Урок 2
Электрическая сеть. Приёмники электрической энергии. Устройства для накопления энергии
Тема урока. Электрическая сеть. Приёмники электрической энергии. Устройства для накопления энергии.
Тип урока: комбинированный.
Цели урока: организовать деятельность обучающихся по ознакомлению с типами электрических сетей, приёмниками электрической энергии, устройствами для накопления энергии; научить обучающихся собирать электрические цепи по электрической схеме.
Технологии в энергетике
§2. Электрическая сеть. Приёмники электрической энергии. Устройства для накопления энергии
Электрическая сеть — совокупность линий электропередачи и специального электрооборудования, предназначенная для передачи и распределения электроэнергии.
Различают следующие типы электрических сетей:
— магистральная, связывающая отдельные регионы и страны;
— региональная, обслуживающая большие города, районы, крупные предприятия и др.;
— районная, питающая электроэнергией районные города, отдельные посёлки, транспортные узлы;
— внутренняя, распределяющая электроэнергию на небольшом пространстве: в городских кварталах, на небольших предприятиях;
— электропроводка — сеть низшего уровня, питающая электроэнергией отдельные здания, цехи предприятий, помещения различного назначения.
Приёмник электрической энергии — это устройство, в котором происходит преобразование электрической энергии в другой вид энергии для её использования. На рисунке 5 показаны приёмники электрической энергии бытового назначения.
Рис. 5. Бытовые приёмники энергии:
а — мобильный телефон; б — планшетный компьютер; в — телевизор; г — музыкальный центр; д — видеоплеер; е — электрическая плита; ж — светильник; з — утюг; и — посудомоечная машина; к — персональный компьютер
Для переносных приёмников электроэнергии требуются автономные (независимые от электрической сети) источники энергии. Такими устройствами с накопленной электроэнергией являются гальванические элементы (батарейки), названные по имени изобретателя Луиджи Гальвани, и аккумуляторы (рис. 6).
Рис. 6. Гальванические элементы (а) и аккумуляторы (б):
1 — для ноутбука; 2 — для зарядки смартфонов и планшетов; 3 — для телефона; 4 — автомобильный
Гальванические элементы служат определённое время и затем теряют свою энергию — разряжаются и далее не используются.
Аккумуляторы как источники многоразового действия после разрядки подключают к зарядным устройствам для накопления энергии и применяют повторно.
Батарейки и аккумуляторы используют в фонарях, телефонах, часах, калькуляторах, аудиосистемах, компьютерах, игрушках, радиоприёмниках, пультах дистанционного управления, для запуска двигателей машин и др.
Область техники, связанную с получением, распределением, преобразованием и использованием электрической энергии, называют электротехникой.
Электрическая цепь — соединённые проводами источники и приёмники электрической энергии, а также другие электротехнические устройства (электроизмерительные приборы, выключатели, розетки, вилки, предохранители и др.).
Электрические проводники — материалы, проводящие электрический ток: металлы и сплавы (алюминий, медь, сталь, латунь и др.), жидкости (вода, спирт и др.).
Диэлектрики (изоляторы) — материалы, не пропускающие электрический ток: стекло, пластмассы, фарфор, бетон, сухая древесина и др.
Электрическая схема — это изображение электрической цепи с помощью условных обозначений (табл. 1).
Чаще всего применяют два типа электрических схем: принципиальную, представляющую собой графическое изображение элементов в виде условных знаков (рис. 7, а), и монтажную, показывающую реальное расположение элементов относительно друг друга (рис. 7, б).
Рис. 7. Электрические схемы: а — принципиальная; б — монтажная
Таблица 1
Условные обозначения некоторых элементов электрических схем
№ п/п | Название | Обозначение |
1 | Провод | ![]() |
2 | Соединение проводов | ![]() |
3 | Пересечение проводов без соединения | ![]() |
4 | Гальванический элемент | ![]() |
5 | Батарея гальванических элементов | ![]() |
6 | Выключатель | ![]() |
7 | Выключатель кнопочный | ![]() |
8 | Предохранитель | ![]() |
9 | Лампа | ![]() |
10 | Динамик (громкоговоритель) | ![]() |
11 | Микрофон | ![]() |
12 | Электродвигатель | ![]() |
13 | Геркон (магнитоуправляемый контакт) | ![]() |
14 | Фоторезистор (светочувствительный резистор) | ![]() |
15 | Светодиод | ![]() |
16 | Реостат (переменный резистор) | ![]() |
17 | Сенсорная пластина (сенсор) | ![]() |
Правила безопасной работы
1. Для сборки электрических схем использовать гальванические элементы с напряжением 1,5—9 В.
2. При монтаже электрической цепи па столе, кроме учебного конструктора, не должно находиться посторонних предметов.
3. Источники питания включать только после проверки учителем собранной учащимся электрической цепи.
4. Бережно обращаться с деталями электротехнического конструктора.
Практическая работа № 1
Подготовка к образовательному путешествию (экскурсии)
1. Сделайте информационное сообщение о подготовке к экскурсии на предприятие, где применяются технологии производства, преобразования, распределения или передачи энергии (по результатам вашей самостоятельной домашней работы). Сравните результаты вашего поиска информации с результатами одноклассников.
2. Выберите маршрут и составьте в рабочей тетради перечень того, на что надо обратить внимание при исследовании работы выбранного предприятия: вид производственного помещения и используемого энергетического оборудования, применяемые технологии, профессии специалистов, работающих на данном предприятии, и др.
Практическая работа № 2
Сборка простых электрических цепей
1. C помощью учебного электротехнического конструктора соберите электрические цепи последовательного и параллельного соединения лампы и электродвигателя с вентилятором, схемы которых показаны на рисунке 8.
Рис. 8. Соединение лампы и электродвигателя: а — последовательное; б — параллельное
2. Замкните выключатель — лампа загорится, а вентилятор начнёт вращаться. При размыкании выключателя лампа погаснет, а вентилятор остановится.
3. Выполнив модификацию одной из схем, показанных на рисунке 8, соберите с помощью конструктора электрическую цепь, в которой лампу и электродвигатель можно будет включать и выключать независимо друг от друга. Решите задачу, рассмотрев возможные альтернативные варианты схем.
Практическая работа № 3
Сборка разветвлённой электрической цепи
1. С помощью учебного электротехнического конструктора соберите электрическую цепь, содержащую лампу, электродвигатель с вентилятором и геркон (рис. 9).
Рис. 9. Схемы электрических цепей (для практической работы № 3): а — принципиальная; б — монтажная
Примечание: геркон (герметичный контакт) проводит электрический ток, если к нему приложить магнит.
2. Замкните выключатель — лампа загорится, а вентилятор начнёт вращаться только тогда, когда к геркону будет приложен магнит.
3. Выполнив модификацию схемы, показанной на рисунке 9, соберите с помощью конструктора электрическую цепь, в которой и лампа, и электродвигатель будут включаться только при замыкании контакта в герконе. Решите задачу, рассмотрев возможные альтернативные варианты схем.
Запоминаем опорные понятия
Электрическая сеть, приёмник электрической энергии, гальванический элемент, аккумулятор, электротехника, электрическая цепь, электрическая схема (принципиальная, монтажная), электрический проводник, диэлектрик.
Проверяем свои знания
1. В чём различие между магистральной и внутренней электрическими сетями?
2. Чем аккумулятор отличается от батарейки?
3. Ткань — это электрический проводник или диэлектрик?
Конюхова Е. А. Электроснабжение объектов
В настоящее время нельзя представить себе жизнь и деятельность современного человека без применения электричества. Электричество уже давно и прочно вошло во все отрасли народного хозяйства и в быт людей. Основное достоинство электрической энергии относительная простота производства, передачи, дробления и преобразования.
В системе электроснабжения объектов можно выделить три вида электроустановок: по производству электроэнергии электрические станции;
по передаче, преобразованию и распределению электроэнергии электрические сети и подстанции;
по потреблению электроэнергии в производственных и бытовых нуждах приемники электроэнергии.
Электрической станцией называется предприятие, на котором вырабатывается электрическая энергия. На этих станциях различные виды энергии (энергия топлива, падающей воды, ветра, атомная и др.) с помощью электрических машин, называемых генераторами, преобразуются в электрическую энергию.
В зависимости от используемого вида первичной энергии все существующие электрические станции разделяются на следующие основные группы: тепловые, гидравлические, атомные, ветряные и др.
Приемником электроэнергии (электроприемником, токоприемником) называется электрическая часть производственной установки, получающая электроэнергию от источника и преобразующая ее в механическую, тепловую, химическую, световую энергию, в энергию электростатического и электромагнитного поля.
По технологическому назначению приемники электроэнергии классифицируются в зависимости от вида энергии, в который данный приемник преобразует электрическую энергию: электродвигатели приводов машин и механизмов; электротермические установки; электрохимические установки; установки электроосвещения; установки электростатического и электромагнитного поля, электрофильтры; устройства искровой обработки, устройства контроля и испытания изделий (рентгеновские аппараты, установки ультразвука и т.д.). Электроприемники характеризуются номинальными параметрами: напряжением, током, мощностью и др.
Совокупность электроприемников производственных установок цеха, корпуса, предприятия, присоединенных с помощью электрических сетей к общему пункту электропитания, называется электропотребителем .
Совокупность электрических станций, линий электропередачи, подстанций, тепловых сетей и приемников, объединенных общим и непрерывным процессом выработки, преобразования, распределения тепловой и электрической энергии, называется энергетической системой.
Единая энергетическая система (ЕЭС) объединяет энергетические системы отдельных районов, соединяя их линиями электропередачи (ЛЭП).
Часть энергетической системы, состоящая из генераторов, распределительных устройств, повышающих и понижающих подстанций, линий электрической сети и приемников электроэнергии, называют электроэнергетической системой.
Электрической сетью называется совокупность электроустановок для передачи и распределения электроэнергии, состоящая из подстанций и распределительных устройств, соединенных линиями электропередачи, и работающая на определенной территории.
Электрическая сеть объекта электроснабжения, называемая системой электроснабжения объекта, является продолжением электрической системы. Система электроснабжения объекта объединяет понижающие и преобразовательные подстанции, распределительные пункты, электроприемники и ЛЭП.
Прием, преобразование и распределение электроэнергии происходят на подстанции электроустановке, состоящей из трансформаторов или иных преобразователей электроэнергии, распределительных устройств, устройств управления, защиты, измерения и вспомогательных устройств.
Распределение поступающей электроэнергии без ее преобразования или трансформации выполняется на распределительных подстанциях (РП).
Электрические сети подразделяют по следующим признакам.
- Напряжение сети. Сети могут быть напряжением до 1 кВ низковольтными, или низкого напряжения (НН), и выше 1 кВ высоковольтными, или высокого напряжения (ВН).
- Род тока. Сети могут быть постоянного и переменного тока. Электрические сети выполняются в основном по системе трехфазного переменного тока, что является наиболее целесообразным, поскольку при этом может производиться трансформация электроэнергии. При большом числе однофазных приемников от трехфазных сетей осуществляются однофазные ответвления. Принятая частота переменного тока в ЕЭС России равна 50 Гц.
- Назначение. По характеру потребителей и от назначения территории, на которой они находятся, различают: сети в городах, сети промышленных предприятий, сети электрического транспорта, сети в сельской местности. Кроме того, имеются районные сети, предназначенные для соединения крупных электрических станций и подстанций на напряжении выше 35 кВ; сети межсистемных связей, предназначенные для соединения крупных электроэнергетических систем на напряжении 330,500 и 750 кВ. Кроме того, применяют понятия: питающие и распределительные сети.
Рис. 1.1. Условные обозначения элементов электрической системы
Рис. 1.2. Схема электрической системы
- Конструктивное выполнение сетей. Линии могут быть воздушными, кабельными и токопроводами. Подстанции могут быть открытыми и закрытыми.
