопротивление при 30 градусах.
Всем привет. Справочная книга под редакцией Г.М. Кнорринга 1976г. Формула «12-17», «12-18» стр.346 и таблица «12-9» стр.349. И все вопросы будут сняты.
«и 0,036 Ом · мм2/м для алюминия;» — это с какого перепуг сия цифра возникла? Явно кто это писал в детстве были проблемы с арифметикой. Для алюминия плотность должно принимать 2*0,028=0,056 Ом*мм2/м.
Не могли бы вы чем-либо подтвердить свои цифры?
По идее, действительно необходимо увеличить плотность кабеля на 1,25 — поправка на скрутку жил. Тогда получаем удельное сопротивление расчетной цепи 2*1,25*0,028=0,07 Ом*мм2/м.