Для графического изображения электроэнергетических систем, а также отдельных элементов и связи между элементами используют общепринятые условные обозначения. На рис.
1.1 показаны условные обозначения основных элементов электроэнергетической системы.
Примерная схема относительно простой электроэнергетической системы приведена на рис. 1.2. Здесь электрическая энергия, вырабатываемая на двух электростанциях различных типов: тепловой электростанции (ТЭС) и теплоэлектроцентрали (ТЭЦ), подводится к потребителям, удаленным друг от друга. Для того чтобы передать электроэнергию на расстояние, ее предварительно преобразовывают, повышая напряжение трансформаторами. У мест потребления электроэнергии напряжение понижают до нужной величины. Из схемы можно понять, что электроэнергия передается по воздушным линиям. Схема, приведенная на рис. 1.2, представлена в однолинейном изображении. В действительности элементы системы, работающие на переменном токе, имеют трехфазное исполнение. Однако для выявления структуры системы и анализа ее работы нет необходимости в ее трехфазном изображении, вполне достаточно воспользоваться ее однолинейным изображением.
1.2. Электрические параметры электроэнергетических систем
При анализе работы сети различают параметры элементов сети и параметры ее режимов. Параметрами элементов электрической сети являются сопротивления и проводимости, коэффициенты трансформации. К параметрам сети также относят электродвижущую силу (э.д.с.) источников и задающие токи (мощности) нагрузок. К параметрам режима относятся: значения частоты, токов в ветвях, напряжений в узлах, фазовых углов, полной, активной и реактивной мощностей электропередачи, а также значения, характеризующие несимметрию трехфазной системы напряжений или токов и несинусоидальность изменения напряжения и токов в течение периода основной частоты.
Под режимом сети понимается ее электрическое состояние.
Рассмотрим возможные режимы работы электрических систем.
При работе в нормальном установившемся режиме значения основных параметров (частоты и напряжения) равны номинальным или находятся в пределах допустимых отклонений от них, значения токов не превышают допустимых по условиям нагревания величин. Нагрузки изменяются медленно, что обеспечивает возможность плавного регулирования работы электростанций и сетей и удержание основных параметров в пределах допустимых норм. Отметим, что нормальным считается режим и при включении и отключении мощных линий или трансформаторов, а также для резкопеременных (ударных) нагрузок. В этих случаях после завершения переходного процесса, который продолжается доли секунды, вновь наступает установившийся нормальный режим, когда значения параметров в контрольных точках системы оказываются в допустимых пределах.
В переходном неустановившемся режиме система переходит из установившегося нормального состояния в другое установившееся с резко изменившимися параметрами. Этот режим считается аварийным и наступает при внезапных изменениях в схеме и резких изменениях генераторных и потребляемых мощностей. В частности, это имеет место при авариях на станциях или сетях, например при коротких замыканиях и последующем отключении поврежденных элементов сети, резком падении давления пара или напоров воды и т.д. Во время аварийного переходного режима параметры режима системы в некоторых ее контрольных точках могут резко отклоняться от нормированных значений.
Послеаварийный установившийся режим наступает после локализации аварии в системе. Этот режим чаще всего отличается от нормального, так как в результате аварии один или несколько элементов системы (генератор, трансформатор, линия) будут выведены из работы. При послеаварийных режимах может возникнуть так называемый дефицит мощности, когда мощность генераторов в оставшейся в работе части системы меньше мощности потребителей. Параметры послеаварийного (форсированного) режима могут в той или иной степени отличаться от допустимых значений. Если значения этих параметров во всех контрольных точках системы являются допустимыми, то исход аварии считается благополучным. В противном случае исход аварии неблагополучен и диспетчерская служба системы принимает немедленные меры к тому, чтобы привести параметры послеаварийного режима в соответствие с допустимыми.
1.3. Напряжения электрических сетей
Электрическое оборудование, применяемое в электрических системах, характеризуется номинальным напряжением. При номинальном напряжении электроустановки работают в нормальном и экономичном режимах.
Номинальное напряжение сети совпадает с номинальным напряжением ее приемников. Первичные обмотки трансформаторов (независимо от того, повышающие они или пони
жающие) играют роль потребителей электроэнергии, поэтому их номинальное напряжение принимают равным номинальному напряжению электроприемников.
Генераторы электрических станций и вторичные обмотки трансформаторов находятся в начале питаемой ими сети, поэтому их напряжения должны быть выше номинального напряжения приемников на величину потерь напряжения в сети. Обычно принимают номинальное напряжение вторичных обмоток трансформатора на 5 или 10% выше номинального для электроприемников и сети.
ЛЭП, предназначенные для распределения электроэнергии между отдельными потребителями в некотором районе и для связи энергосистем, могут выполняться как на большие, так и на малые расстояния и предназначаться для передачи мощностей различных величин. Для дальних передач большое значение имеет пропускная способность, т. е. та наибольшая мощность, которую можно передавать по ЛЭП с учетом всех ограничивающих факторов.
Для воздушных ЛЭП переменного тока можно приближенно считать, что та максимальная мощность, которую они могут передать, примерно пропорциональна квадрату
Номинальные напряжения электрических систем
Номинальные напряжения приемников и сети, кВ
Номинальные междуфазные напряжения на зажимах, кВ
Примечания: 1. Напряжения, указанные в скобках, для вновь проектируемых сетей не рекомендуются.
- Знаком * отмечены напряжения трансформаторов, присоединяемых непосредственно к шинам генераторного напряжения электрических станций или к выводам генераторов.
напряжения и обратно пропорциональна длине передачи. Стоимость сооружения можно принять пропорциональной величине напряжения. Поэтому в развитии передач электроэнергии на расстояние наблюдается тенденция к увеличению напряжения как к главному средству увеличения пропускной способности. Со времени создания первых ЛЭП напряжение повышалось в 1,5 . 2 раза примерно каждые 15 . 20 лет. Рост напряжения давал возможность увеличивать протяженности ЛЭП и передаваемые мощности.
В табл. 1.1 приведены номинальные междуфазные (линейные) напряжения для трехфазных приемников электрической энергии, генераторов и трансформаторов.
1.4. Управление электроэнергетическими системами
Особенностью работы электроэнергетических систем является то, что электростанции должны вырабатывать столько мощности, сколько ее требуется в данный момент для покрытия нагрузки потребителей, собственных нужд станций и потерь в сетях. Поэтому оборудование станций и сетей должно быть готово ко всякому периодическому изменению нагрузки потребителей в течение суток или года. Для того чтобы наиболее экономично эксплуатировать электрическую станцию, персоналу диспетчерских служб энергосистемы необходимо заранее знать, как изменяется спрос на электрическую энергию. Зная эти изменения, персонал может подгото
вить остановку необходимого числа генераторов при снижении нагрузки и, наоборот, подготовить к пуску резервные генераторы при увеличении потребления энергии.
Следует также учитывать, что от энергосистем питается ряд потребителей, нарушение электроснабжения которых недопустимо, так как это может привести к авариям и человеческим жертвам, вызвать простои и недовыпуск продукции предприятиями и т.д. Поэтому к работе энергосистем предъявляются следующие основные требования:
выполнение плана выработки и распределения электроэнергии с покрытием максимумов нагрузки;
бесперебойная работа электрооборудования и надежная работа систем электроснабже
обеспечение необходимого качества отпускаемой потребителям электроэнергии по на
пряжению и частоте.
Для обеспечения указанных требований энергосистемы оборудуются специальными диспетчерскими пунктами, которые оснащаются средствами контроля, управления, связью, четкой мнемонической схемой расположения электростанций, ЛЭП и понижающих подстанций.
Отличительной особенностью диспетчерской службы является полная ответственность диспетчера за работу электростанций, электросетей и электроснабжение потребителей. Распоряжение диспетчера является законом и должно безоговорочно выполняться всеми звеньями энергосистемы.
Основной целью управления энергосистемой является оптимизация ее построения, работы и эксплуатации. Для этого необходимо знать:
свойства и характеристики системы;
данные о состоянии технологического процесса на электростанциях (о расходе воды и топлива, параметрах пара, скорости вращения турбин и т.д.);
сведения об электрических параметрах режима (частоте, напряжениях, токах, активных и реактивных мощностях и т.д.);
положение схемы системы какие элементы в данный момент находятся в работе, а какие отключены.
Вся эта обширная информация о работе энергосистемы должна перерабатываться и использоваться для оптимизации режима работы.
В системе управления электроэнергетикой большое значение имеют электронные цифровые вычислительные машины.
При аварии дежурный инженер должен найти пути и средства восстановления нормального режима, произвести требуемые переключения в схеме электрических соединений. При аварийных режимах в энергосистеме часто требуется выдать управляющий сигнал не более чем через 0,05 с. Человека здесь выручают автоматические устройства, обладающие при переработке информации большим, чем он, быстродействием.
1.5. Структура потребителей и понятие о графиках их электрических нагрузок
В зависимости от выполняемых функций, возможностей обеспечения схемы питания от энергосистемы, величины и режимов потребления электроэнергии и мощности, особенностей правил пользования электроэнергией потребителей электроэнергии принято делить на следующие основные группы:
промышленные и приравненные к ним; производственные сельскохозяйственные; бытовые;
общественнокоммунальные (учреждения, организации, предприятия торговли и общественного питания и др.).
К промышленным потребителям приравнены следующие предприятия: строительные, транспорта, шахты, рудники, карьеры, нефтяные, газовые и другие промыслы, связи, коммунального хозяйства и бытового обслуживания.
Промышленные потребители являются наиболее энергоемкой группой потребителей электрической энергии.
Каждая из групп потребителей имеет определенный режим работы. Так, например, электрическая нагрузка от коммунальнобытовых потребителей с преимущественно осветительной нагрузкой отличается большой неравномерностью в различное время суток. Днем нагрузка небольшая, к вечеру она возрастает до максимума, ночью она резко падает и к утру вновь возрастает. Электрическая нагрузка промышленных предприятий более равномерна в течение дня и зависит от вида производства, режима рабочего дня и числа смен.
Рис. 1.3. Суточные графики осветительной нагрузки города: а зимой; б – летом
Наглядное представление о характере изменения электрических нагрузок во времени дают графики нагрузок. По продолжительности они могут быть суточными и годовыми. Если откладывать по оси абсцисс часы суток, а по оси ординат потребляемую в каждый момент времени мощность в процентах от максимальной мощности, то получим
Рис. 1.4. Суточные графики электрической нагрузки крупного города: а — зимой; б — летом
суточный график нагрузки. На рис. 1.3 изображены суточные графики осветительной нагрузки города для зимнего (октябрь март) и летнего (апрель сентябрь) периодов. Максимальная нагрузка для зимних суток наступает между 17 и 20 ч (кривая а), а для летних суток между 22 и 23 ч (кривая б). Таким образом, летний максимум (мощность в часы пик) наступает позднее и значительно меньше по величине, чем зимой. Дневной минимум также уменьшается.
На рис. 1.4 изображены характерные суточные графики активной мощности (в процентах от максимальной мощности) крупного города с учетом нагрузок освещения, а также силового оборудования коммунальных предприятий, электрифицированного транспорта и др.
1.6. Преимущества объединения электроэнергетических систем
На первой стадии развития электроэнергетика представляла собой совокупность отдельных электростанций, не связанных между собой. Каждая из электростанций через собственную сеть передавала электроэнергию потребителям. В дальнейшем стали создаваться электрические системы, в которых электрические станции соединялись электрическими сетями и включались на параллельную работу. Отдельные территориальные энергосистемы в свою очередь также объединялись, образуя более крупные энергосистемы. Тенденция к образованию по возможности более крупных энергетических объединений проявляется практически во всех странах.
Общее стремление к объединению энергетических систем вызвано огромными преимуществами по сравнению с отдельными станциями.
При создании объединенных энергетических систем можно уменьшить суммарную установленную мощность электростанций.
Большая совокупность потребителей электрической энергии характеризуется графиком нагрузки (см. рис. 1.4). Максимум суммарной нагрузки системы меньше, чем сумма максимумов нагрузок отдельных потребителей. Это объясняется несовпадением отдельных максимумов изза различных условий работы потребителей. В энергетических системах, охватывающих обширные географические районы, несовпадение максимумов вызвано расположением потребителей в разных часовых поясах. Например, объединение потребителей, размещенных в европейской и сибирской частях страны, позволит получить более равномерный суммарный график по сравнению с графиком нагрузки отдельных потребителей (рис. 1.5). Установленная мощность электростанций в системе должна быть достаточной для покрытия максимальных нагрузок потребителей. Кроме того, исходя из требований, предъявляемых к надежности работы систем, должна предусматриваться резервная мощность генераторов. При параллельной работе электрических станций резервная мощность может быть уменьшена. Покажем это на простом примере. Пусть две электростанции, каждая из которых имеет по четыре генератора, работают изолированно. Тогда одна станция может вырабатывать электрическую энергию, используя 75% установленной мощности, так как один генератор должен находиться в резерве. При соединении двух станций общей сетью в резерве находится один генератор из восьми, т.е. может быть использовано 7/8 (87,5%) установленной мощности.
При объединении разных типов электростанций можно более полно использовать гидроэнергетические ресурсы.
Расход воды в реке колеблется в больших пределах. Для надежного снабжения электроэнергией потребителей мощность гидроэлектростанции (ГЭС) при изолированной ее работе нужно выбирать исходя из обеспеченного расхода воды. В случае больших расходов часть воды пришлось бы сбрасывать мимо турбин.
Рис. 1.5. Эффект совмещения графиков нагрузок потребителей, расположенных в разных часовых поясах:
1,2 графики нагрузок отдельных подсистем; 3 — график объединенной системы
Рассмотрим преимущества объединения ТЭС и ГЭС на примере. Пусть мощности каждой станции равны 100 МВт. Каждая станция вырабатывает энергию для своего района, причем станции работают изолированно. Мощности нагрузок в каждом районе равны по 100 МВт. Потребности электроэнергии за сутки в каждом районе по 1600 МВт·ч. Далее предположим, что по расходу воды ГЭС за сутки может выработать только 1200 МВтч. Следовательно, дефицит электроэнергии в районе с ГЭС составит 400 МВт·ч. ТЭС за сутки может выработать 2400 МВт·ч, т.е. в районе с ТЭС могут быть дополнительно использованы 800 МВт·ч. При объединении на параллельную работу ТЭС и ГЭС можно, заставив ТЭС выработать 2400 МВт·ч электроэнергии, полностью удовлетворить спрос всех потребителей двух районов.
Объединение нескольких электростанций разных видов позволяет повысить экономичность выработки электроэнергии.
Энергетические системы дают возможность согласованно работать тепловым и гидроэлектростанциям. В самом деле, в период недостатка воды на ГЭС (зимой) выработка электроэнергии на них снижается, и потребители обеспечиваются электроэнергией в большей мере от ТЭС. Наоборот, летом при большом притоке воды ГЭС работают на полную мощность, а выработка электроэнергии ТЭС снижается. Это обеспечивает экономию топлива и, следовательно, уменьшает себестоимость электроэнергии. Примерное распределение электрических нагрузок между станциями различных видов показано на суточном графике нагрузок в целом энергосистемы и доли в его покрытии различных видов электрических станций (рис. 1.6).
Из суточного графика энергосистемы видно, что в основном нагрузки покрывают тепловые конденсационные электростанции государственные районные электростанции (ГРЭС).
Доля ТЭЦ в покрытии нагрузок энергосистемы определяется их тепловыми графиками. Нагрузка ГЭС определяется стоком реки. Электростанции, подключаемые к системе в часы наибольших (пиковых) нагрузок, называют пиковыми. В большинстве случаев пиковыми станциями являются гидростанции (ГЭС и ГАЭС гидроаккумулирующие электростанции), не обеспеченные водой для длительной работы не в полную мощность в некоторые периоды, и станции, оборудованные газовыми турбинами.
Объединение энергосистем позволяет увеличить единичные мощности агрегатов.
С возрастанием мощностей агрегатов улучшаются их технические характеристики, и снижается удельная стоимость выработки электроэнергии.
Рис. 1.6. Примерные суточные графики нагрузок энергосистемы и электрических станций
Создание объединенных энергосистем позволяет повысить надежность электроснабжения потребителей.
Отдельные элементы системы (генераторы, трансформаторы, ЛЭП и др.) в результате аварий могут выходить из строя. В этих случаях часть потребителей может потерять питание. В схеме, показанной на рис. 1.7, при возникновении трехфазного короткого замыкания на ЛЭП
полностью прекращается подача электроэнергии потребителям. Применение устройств релейной защиты и автоматики является эффективным средством повышения надежности. Релейной защитой называется система устройств, которые производят отключение поврежденных элементов или частей системы и локализуют аварию. К автоматическим устройствам относятся устройства автоматического повторного включения (АПВ) и автоматического ввода (включения) резерва (АВР). Устройства АПВ (рис. 1.8) предназначены для ликвидации «переходящих» повреждений, например коротких замыканий. При появлении дугового короткого замыкания на воздушной линии (например, при попадании молнии) она отключается под действием релейной защиты, дуга гаснет и восстанавливаются диэлектрические свойства воздушного промежутка.
Затем под действием АПВ автоматически включается напряжение на линии электропередачи, которая может продолжить успешную работу.
Рис. 1.7. Схема прекращения подачи электроэнергии потребителям при трехфазном коротком замыкании
Рис. 1.8. Схема повышения надежности электроснабжения с помощью АПВ
Рис. 1.9. Схема повышения надежности электроснабжения с помощью АВР
Принцип работы АВР поясняет рис. 1.9. При повреждении одного из трансформаторов автоматически под действием релейной защиты происходит его отключение, а оставшиеся без напряжения потребители после срабатывания АВР подключаются к исправному трансформатору.
1.7. Организация взаимоотношений между энергосистемой и потребителями
Взаимоотношения между энергосистемой и потребителями регламентированы Правилами пользования электрической энергией. Их в определенной мере можно разделить на юридическиправовые, техникоэкономические и оперативнодиспетчерские.
К юридическиправовым вопросам относятся следующие:
регламентация порядка присоединения электроустановок потребителей к энергосистеме. Различные по составу и присоединяемой мощности потребители ставят перед энергосистемой задачи разной сложности присоединения;
разграничения балансовой принадлежности оборудования и сетей и эксплуатационной ответственности между потребителем и энергосистемой;
выбор соответствующих тарифов и системы расчета за электроэнергию;
определение условий электроснабжения потребителей в период возникновения в энергосистеме временных дефицитов мощности или энергии в целях сохранения устойчивости режима системы и ее разгрузки за счет отключения части потребителей;
определение порядка допуска персонала энергосистемы в электроустановки потребителей для оперативных переключений и для контроля над режимом электропотребления;
регламентация ответственности энергосистемы и потребителей за электроснабжение, качество электроэнергии и соблюдение правил пользования электроэнергией.
Техникоэкономические вопросы взаимоотношений между энергосистемой и потребителем связаны с разработкой и выполнением:
технических условий на присоединение электроустановок потребителей к энергосисте
схем размещения приборов контроля качества электроэнергии; схем размещения приборов учета;
нормативов по компенсации реактивной мощности и оптимальных режимов работы ком
правил и норм по надежной и экономичной эксплуатации электроустановок потребите
Оперативнодиспетчерские взаимоотношения определяются необходимостью обеспечеэлектроснабжения потребителей в соответствии с выбранным уровнем надежности схе
мы их внешнего электроснабжения;
нормальных условий эксплуатации и ремонта оборудования, сетей и приборов энергосистемы и потребителей;
установленных стандартом норм качества электроэнергии;
разгрузки энергосистемы для сохранения устойчивости ее режима при возникновении временных аварийных дефицитов мощности.
Единство электрической схемы энергосистемы и потребителей обуславливает необходимость строгой регламентации взаимоотношений между оперативнодиспетчерским персоналом.
Координация взаимоотношений между энергосистемой и потребителем возложена на Энергосбыт.
Глава 2
РЕЖИМЫ РАБОТЫ НЕЙТРАЛИ В СИСТЕМАХ ЭЛЕКТРОСНАБЖЕНИЯ
2.1. Режим работы нейтрали в установках напряжением выше 1 кВ
Электротехнические установки напряжением выше 1 кВ согласно Правилам устройства электроустановок (ПУЭ) разделяются на установки с большими токами замыкания на землю (сила тока однофазного замыкания на землю превышает 500 А) и установки с малыми токами замыкания на землю (сила тока однофазного замыкания на землю меньше или равна 500 А).
В установках с большими токами замыкания на землю нейтрали присоединены к заземляющим устройствам непосредственно или через малые сопротивления. Такие установки называются установками с глухозаземленной нейтралью.
В установках, имеющих малые токи замыкания на землю, нейтрали присоединены к заземляющим устройствам через элементы с большими сопротивлениями. Такие установки называются установками с изолированной нейтралью.
В установках с глухозаземленной нейтралью всякое замыкание на землю является коротким замыканием и сопровождается большим током.
В установках с изолированной нейтралью замыкание одной из фаз на землю не является коротким замыканием (КЗ). Прохождение тока через место замыкания обусловлено проводимостями (в основном, емкостными) фаз относительно земли.
Выбор режима нейтрали в установках напряжением выше 1 кВ производится при учете следующих факторов: экономических, возможности перехода однофазного замыкания в междуфазное, влияние на отключающую способность выключателей, возможности повреждения оборудования током замыкания на землю, релейной защиты и др.
В электрических сетях РАО ЕЭС России приняты следующие режимы работы нейтрали: электрические сети с номинальными напряжениями 6. 35 кВ работают с малыми токами
замыкания на землю;
при небольших емкостных токах замыкания на землю с изолированными нейтралями; при определенных превышениях значений емкостных токов с нейтралью, заземленной
через дугогасящий реактор.
Если в одной из фаз трехфазной системы, работающей с изолированной нейтралью, произошло замыкание на землю, то напряжение ее по отношению к земле станет равным нулю, а напряжение остальных фаз по отношению к земле станет равным линейному, т. е. увеличится в
раз. Ток замыкания на землю будет небольшим, поскольку вследствие изоляции нейтрали отсутствует замкнутый контур для его прохождения. Ток замыкания на землю в системе с изолированной нейтралью будет небольшим и не вызовет аварийного отключения линии. Таким образом, изоляция нейтрали источника питания обеспечивает надежность электроснабжения, так как не отражается на работе потребителей.
Однако в сетях с большими емкостными токами на землю (особенно в кабельных сетях) в месте замыкания возникает перемежающаяся дуга, которая периодически гаснет и вновь зажигается, что наводит в контуре с активными, индуктивными и емкостными элементами э.д.с, превышающие номинальные напряжения в 2,5. 3 раза. Такие напряжения в системе при однофазном замыкании на землю недопустимы. Чтобы предотвратить возникновение перемежающихся дуг между нейтралью и землей включают индуктивную катушку с регулируемым сопротивлением.
Повышение напряжения по отношению к земле в неповрежденных фазах при наличии слабых мест в изоляции этих фаз может вызвать междуфазное короткое замыкание,. Кроме то
го, напряжение в неповрежденных фазах повышается в раз, следовательно, требуется вы
полнять изоляцию всех фаз на линейное напряжение, что приводит к удорожанию машин и аппаратов. Поэтому, хотя и разрешается работа сети с изолированной нейтралью при замыкании фазы на землю, его требуется немедленно обнаружить и устранить.
Электрические сети с номинальным напряжением 110 кВ и выше работают с большими токами замыкания на землю (с эффективно заземленными нейтралями).
2.2. Режим работы нейтрали в установках напряжением до 1 кВ
Электроустановки напряжением до 1 кВ работают как с глухозаземленной (четырехпро
водные сети), так и с изолированной (трехпроводные сети) нейтралью.
В наиболее распространенных четырехпроводных сетях напряжением до 380 В, общих для силовых и осветительных электроприемников, нейтраль и нейтральный провод обязательно заземляются. Это вызвано тем, что контроль изоляции нейтрального провода относительно земли практически неосуществим. Нейтральный провод, не имеющий заземления, с неустраненными скрытыми дефектами изоляции представляет собой пожарную опасность, так как при однофазном замыкании на землю образуется петля для протекания тока КЗ через нейтральный провод (рис. 2.1). При относительно малом сечении нейтрального провода этот ток может вызвать значительный его перегрев и возгорание.
Рис. 2.1. Схема четырехпроводной сети напряжением до 1 кВ с заземленной нейтралью трансформатора и занулением оборудования
Рис. 2.2. Принципиальная схема трехпроводной сети напряжением до 1 кВ с изолированной нейтралью трансформатора:
1 вторичная обмотка трансформатора; 2 схема контроля изоляции; 3 – заземление
В четырехпроводных сетях необходимо также осуществить заземление всего оборудования на заземленную нейтраль. Безопасность при этом обеспечивается немедленным автоматическим отключением аварийного участка при протекании большого тока металлического КЗ.
В трехпроводных сетях (рис. 2.2) трехфазные двигатели, печи, сварочные аппараты и другие трехфазные электроприемники включаются только на линейное напряжение. Однофазные электроприемники соединяют по схеме треугольника, распределяя их равномерно по сторонам треугольника напряжений. Рассмотренные выше преимущества и недостатки трехпроводных сетей напряжением 6. 35 кВ с изолированной нейтралью распространяются и при напряжении до 1 кВ. Однако в сетях напряжением до 1 кВ перемежающиеся дуги при однофазном замыкании на землю не возникают и поэтому не требуется установка дугогасящих катушек. Однако емкостные токи при замыканиях на землю представляют опасность для персонала при соприкосновении с фазой. Безопасные значения токов могут быть только в малоразветвленных сетях с хорошим состоянием изоляции.
Таким образом, в установках напряжением до 1 кВ допустимы обе системы: при малоразветвленных сетях имеет преимущества система с изолированной нейтралью, при сильно разветвленных сетях целесообразно работать с заземленной нейтралью.
В электроустановках напряжением 500 и 660 В нейтраль, как правило, изолирована.
Глава 3.
КОНСТРУКТИВНОЕ ВЫПОЛНЕНИЕ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ.
3.1. Общие сведения.
Для выполнения электрических сетей применяются неизолированные (голые) и изолированные провода, кабели и токопроводы.
Голые провода не имеют изолирующих покровов. Их можно прокладывать только в условиях, исключающих случайные прикосновения к ним людей. Прикосновение проводящим предметом к одному или нескольким проводам приведет к замыканию. Наибольшее распространение голые провода получили на воздушных линиях, расположенных на открытом воздухе. Провода подвешиваются к опорам при помощи изоляторов и арматуры.
Большинство сетей напряжением до 1 кВ внутри помещений выполняются изолированными проводами, т. е. проводами, имеющими изолирующие, а иногда защитные покровы.
Кабелем называют многопроволочный провод или несколько скрученных вместе изолированных проводов при помещении в общую герметическую оболочку. Силовые кабели предназначены для прокладки в земле, под водой, на открытом воздухе и внутри помещений.
Токопроводом называют устройство, предназначенное для канализации электроэнергии при открытой прокладке в производственных и электротехнических помещениях, по опорным конструкциям, колоннам и фермам зданий. К токопроводам относятся шинные магистрали различного исполнения, которые называются шинопроводами.
Материалами для токоведущих частей проводов и кабелей являются медь, алюминий, их сплавы и сталь.
Медь один из лучших проводников электрического тока, и поэтому необходимые техникоэкономические показатели (потери электроэнергии) можно получить при меньших сечениях медных проводов, чем при проводах из других материалов. Твердотянутая медь при температуре +20°С имеет удельное сопротивление/ 18 Ом·мм2 в расчете на 1 км. Медные провода хорошо противостоят влиянию атмосферных условий и большинству химических реагентов, находящихся в воздухе.
Алюминий худший проводник, чем медь. Его проводимость примерно в 1,6 раза меньше проводимости меди, однако проводимость алюминия все же достаточно высока, чтобы его можно было использовать в качестве токопроводящего материала для проводов и кабелей. Действию атмосферных явлений алюминий противостоит так же хорошо, как и медь.
Стальные провода используются в тех случаях, когда требуется передать небольшую мощность и, следовательно, небольшое сечение, например, в сельских сетях. Стальные провода с большим сопротивлением на разрыв используются для устройства переходов воздушных линий через широкие реки, ущелья и т. п. при длине пролета более 1 км.
Активное и реактивное сопротивление стальных проводов значительно выше, чем проводов из цветного металла, и поэтому область применения этих проводов ограничена. Существенный недостаток стальных проводов их высокая коррозия. Для повышения коррозионной стойкости стальные провода изготовляют из оцинкованной проволоки.
3.2. Воздушные линии
3.2.1. Общие сведения
Воздушной линией электропередачи (ВЛ или ВЛЭП) называют устройство для передачи электроэнергии по проводам.
Воздушные линии состоят из трех элементов: проводов, изоляторов и опор.
Расстояние между двумя соседними опорами называют длиной пролета, или пролетом линии I (рис. 3.1).
Провода к опорам подвешиваются свободно, и под влиянием собственной массы провод в пролете провисает по цепной линии. Расстояние от точки подвеса до низшей точки провода называют стрелой провеса. Наименьшее расстояние от низшей точки провода до земли называется габаритом приближения провода к земле h. Габарит должен обеспечивать безопасность движения людей и транспорта, он зависит от условий местности, напряжения линии и т.п. Для ненаселенной местности габарит h = 5. 7 м, для населенной h = 6. 8 м.
Высота опоры при горизонтальном расположении проводов определяется габаритом h и максимальной стрелой провеса f . При креплении проводов на гирляндах изоляторов высота опоры увеличивается еще на длину гирлянды X.
Расстояние D между соседними проводами фаз ВЛ обеспечивает требуемый изоляционный промежуток и зависит в основном от ее номинального напряжения. Для линий напряжением 6. 10 кВ это расстояние в среднем составляет 1 м, ПО кВ 4 м, 220 кВ 7 м, 500 кВ 12 м, 750 кВ 15 м. На двухцепных опорах расстояния между проводами разных цепей берутся такими, при которых возможны ремонтные работы на одной из цепей без отключения второй.
Длину пролета линии l обычно определяют из экономических соображений. С увеличением длины пролета возрастает стрела провеса, а следовательно, и высота опор, что увеличивает их стоимость.
Вместе с тем с увеличением длины пролета уменьшается число опор и снижается стоимость изоляции линии. Для линий напряжением до 1 кВ длина пролета обычно составляет 30. 75 м, для линий напряжением ПО кВ 150. 200 м при высоте опор с горизонтальным расположением проводов 13. 14 м, для линий напряжением 220. 500 кВ длина пролета составляет 400. 450 м при высоте опор 25. 30 м.
Над проводами воздушных линий для защиты их от атмосферных перенапряжений подвешиваются грозозащитные тросы. Обычно используют тросы из сталеалюминевых проводов. При подвеске на изоляторах тросы могут быть использованы в качестве проводов связи.
Рис. 3.1. Пролет линии на опорах с подвесными изоляторами
3.2.2. Провода воздушных линий
Провода воздушных линий чаще всего неизолированные (голые).
Разнообразные условия работы ВЛЭП определяют необходимость иметь разные конструкции проводов.
Основными конструкциями являются: однопроволочные провода из одного металла; многопроволочные провода из одного металла; многопроволочные провода из двух металлов; пустотелые провода;
Однопроволочные провода, как показывает само название, выполняют из одной прово
Многопроволочные провода из одного металла состоят из нескольких свитых между со
бой проволок. Провода имеют одну центральную проволоку, вокруг которой делаются следующие повивы (ряды) проволок. При одном повиве провод свит из 7 проволок, при двух повивах из 19, при трех повивах из 37 проволок. Скрутка смежных повивов производится в разных направлениях, что обеспечивает более круглую форму и позволяет получить более устойчивый против раскручивания провод.
Многопроволочные провода имеют по сравнению с однопроволочными ряд существенных преимуществ:
большую гибкость, что обеспечивает большую сохранность и удобство монтажа;
высокие сопротивления на разрыв могут быть получены только для проволок относительно небольшого диаметра. Однопроволочные провода с сечениями 25 мм2 и более имели бы пониженное сопротивления на разрыв.
Однопроволочные провода изготавливаются для сечений 4, 6, 10 мм2, многопроволочные
Проволоки из цветного металла под действием химических реагентов воздуха быстро покрываются тонким слоем окиси металла проводника и дальнейшему разрушению не поддаются. Электрический ток изза плохой проводимости оксидной пленки «разбивается» на ряд параллельных токов, идущих по проволокам провода. Результатом этого явления и скрутки провода (длина проволок на 2. 3% больше длины провода, измеренной по оси) является повышение активного сопротивления многопроволочного провода на2. 3%.
Желание повысить механическую прочность привело к изготовлению алюминиевых проводов со стальным сердечником, называемых сталеалюминевыми. Сердечник провода выполняется из одной или нескольких свитых стальных оцинкованных проволок.
Алюминиевые проволоки, покрывающие стальной сердечник одним, двумя или тремя повивами, являются токоведущей частью провода. Электропроводность стального сердечника мала и потому не учитывается.
Механическую нагрузку (тяжение по проводу) воспринимают сталь и алюминий. В сталеалюминевых проводах с отношением сечения алюминия к сечению стали около 5. 6 алюминиевые проволоки принимают 50. 60 % полного тяжения по проводу, а остальное стальной сердечник.
При необходимости сочетать малое активное сопротивление провода с очень большой механической прочностью применяют сталебронзовые и сталеалдреевые провода. Алдрей представляет собой сплав алюминия с незначительной долей (около 1,2%) магния и кремния.
Пустотелые медные и биметаллические (стальная проволока покрыта приваренным слоем меди) применяются редко.
Для удобства записей провода обозначаются марками: М медь, А алюминий, Ал алдрей, С сталь, Б бронза.
Сталеалюминевые провода изготавливаются следующих марок: АС, имеющие отношение сечений алюминия и стали 5,5. 6;
АСО (облегченной конструкции), имеющие отношение сечений алюминия и стали
АСУ (усиленной конструкции), имеющие отношение сечений алюминия и стали около Наиболее целесообразно применение проводов АСО.
Для обозначения провода рядом с маркой дается номинальное сечение провода, напри
мер, А50 обозначает алюминиевый провод с сечением 50 мм2. Номинальным сечением называ
ется округленная величина фактического сечения провода. Цифра при марке сталеалюминевого провода, например АС150, дает только номинальное сечение алюминиевой части провода.
Принята следующая шкала номинальных сечений неизолированных проводов: 4, 6, 10, 16, 25, 35, 50, 70, 95, 120, 150, 185, 240, 300, 400, 500, 600, 700 мм2.
3.2.3. Изоляторы воздушных линий
Применяются следующие типы изоляторов:
фарфоровые штыревые типа ШС6, ШС10 для линий напряжением 6. 10 кВ; фарфоровые штыревые типа Ш20, ШД35 для линий напряжением 20. 35 кВ; подвесные фарфоровые или стеклянные изоляторы ПФ и ПС для линий напряжением
Изоляторы типа ШД и ШС крепятся к опорам на крюках и штырях. При напряжении ПО кВ и выше применяются только подвесные изоляторы, которые собираются в гирлянды (рис.
Рис. 3.2. Гирлянда подвесных изоляторов:
1 изолятор; 2 зажим для крепления провода; S провод
Гирлянды подвесных изоляторов бывают поддерживающие и натяжные. Поддерживающие изоляторы располагаются вертикально на промежуточных опорах, натяжные гирлянды используются на анкерных опорах и находятся почти в горизонтальном положении. На ответственных участках ЛЭП применяют сдвоенные гирлянды.
Число изоляторов в гирлянде зависит от напряжения ЛЭП, эффективной и нормированной длины пути утечки и материала опоры (требуемого уровня изоляции). На деревянных и железобетонных опорах при напряжении 35 кВ берется два подвесных изолятора в гирлянде, при напряжении 110 кВ шесть изоляторов, при напряжении 220 кВ двенадцать изоляторов. На металлических опорах берется на одиндва изолятора больше.
На воздушных линиях напряжением выше
220 кВ для защиты гирлянд от повреждений при возникновении дуги короткого замыкания применяются защитные рога и кольца.
3.2.4. Опоры воздушных линий
Воздушные ЛЭП прокладываются на деревянных, металлических и железобетонных опорах.
По назначению опоры бывают промежуточными, анкерными, угловыми и концевыми. Опоры могут быть одноцепными и двухцепными, с тросом и без троса.
Рис. 3.3. Схема воздушной линии
Рис. 3.4. Промежуточная металлическая опора для двухцепной линии напряжением 110 кВ
Наиболее распространенными на линиях являются промежуточные опоры. В равнинных местностях число этих опор составляет 80. 90% от общего числа опор (рис. 3.3) при нормальных режимах работы, когда все провода целы, на промежуточные опоры усилий, действующих вдоль линии, нет. Опора (рис. 3.4) воспринимает вертикальные силы массу проводов, изоляторов, льда и самой опоры, и горизонтальные силы давление ветра на провода и опору.
При обрыве провода промежуточная опора должна принять продольную силу неуравновешенного тяжения по проводу, оборвавшемуся по одному из пролетов.
Анкерные опоры устанавливаются через определенное число пролетов (через каждые 3. 5 км линии), имеют жесткое закрепление проводов и рассчитываются на обрыв всех проводов. Провода линий с подвесными изоляторами крепятся на анкерных опорах натяжными гирляндами, провода одной и той же фазы смежных с опорой пролетов соединены петлями проводов.
При подходах к подстанциям устанавливаются концевые опоры, назначение которых принять тяжения, действующие по проводам линии. Концевые опоры являются ближайшими к подстанциям. Концевые опоры выполняются жесткими, провода на них крепятся, как и на анкерных опорах, натяжными гирляндами изоляторов. В точках поворота линии устанавливаются угловые опоры.
Рис. 3.5. Расположения проводов и тросов на опорах:
а по вершинам треугольника; 6 горизонтальные; в обратной елкой; / — тросы; 2 — провода
Рис. 3.6. Схема транспозиции проводов: а,Ь,сфазы трехфазной сети
На линиях напряжением 220 кВ и выше применяют расщепление проводов подвешивают несколько проводов в фазе. Этим достигается уменьшение напряженности электрического поля около проводов и ослабление ионизации воздуха (короны). Расстояние между проводами расщепленной фазы составляет около 40 см. Для фиксирования вдоль линии устанавливают специальные распорки между проводами расщепленной фазы.
На рис. 3.5 схематически изображены наиболее часто встречающиеся расположения проводов и тросов на опорах. Расположение проводов по вершинам треугольника широко распространено на линиях напряжением до 35 кВ и на одноцепных линиях напряжением 110 кВ на металлических и железобетонных опорах. Горизонтальное расположение проводов применяют на линиях напряжением ПО кВ и выше с металлическими и железобетонными опорами. Для двухцепных опор более удобно с точки зрения эксплуатации расположение проводов по типу
Различие во взаимном расположении проводов приводит к различию параметров (индуктивных сопротивлений) фаз. Для уравнивания этих параметров на линиях длиной более 100 км применяют транспозицию проводов: линия делится на три участка, на которых каждый из трех проводов занимает все три возможных положения (рис. 3.6). В точках линии, где провода линии меняются местами, устанавливаются транспозиционные опоры.
При пересечениях больших рек, ущелий и т. п. при больших пролетах устанавливаются переходные опоры высотой 50. 100 м и более.
3.3. Кабельные линии
3.3.1. Конструкции кабелей
Кабель готовое заводское изделие, состоящее из изолированных токоведущих жил, заключенных в защитную герметичную оболочку, которая может быть защищена от механических повреждений броней.
Силовые кабели выпускаются на напряжение до 110 кВ включительно.
Силовые кабели на напряжение до 35 кВ имеют от одной до четырех медных или алюминиевых жил сечениями 1. 2000 мм2. Жилы сечением до 16 мм2однопроволочные, свыше многопроволочные. По форме сечения жилы одножильных кабелей круглые, а многожильных сегментные или секторные (рис. 3.7). Преимущественно применяются кабели с алюминиевыми
жилами. Кабели с медными жилами применяются редко: для перемещающихся механизмов, во взрывоопасных помещениях.
Изоляция жил выполняется из кабельной бумаги, пропитанной маслоканифольным составом, резины, поливинилхлорида и полиэтилена. Кабели с бумажной изоляцией,
Рис. 3.7. Кабель с вязкой пропиткой на напряжение 10 кВ типа СБ или АСБ: / медные или алюминиевые жилы; 2 фазная изоляция из пропитанной бумаги; 3 заполнитель из джута; 4 поясная изоляция из пропитанной маслом бумаги; 5 свинцовая оболочка; 6 джутовая прослойка; 7 броня из стальной ленты; 8 – джутовый покров.
предназначенные для прокладки на вертикальных и крутонаклонных трассах, имеют обедненную пропитку.
Защитная герметичная оболочка кабеля предохраняет изоляцию от вредного действия влаги, газов, кислот и механических повреждений. Оболочки делаются из свинца, алюминия, резины и поливинилхлорида.
В кабелях напряжением выше 1 кВ для повышения электрической прочности между изолированными жилами и оболочкой прокладывается слой поясной изоляции.
Броня кабеля выполняется из стальных лент или стальных оцинкованных проволок. Поверх брони накладывают покровы из кабельной пряжи (джута), пропитанной битумом и покрытой меловым составом. При прокладке кабеля в помещениях, каналах и тоннелях джутовый покров во избежание возможного пожара снимают.
Кабели на напряжение ПО кВ и выше обычно выполняют газойли маслонаполненными, одножильными с покрытием стальной броней или асфальтированными, для прокладки в земле или на воздухе. Масло в кабелях находится под давлением.
Обозначения марок кабелей соответствует их конструкции.
Кабели с бумажной изоляцией и алюминиевыми жилами имеют марки: ААБ, ААГ, ААП, ААШв, АСБ, АСБГ, АСПГ, АСШв. Первая буква обозначает материал жил (А алюминий, отсутствие впереди буквы А в маркировке означает наличие медной жилы), вторая материал оболочки (А алюминий, С свинец). Буква Б означает, что кабель бронирован стальными лентами; буква Г отсутствие наружного покрова; Шв наружный покров выполнен в виде шланга из поливинилхлорида.
Изоляция обозначается: Р резиновая, П полиэтиленовая, В поливинилхлоридная, отсутствие обозначения бумажная с нормальной пропиткой.
Броня обозначается при выполнении: стальными лентами Б, плоской оцинкованной стальной проволокой П, круглой оцинкованной стальной проволокой К.
Рис. 3.8. Концевая эпоксидная заделка кабеля:
/ бандаж из шпагата, покрытого эпоксидным компаундом; 2 дополнительная подмотка из киперной ленты с покрытием каждого слоя эпоксидным компаундом; 3 трехслойная дополнительная подмотка из киперной ленты с покрытием каждого слоя эпоксидным компаундом; 4 эпоксидный компаунд; 5 конец подмотки корешка заделки; 6 бандаж из хлопчатобумажной пряжи; 7 поясная изоляция; 8 насечка ножом на оболочке кабеля; 9 проволочный бандаж; 10 заземляющий трос.
Например, марка кабеля СБШв обозначает кабель с медными жилами в свинцовой оболочке с наружным покровом в виде шланга из поливинилхлорида.
Маркировка маслонаполненных кабелей начинается с буквы М, вторая буква обозначает тип давления масла: Н низкое, В высокое.
Маркировка контрольных кабелей начинается с буквы К.
В маркировке кабеля после буквенных обозначений указывается его номинальное напряжение, кВ; число жил и сечение одной жилы. Например, кабель АВПБГ 13×50+1×25ка
бель с тремя алюминиевыми жилами по 50 мм2 и четвертой сечением 25 мм2, полиэтиленовой изоляцией на напряжение 1 кВ, оболочкой из полихлорвинила, бронированный стальными лентами без наружного противокоррозионного покрытия.
Отдельные отрезки кабелей напряжением до 1 кВ соединяются чугунными муфтами, напряжением выше 1 кВ свинцовыми муфтами, залитыми специальным составом.
Концы кабелей разделываются, а для лучшего контакта с шинами распределительного устройства на концы жил напаиваются или привариваются наконечники. Для предотвращения попадания в кабель влаги, кислот и других реагентов, ухудшающих изоляцию, концы кабеля герметически заделывают. Часто применяются концевые заделки кабелей из эпоксидного компаунда (рис. 3.8). Также применяют сухие концевые заделки из поливинилхлоридных липких лент и лаков.
3.3.2. Способы прокладки кабелей напряжением 6. 10 кВ
Кабельные прокладки требуют меньших площадей по сравнению с воздушными и могут применяться при любых природных и атмосферных условиях.
Кабельные прокладки напряжением 6. 10 кВ применяются на предприятиях небольшой и средней мощности и в городских сетях.
Трасса кабельных линий выбирается кратчайшая с учетом наиболее дешевого обеспечения их защиты от механических повреждений, коррозии, вибрации, перегрева и от повреждений при возникновении электрической дуги в соседнем кабеле.
Рис. 3.9. Конструктивное выполнение кабельных прокладок:
а на настенных конструкциях; 6 на перфорированных лотках; в в коробах
Прокладка кабелем может осуществляться несколькими способами: в траншеях, каналах, туннелях, блоках, эстакадах. Внутри кабельных сооружений и производственных помещений предусматривают прокладку кабелей на стальных конструкциях различного исполнения (рис.
3.9): на настенных конструкциях, лотках, в коробах, укрепленных на стенах. Способ и конструктивное выполнение прокладки выбираются в зависимости от числа кабелей, условий трассы, наличия или отсутствия взрывоопасных газов тяжелее воздуха, степени загрязненности почвы, требований эксплуатации, экономических факторов и т.п. (табл. 3.1).
Прокладка кабелей в траншеях. Наиболее простой является прокладка кабелей в траншеях (рис. 3.10). Она экономична и по расходу цветного металла, так как допустимые токи на кабели больше (примерно в 1,3 раза) при прокладке в земле, чем в воздухе. Однако по ряду причин этот способ не получил широкого применения на промышленных предприятиях. Прокладка в траншеях не применяется:
на участках с большим числом кабелей;
при большой насыщенности территории подземными и наземными технологическими и транспортными коммуникациями и другими сооружениями;
на участках, где возможно разлитие горячего металла или жидкостей, разрушающе действующих на оболочку кабелей;
в местах, где возможны блуждающие токи опасных значений, большие механические нагрузки, размытие почвы и т. п.
Рис. 3.10. Прокладка кабелей в траншее
Области применения силовых кабелей с бумажной, пластмассовой и резиновой изоляцией при отсутствии механических воздействий и растягивающих усилий при эксплуатации
Кабели с бумажной изоляцией
Кабели с пластмассовой и резиновой изоляцией
ААШв, ААШп, ААБл, АСБ
АВВГ, АПсВГ, АПвВГ, АПВГ, АВВБ, АПВБ, АПсВБ, АППБ, АПвПБ,АПсПБ, АПБбШв,
АПвБбШв, АВБбШв, АВБбШп,
АПсБбШв, АПАШв, АПАШп, АВАШв, АПсАШв, АВРБ, АНРБ, АВАБл, АПАБл
ААШв, ААШп, ААБ2л, АСБ
ААШв, ААБл, ААШп, ААБ2л, АСБ, АСБл
ААШв, ААБв, ААШп, ААБ2л, АСБ2л, АСБл
ААБ2лШв, АСБл, ААБ2лШп, ААБв, АСБ2л
ААШп, ААБв, АСБ2л, АСБ2лШв
Средняя и высокая
АВВГ, АВРГ, АПсВГ, АПвсВГ, АНРГ, АСРГ
Во взрывоопасных зонах
ВВГ, ВРГ, НРГ, СРГ
Примечание. П полиэтиленовая; Пс из самозатухающего полиэтилена; Пв из вулканизуемого полиэтилена; Пвс из вулканизуемого самозатухающего полиэтилена; Н из найритовой (негорючей) резины; Ш шланг; л, 2л усиленная и особо усиленная подушка под оболочкой.
Рис. 3.11. Прокладка кабелей в канале
Опыт эксплуатации кабелей, проложенных в земляных траншеях, показал, что при всяких разрытиях кабели часто повреждаются. При прокладке в одной траншее шести кабелей и более вводится очень большой снижающий коэффициент на допустимую токовую нагрузку.
Поэтому не следует прокладывать в одной траншее более шести кабелей. При большом числе кабелей предусматриваются две рядом расположенные траншеи с расстоянием между ними 1,2 м.
Земляная траншея для укладки кабелей должна иметь глубину не менее 800 мм. На дне траншеи создают мягкую подушку толщиной100 мм из просеянной земли. Глубина заложения кабеля должна быть не менее 700 мм. Ширина траншеи зависит от числа кабелей, прокладываемых в ней. Расстояние между несколькими кабелями напряжением до 10 кВ должно быть не
менее 100 мм. Кабели укладывают на дне траншеи в один ряд. Сверху кабели засыпают слоем мягкого грунта. Для защиты кабельной линии напряжением выше 1 кВ от механических повреждений ее по всей длине поверх верхней подсыпки покрывают бетонными плитами или кирпичом, а линии напряжением до 1 кВ только в местах вероятных разрытии.
Трассы кабельных линий прокладываются по непроезжей части на расстоянии не менее: 600 мм от фундаментов зданий, 500 мм до трубопроводов, 2000 мм до теплопроводов.
Прокладка кабелей в каналах. Прокладка кабелей в железобетонных каналах может быть наружной и внутренней (рис. 3.11). Этот способ прокладки более дорогостоящий, чем в траншеях. При внецеховой канализации на неохраняемой территории каналы прокладываются под землей на глубине 300 мм и более. Глубина канала не более 900 мм. На участках, где возможно разлитие расплавленного металла, жидкостей или других веществ, разрушительно действующих на оболочки кабелей, кабельные каналы применять нельзя.
Прокладка кабелей в туннелях. Прокладка в туннелях удобна и надежна в эксплуатации, но она оправдана лишь при большом числе (белее 30. 40) кабелей, идущих в одном направлении, например, на главных магистралях, для связей между главной подстанцией и распределительной и других аналогичных случаях.
Туннели (рис. 3.12) бывают проходные высотой 2100 мм и полупроходные высотой 1500 мм. Полупроходные туннели допускаются на коротких участках (до 10 м) в местах, затрудняющих прохождение туннелей нормальной высоты. Глубина заложения туннеля от верха покрытия принимается не менее 0,7 м.
Рис. 3.12. Прокладка кабелей в туннеле.
Прокладка кабелей в блоках. Прокладка кабелей в блоках (рис. 3.13) надежна, но наименее экономична как по стоимости, так и по пропускной способности кабелей. Она применяется только тогда, когда по местным условиям прокладки недопустимы более простые способы прокладки, а именно: при наличии блуждающих токов, при агрессивных грунтах, вероятности разлива по трассе металла или агрессивных жидкостей и др.
Блочную канализацию кабелей следует переводить в траншею или канал во всех случаях, когда это возможно по условиям трассы. Тип кабельных блоков выбирается в зависимости от уровня грунтовых вод, их агрессивности и наличия блуждающих токов.
Прокладка кабелей на галереях и эстакадах. При больших потоках кабелей целесообразно вместо туннелей применять для прокладки кабелей открытые эстакады (рис. 3.14) и закрытые галереи (рис. 3.15), а также использовать стены зданий, в которых нет взрывов и пожароопасных производств.
Рис. 3.13. Блоки из железобетонных панелей:
а для прокладки в сухих грунтах; б для прокладки во влажных и насыщенных водой грунтах; 1 кирпич; 2 железобетонная панель; 3 окрасочная гидроизоляция; 4 бетон; 5 оклеенная гидроизоляция
Рис. 3.14. Кабельные эстакады:
а проходная односторонняя на отдельной опоре; б двусторонняя; / стационарные солнцезащитные панели; 2 съемная солнцезащитная панель; 3 кабельная полка
Рис. 3.15. Кабельные галереи: а односторонняя; б двусторонняя; 1 кабельная полка; 2 солнцезащитные панели
Прокладка кабелей на эстакадах и в галереях целесообразна:
на химических, нефтехимических, металлургических и других заводах, территории которых насыщены различными подземными коммуникациями;
на предприятиях с большой агрессивностью почвы;
в местах, где возможно значительное скопление при подземных способах прокладки (ка
налы и туннели) взрывоопасных газов тяжелее воздуха.
3.4. Токопроводы напряжением 6. 35 кВ
Токопроводы напряжением 6. 35 кВ применяются на промышленных предприятиях при больших удельных плотностях нагрузки, концентрированном расположении крупных мощностей и при размещении потребителей, благоприятном для осуществления магистрального питания. Основными отраслями промышленности, в которых широкое применение находят токопроводы, являются черная и цветная металлургия и химия. Токопроводы имеют ряд преимуществ по сравнению с кабельными прокладками. Они позволяют заменять кабели высокого напряжения неизолированными алюминиевыми шинами или проводами, экономить свинец и алюминий, идущий на оболочки кабеля, а также изоляционные материалы. Индустриализуются монтажные работы по сетям, так как на монтаж поступают готовые секции токопроводов.
Токопроводы имеют значительно большую способность к перегрузке, чем кабельные линии, изза отсутствия горючей изоляции. Обследования работающих токопроводов различных типов показали, что токопроводы значительно надежнее кабельных прокладок.
Сведения о применении токопроводов, выгодном в диапазоне мощностей и длин, приведены в табл. 3.2.
При меньших мощностях токопроводы не имеют преимуществ перед кабельной канализацией.
Помимо электрических параметров (напряжение, ток, сопротивление), токопроводы различаются по исполнению в отношении
Диапазон мощностей и длин, при которых выгодно применение токопроводов
Номинальное напряжение, кВ
Предельная длина, км
Рис. 3.16. Жесткий несимметричный шинопровод напряжением 6. 10 кВ
условий прикосновения к токоведущим частям, а также рядом конструктивных характеристик (тип, расположение фаз, изоляция и т.д.).
По условиям прикосновения к токоведущим частям различают токопроводы открытые, защищенные и закрытые. Защищенные и закрытые токопроводы обычно находят применение в сетях напряжением до 1 кВ, монтируемых внутри промышленных объектов. Они рассмотрены в подразд. 3.5.3. В сетях напряжением 6. 35 кВ применяются открытые токопроводы.
Открытые токопроводы с жесткой несимметричной ошиновкой. Шины токопроводов изготовляют из алюминия или из его сплавов. При силе тока до 2000 А пакет шин состоит из плоских шин, а при силе тока больше 2000 А из шин швеллерного профиля. Конструкция открытого токопровода с вертикально расположенными опорными изоляторами для наружной установки приведена на рис. 3.16. Этот токопровод имеет высокую стоимость строительной части, а также создает значительную несимметрию напряжения вследствие разной индуктивности фаз.
Открытые токопроводы с жесткой симметричной ошиновкой. Жесткие шины токопровода закреплены на опорных изоляторах по вершинам равностороннего треугольника (рис.
3.17). Это исполнение токопровода выгодно отличается от исполнений рассмотренных выше токопроводов пониженной величиной дополнительных потерь мощности, симметрией напряжений и меньшей стоимостью.
Гибкие токопроводы. Жесткие токопроводы имеют небольшие пролеты между точками крепления шин, а, следовательно, большее число пунктов изоляции и контактных соединений.
Гибкий токопровод (рис. 3.18) практически представляет собой воздушную линию с большими сечениями проводов, величина пролета в нем резко увеличена по сравнению с жестким токопроводом. Однако гибкие токопроводы требуют больше места для прохождения на промышленной площадке, чем жесткие. Ширина полосы территории, занимаемой двухцепным гибким токопроводом вместе с его молниезащитными устройствами, составляет 24 м. Поддерживающие гирлянды крепятся на высоте 15 м от уровня земли.
Унифицированные гибкие шинопроводы имеют следующее число алюминиевых проводов А600 на фазу: 4, 6, 8, 10. Их пропускная способность по силе тока составляет соответственно 4080,6120 8160 10200 А.
Гибкий токопровод с междуфазными и фазными распорками может быть применен при ударном токе КЗ до 400 кА.
Рис. 3.17. Жесткий симметрии Рис. 3.18. Гибкий симметрич
ный шинопровод напряжением ный шинопровод напряжением
3.5. Конструктивное выполнение цеховых сетей напряжением до 1 кВ
3.5.1. Общие сведения
Цеховые электрические сети напряжением до 1 кВ выполняют: кабелями и изолированными проводами, прокладываемыми непосредственно на строительных элементах и элементах технологического оборудования, в коробах, на лотках и в трубах, а также тросовыми проводами;
комплектными шинопроводами магистральными, распределительными и осветительными, устанавливаемыми на опорных конструкциях на полу, стенах, колоннах, фермах и т. п.;
комплектными троллеями, укрепляемыми на троллейных кронштейнах, и комплектными троллейными шинопроводами, укрепляемыми на специальных конструкциях.
Электропроводка должна соответствовать условиям окружающей среды, назначению и ценности сооружений, их конструкции и архитектурным особенностям. При выборе вида электропроводки и способа прокладки должны учитываться требования электробезопасности и по
жарной безопасности. Оболочки и изоляция проводов должны соответствовать способу прокладки и условиям окружающей среды.
Воздушные линии напряжением до 1 кВ на промышленных предприятиях используются главным образом в качестве сетей наружного освещения и для питания отдельных маломощных потребителей.
3.5.2. Электропроводки
Электропроводки являются распространенным видом сетей внутри зданий и сооружений. Этот вид сетей широко применяется для питания осветительных устройств, для цепей вторичной коммутации, защиты и управления, для питания установок небольшой мощности.
Электропроводками принято называть сети постоянного и переменного тока напряжением до 1 кВ, выполняемые изолированными проводами, а также небронированными кабелями мелких (до 16 мм2) сечений с резиновой и пластмассовой изоляцией. Они могут прокладываться внутри зданий и сооружений, а также по наружным их стенам, по территории возле зданий.
Установочные провода напряжением до 1 кВ имеют в своей маркировке (табл. 3.3) букву П, стоящую на первом месте для проводов с медными жилами и на втором для проводов с алюминиевыми жилами (А). Например, марка ПР означает: провод с медными жилами в оплетке из хлопчатобумажной ткани; АПР то же, но с алюминиевыми жилами. АПВ провод с алюминиевыми жилами с поливинилхлоридной изоляцией; ПРГН провод с медными жилами с резиновой изоляцией, гибкий, в негорючей оболочке.
В соответствии с рекомендациями по экономии меди следует применять провода и кабели с алюминиевыми жилами. Провода с медными жилами разрешается применять для вторичных цепей, для силовых и осветительных установок во взрывоопасных помещениях, а также для силовых цепей всех кранов при сечении жилы до 6 мм2.
Все электропроводки внутри зданий разделяются на открытые и скрытые. Таблица 3. 3 Буквенные обозначения в маркировке проводов
Назначение в конструкции
Пластмасса (поливинилхлорид) Пластмасса (самозатухающий полиэтилен) Найрит (негорючая резина)
Пластмасса (поливинилхлорид) Пластмасса (самозатухающий полиэтилен) Найрит (негорючая резина) Хлопчатобумажная пряжа
Стальные оцинкованные проволоки Лавсановый шелк
Открытая электропроводка, т.е. проложенная по поверхностям стен и потолков, по конструкциям сооружений и т.п., имеет много конструктивных исполнений. В зависимости от условий окружающей среды, требований технической эстетики, марки и сечений применяемых проводников и т.п. способы выполнения электропроводки могут в значительной мере отличаться друг от друга. Из большого числа различных способов открытой электропроводки для промышленных предприятий основными являются прокладка в специальных лотках, коробах и
различных трубах, а также на тросах. Значительно реже применяется открытая электропроводка внутри помещений на роликах и изоляторах.
Скрытая электропроводка, т.е. проложенная в конструктивных элементах зданий, стенах и потолках, полах и перекрытиях, фундаментах оборудования и т.п., выполняется в различных трубах, специальных каналах, образованных в толще бетона.
Ко всем видам исполнения электропроводок предъявляются определенные требования, обеспечивающие надежную эксплуатацию и безопасность.
Для обеспечения надежной работы электроустановок необходимо выполнять прокладку проводников таким образом, чтобы повреждение в цепях одного агрегата не вызвало остановки других, работающих независимо. Поэтому в одной трубе или коробе, одном замкнутом канале строительной конструкции или одном лотке запрещается прокладывать цепи разных технологических агрегатов, не связанных единым технологическим процессом. Из этих же соображений запрещается совместная прокладка взаиморезервирующих цепей, цепей аварийного и рабочего освещения.
Большое значение для обеспечения надежной работы электроустановок имеет устойчивость работы электропроводок в отношении нераспространения огня при повреждениях. Для открытых электропроводок без стальных труб желательно применять провода и кабели только с такими внешними оболочками, которые не поддерживают горение после удаления источника воспламенения. В этом случае, если в электропроводке возникло повреждение, и она загорелась, после действия защиты и отключения поврежденного участка пожар проводки не будет распространяться, и размеры аварии будут ограничены. К числу не распространяющих горение относятся оболочки и изоляция из полихлорвинила и найрита.
Важным общим требованием к конструкции электропроводок является обеспечение возможности смены проводов в условиях эксплуатации. Срок службы изоляции проводов и кабелей ограничен. Под воздействием тепла и света, кислорода воздуха и влаги, а также различных газов, попадающих в атмосферу, изоляция и оболочки проводов и кабелей теряют со временем свои механические и электрические свойства. Замена проводов и кабелей в сети не должна быть связана с необходимостью разрушения строительных элементов зданий и сооружений.
В зависимости от условий окружающей среды и качества изоляционных материалов провода приходится менять приблизительно каждые 10. 15 лет эксплуатации. В отдельных неблагоприятных условиях такие замены приходится производить значительно чаще.
Наружная электропроводка прокладывается по наружным стенам зданий и сооружений, под навесами, а также между зданиями. К наружной электропроводке относится также прокладка изолированных проводов и кабелей мелких сечений на опорах, между отдельными зданиями. Она выполняется обычно одножильными изолированными проводами на изоляторах и в трубах.
В цеховых электрических сетях применяют для прокладки провода марок: АПВ, АПРВ, АТПРВ непосредственно по несгораемым поверхностям; АПР на роликах и изоляторах; АПВ, АПРТО, АПРВ, АПР в пластмассовых и стальных трубах и металлорукавах; АПВ, АПР, АПРВ в коробах и на лотках. Тросовые прокладки выполняют проводами APT.
Кабели в неметаллической и металлической оболочках применяются в наружных установках и помещениях всех видов и прокладываются по поверхности стен, потолков, на лотках и в коробах, на тросах.
Кабели в неметаллической оболочке применяются в помещениях всех видов и наружных установках в металлических гибких рукавах, стальных трубах (за исключением сырых и особо сырых помещений и наружных установок) и неметаллических трубах и коробах, в замкнутых каналах строительных конструкций.
Для стационарных электропроводок должны применяться преимущественно провода и кабели с алюминиевыми жилами.
В помещениях и наружных установках с химически активной средой все элементы электропроводок должны быть стойкими по отношению к среде либо должны быть защищены от ее воздействия.
В производственных помещениях спуски незащищенных проводов к выключателям, аппаратам, щиткам и т. п. должны быть защищены от механических воздействий до высоты не менее 1,5 м от уровня пола.
3.5.3. Шинопроводы
Жесткий токопровод напряжением до 1 кВ заводского изготовления, поставляемый комплектными секциями, называется шинопроводом. Шинопроводы различных серий и типов комплектуются из отдельных секций различной конфигурации и назначения. Секции могут быть прямые, угловые, гибкие, вводные, ответвительные, компенсационные, переходные, подгоночные. Длины секций унифицированы и кратны 770 мм.
Крановые троллеи, троллейные шинопроводы, кабели в лотках и на конструкциях, блоки труб прокладывают на высоте 7. 15 м вдоль стены или подкрановой балки. Технические данные на шинопроводы приведены в табл. 3.4, 3.5, 3.6, 3.7.
Магистральные шинопроводы предназначены для питания распределительных шинопроводов и пунктов, отдельных крупных электроприемников
Магистральный шинопровод ШМА предназначен для магистральных четырехпроводных электрических сетей в системе с глухозаземленной нейтралью напряжением до 1000 В. Номинальный ток 1600, 2500, 4000 А.
Таблица 3. 4 Технические данные магистральных шинопроводов переменного тока.
СП 124.13330.2012 Тепловые сети
Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ “О техническом регулировании”, а правила разработки – постановлением Правительства Российской Федерации от 19 ноября 2008 г. N 858 “О порядке разработки и утверждения разработки и утверждения сводов правил”.
Сведения о своде правил
1 ИСПОЛНИТЕЛИ – Открытое акционерное общество “Объединение ВНИПИэнергопром” (ОАО “ВНИПИэнергопром”) и другие специалисты
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 “Строительство”
3 ПОДГОТОВЛЕН к утверждению Департаментом архитектуры, строительства и градостроительной политики
4 УТВЕРЖДЕН приказом Министерства регионального развития Российской Федерации (Минрегион России) от 30 июня 2012 г. N 280 и введен в действие с 1 января 2013 г.
5 ЗАРЕГИСТРИРОВАН Федеральным агентством по техническому регулированию и метрологии (Росстандарт). Пересмотр СП 124.13330.2011 “СНиП 41-02-2003 Тепловые сети”
Информация об изменениях к настоящему своду правил публикуется в ежегодно издаваемом информационном указателе “Национальные стандарты”, а текст изменений и поправок – в ежемесячно издаваемых информационных указателях “Национальные стандарты”. В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе “Национальные стандарты”. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования – на официальном сайте разработчика (Минрегион России) в сети Интернет.
Введение
При разработке свода правил использованы нормативные документы, европейские стандарты (EN), разработки ведущих российских и зарубежных компаний, опыт применения действующих норм проектными и эксплуатирующими организациями России.
Работа выполнена: И.Б.Новиков (руководитель работы), A.И.Коротков, д-р техн. наук В.В.Шищенко, О.А.Алаева, Н.Н.Новикова, С.В.Романов, Е.В.Савушкина (ОАО “ВНИПИэнергопром”); канд. техн. наук В.И.Ливчак, А.В.Фишер, М.В.Светлов, канд. техн. наук Б.М.Шойхет, д-р техн. наук Б.М.Румянцев; Е.В.Фомичева; Р.В.Агапов, А.И.Лейтман (ОАО “МТК”).
1 Область применения
1.1 Настоящий свод правил устанавливает требования по проектированию тепловых сетей, сооружений на тепловых сетях во взаимосвязи со всеми элементами системы централизованного теплоснабжения (далее – СЦТ).
1.2 Настоящий свод правил распространяется на тепловые сети (со всеми сопутствующими конструкциями) от выходных запорных задвижек (исключая их) коллекторов источника теплоты или от наружных стен источника теплоты до выходных запорных задвижек (включая их) центральных тепловых пунктов и до входных запорных органов индивидуальных тепловых пунктов (узлов вводов) зданий (секции зданий) и сооружений, транспортирующие горячую воду с температурой до 200 °С и давлением до 2,5 МПа включительно, водяной пар с температурой до 440 °С и давлением до 6,3 МПа включительно, конденсат водяного пара.
1.3 В состав тепловых сетей включены здания и сооружения тепловых сетей: насосные, центральные тепловые пункты, павильоны, камеры, дренажные устройства и т.п.
1.4 В настоящем своде правил рассматриваются системы централизованного теплоснабжения в части их взаимодействия в едином технологическом процессе производства, распределения, транспортирования и потребления теплоты.
1.5 Настоящий свод правил следует соблюдать при проектировании новых и реконструкции, модернизации и техническом перевооружении и капитальном ремонте существующих тепловых сетей (включая сооружения на тепловых сетях).
2 Нормативные ссылки
В настоящем своде правил использованы ссылки на следующие нормативные документы:
ГОСТ 9238-83 Габариты приближения строений и подвижного состава железных дорог колеи 1520 (1524) мм
ГОСТ 9720-76 Габариты приближения строений и подвижного состава железных дорог колеи 750 мм
ГОСТ 23120-78 Лестницы маршевые, площадки и ограждения стальные. Технические условия
ГОСТ 30494-96 Здания жилые и общественные. Параметры микроклимата в помещениях
ГОСТ 30732-2006 Трубы и фасонные изделия стальные с тепловой изоляцией из пенополиуретана с защитной оболочкой. Технические условия
СП 25.13330.2012 “СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах”
СП 30.13330.2012 “СНиП 2.04.01-85* Внутренний водопровод и канализация зданий”
СП 43.13330.2012 “СНиП 2.09.03-85 Сооружения промышленных предприятий”
СП 45.13330.2012 “СНиП 3.02.01-87 Земляные сооружения, основания и фундаменты”
СП 70.13330.2012 “СНиП 3.03.01-87 Несущие и ограждающие конструкции”
СП 60.13330.2012 “СНиП 41-01-2003 Отопление, вентиляция, кондиционирование воздуха”
СП 61.13330.2012 “СНиП 41-03-2003 Тепловая изоляция оборудования и трубопроводов”
СП 12.13130.2009 Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности
СанПиН 2.1.4.1074-01 Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества.
СанПиН 2.1.4.2496-09 Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. Гигиенические требования к обеспечению безопасности систем горячего водоснабжения
СН 2.2.4/2.1.8.562-96 Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки
Примечание – При пользовании настоящим сводом правил целесообразно проверить действие ссылочных стандартов и классификаторов в информационной системе общего пользования – на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому указателю “Национальные стандарты”, который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим сводом правил следует руководствоваться замененным (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.
3 Термины и определения
В настоящем своде правил приняты следующие термины с соответствующими определениями:
3.1 система централизованного теплоснабжения (СЦТ): Система, состоящая из одного или нескольких источников теплоты, тепловых сетей (независимо от диаметра, числа и протяженности наружных теплопроводов) и потребителей теплоты;
3.2 вероятность безотказной работы системы [Р]: Способность системы не допускать отказов, приводящих к падению температуры в отапливаемых помещениях жилых и общественных зданий ниже нормативных;
3.3 коэффициент готовности (качества) системы []: Вероятность работоспособного состояния системы в произвольный момент времени поддерживать в отапливаемых помещениях расчетную внутреннюю температуру, кроме периодов снижения температуры, допускаемых нормативами;
3.4 живучесть системы [Ж]: Способность системы сохранять свою работоспособность в аварийных (экстремальных) условиях, а также после длительных (более 54 ч) остановов;
3.5 срок службы тепловых сетей: Период времени в календарных годах со дня ввода в эксплуатацию, по истечении которого следует провести экспертное обследование технического состояния трубопровода с целью определения допустимости, параметров и условий дальнейшей эксплуатации трубопровода или необходимости его демонтажа;
3.6 магистральные тепловые сети: Тепловые сети (со всеми сопутствующими конструкциями и сооружениями), транспортирующие горячую воду, пар, конденсат водяного пара, от выходной запорной арматуры (исключая ее) источника теплоты до первой запорной арматуры (включая ее) в тепловых пунктах;
3.7 распределительные тепловые сети: Тепловые сети от тепловых пунктов до зданий, сооружений, в том числе от ЦТП до ИТП;
3.8 квартальные тепловые сети: Распределительные тепловые сети внутри кварталов городской застройки (называются по территориальному признаку);
3.9 ответвление: Участок тепловой сети, непосредственно присоединяющий тепловой пункт к магистральным тепловым сетям или отдельное здание и сооружение к распределительным тепловым сетям;
3.10 тоннель (коллектор коммуникационный): Протяженное подземное сооружение с высотой прохода в свету не менее 1,8 м, предназначенное для прокладки тепловых сетей, отдельно или совместно с другими коммуникациями с постоянным присутствием обслуживающего персонала;
3.11 проходной канал: Протяженное подземное сооружение с высотой прохода в свету 1,8 м и шириной прохода между изолированными трубопроводами равный 100 мм, но не менее 700 мм, предназначенное для прокладки тепловых сетей без постоянного присутствия обслуживающего персонала;
3.12 тепловой пункт: Сооружение с комплектом оборудования, позволяющее изменить температурный и гидравлический режимы теплоносителя, обеспечить учет и регулирование расхода тепловой энергии и теплоносителя;
3.13 индивидуальный тепловой пункт (ИТП): Тепловой пункт, предназначенный для присоединения систем отопления, вентиляции, горячего водоснабжения и технологических теплоиспользующих установок одного здания или его части;
3.14 центральный тепловой пункт (ЦТП): То же, двух зданий или более;
3.15 автоматизированный узел управления (АУУ): Устройство с комплектом оборудования, устанавливаемое в месте подключения системы отоплении здания или его части к распределительным тепловым сетям от ЦТП и позволяющее изменить температурный и гидравлический режимы систем отопления, обеспечить учет и регулирование расхода тепловой энергии;
3.16 узел ввода: Устройство с комплектом оборудования, позволяющее осуществлять контроль параметров теплоносителя в здании или секции здания или сооружении, а также, при необходимости, осуществлять распределение потоков теплоносителя между потребителями. При подключении от ЦТП и отсутствии АУУ – узел ввода дополнительно осуществляет учет расхода тепловой энергии;
3.17 надежность теплоснабжения: Характеристика состояния системы теплоснабжения, при котором обеспечиваются качество и безопасность теплоснабжения;
3.18 схема теплоснабжения: Документ, содержащий предпроектные материалы по обоснованию эффективного и безопасного функционирования системы теплоснабжения, ее развития с учетом правового регулирования в области энергосбережения и повышения энергетической эффективности;
3.19 потребитель тепловой энергии: Лицо, приобретающее тепловую энергию, теплоноситель для использования на принадлежащих ему на праве собственности или ином законном основании теплопотребляющих установках либо для оказания коммунальных услуг в части горячего водоснабжения и отопления;
3.20 теплопотребляющая установка: Устройство, предназначенное для использования тепловой энергии, теплоносителя для нужд потребителя тепловой энергии.
4 Классификация
4.1 Тепловые сети подразделяются на магистральные, распределительные, квартальные и ответвления от магистральных и распределительных тепловых сетей к отдельным зданиям и сооружениям. Разделение тепловых сетей устанавливается проектом или эксплуатационной организацией.
4.2 Потребители теплоты по надежности теплоснабжения делятся на три категории:
Первая категория – потребители, не допускающие перерывов в подаче расчетного количества теплоты и снижения температуры воздуха в помещениях ниже предусмотренных ГОСТ 30494. Например, больницы, родильные дома, детские дошкольные учреждения с круглосуточным пребыванием детей, картинные галереи, химические и специальные производства, шахты и т.п.
Вторая категория – потребители, допускающие снижение температуры в отапливаемых помещениях на период ликвидации аварии, но не более 54 ч:
жилые и общественные здания до 12 °С;
промышленные здания до 8 °С.
Третья категория – остальные потребители.
5 Общие положения
5.1 В своде правил установлены требования по:
безопасности, надежности, а также живучести систем теплоснабжения;
безопасности при опасных природных процессах и явлениях и (или) техногенных воздействиях;
безопасных для здоровья человека условий проживания и пребывания в зданиях и сооружениях;
безопасности для пользователей зданиями и сооружениями;
обеспечению энергетической эффективности;
обеспечению энергосбережения и повышения энергетической эффективности;
обеспечению учета используемых энергетических ресурсов;
обеспечению надежного теплоснабжения потребителей;
обеспечению оптимальной работы систем теплоснабжения с учетом энергосбережения в текущем состоянии и на долгосрочную перспективу;
обеспечению экологической безопасности.
5.2 Решения по перспективному развитию систем теплоснабжения населенных пунктов, промышленных узлов, групп промышленных предприятий, районов и других административно-территориальных образований, а также отдельных СЦТ следует разрабатывать в схемах теплоснабжения. При разработке схем теплоснабжения расчетные тепловые нагрузки определяются:
а) для существующей застройки населенных пунктов и действующих промышленных предприятий – по проектам с уточнением по фактическим тепловым нагрузкам;
б) для намечаемых к строительству промышленных предприятий – по укрупненным нормам развития основного (профильного) производства или проектам аналогичных производств;
в) для намечаемых к застройке жилых районов – по укрупненным показателям плотности размещения тепловых нагрузок или при известной этажности и общей площади зданий, согласно генеральным планам застройки районов населенного пункта – по удельным тепловым характеристикам зданий (приложение В).
5.3 Расчетные тепловые нагрузки при проектировании тепловых сетей определяются по данным конкретных проектов нового строительства, а существующей – по фактическим тепловым нагрузкам.
Допускается при отсутствии таких данных руководствоваться указаниями 5.2. Средние часовые нагрузки на горячее водоснабжение отдельных зданий следует определять по СП 30.13330.
Расчетные тепловые нагрузки для тепловых сетей по системам горячего водоснабжения следует определять как сумму среднечасовых нагрузок отдельных зданий.
Нагрузки для тепловых сетей по системам горячего водоснабжения при известной площади зданий определяются согласно генеральным планам застройки районов по удельным тепловым характеристикам (приложение Г).
5.4 Расчетные потери теплоты в тепловых сетях следует определять как сумму тепловых потерь через изолированные поверхности трубопроводов и с потерями теплоносителя.
5.5 При авариях (отказах) в системе централизованного теплоснабжения в течение всего ремонтно-восстановительного периода должна обеспечиваться:
подача 100% необходимой теплоты потребителям первой категории (если иные режимы не предусмотрены договором);
подача теплоты на отопление и вентиляцию жилищно-коммунальным и промышленным потребителям второй и третьей категорий в размерах, указанных в таблице 1;
заданный потребителем аварийный режим расхода пара и технологической горячей воды;
заданный потребителем аварийный тепловой режим работы неотключаемых вентиляционных систем;
среднесуточный расход теплоты за отопительный период на горячее водоснабжение (при невозможности его отключения).
Расчетная температура наружного воздуха для проектирования отопления , °C
Допустимое снижение подачи теплоты, %, до
Примечание – Таблица соответствует температуре наружного воздуха наиболее холодной пятидневки обеспеченностью 0,92.
5.6 При совместной работе нескольких источников теплоты на единую тепловую сеть района (города) должно предусматриваться взаимное резервирование источников теплоты, обеспечивающее аварийный режим по 5.5.
6 Схемы теплоснабжения и тепловых сетей
6.1 Выбор системы теплоснабжения объекта производится на основании утвержденной в установленном порядке схемы теплоснабжения.
Принятая к разработке в проекте схема теплоснабжения должна обеспечивать:
безопасность и надежность теплоснабжения потребителей;
энергетическую эффективность теплоснабжения и потребления тепловой энергии;
нормативный уровень надежности, определяемый тремя критериями: вероятностью безотказной работы, готовностью (качеством) теплоснабжения и живучестью;
требования экологии;
безопасность эксплуатации.
6.2 Функционирование тепловых сетей и СЦТ в целом не должно приводить:
а) к концентрации, превышающей предельно допустимую, в процессе эксплуатации токсичных и вредных для населения, ремонтно-эксплуатационного персонала и окружающей среды веществ в тоннелях, каналах, камерах, помещениях и других сооружениях, в атмосфере, с учетом способности атмосферы к самоочищению в конкретном жилом квартале, микрорайоне, населенном пункте и т.д.;
б) к стойкому нарушению естественного (природного) теплового режима растительного покрова (травы, кустарников, деревьев), под которым прокладываются теплопроводы.
6.3 Тепловые сети, независимо от способа прокладки и системы теплоснабжения, не должны проходить по территории кладбищ, свалок, скотомогильников, мест захоронения радиоактивных отходов, полей орошения, полей фильтрации и других участков, представляющих опасность химического, биологического и радиоактивного загрязнения теплоносителя.
Технологические аппараты промышленных предприятий, от которых могут поступать в тепловые сети вредные вещества, должны присоединяться к тепловым сетям через водоподогреватель с дополнительным промежуточным циркуляционным контуром между таким аппаратом и водоподогревателем при обеспечении давления в промежуточном контуре меньше, чем в тепловой сети. При этом следует предусматривать установку пробоотборных точек для контроля вредных примесей.
Системы горячего водоснабжения потребителей к паровым сетям должны присоединяться через пароводяные подогреватели.
6.4 Безопасная эксплуатация тепловых сетей должна обеспечиваться путем разработки в проектах мер, исключающих:
возникновение напряжений в оборудовании и трубопроводах выше предельно допустимых;
возникновение перемещений, приводящих к потере устойчивости трубопроводов и оборудования;
изменения параметров теплоносителя, приводящие к выходу из строя (отказу, аварии) трубопроводов тепловых сетей и оборудования источника теплоснабжения, теплового пункта или потребителя;
несанкционированный контакт людей непосредственно с горячей водой или с горячими поверхностями трубопроводов (и оборудования) при температурах теплоносителя более 55 °С;
поступление теплоносителя в системы теплоснабжения с температурами выше определяемых нормами безопасности;
снижение при отказах СЦТ температуры воздуха в жилых и производственных помещениях потребителей второй и третьей категорий ниже допустимых величин (4.2);
слив сетевой воды в непредусмотренных проектом местах;
превышение уровня шума и вибрации относительно требований СН 2.2.4/2.1.8.562;
несоответствие параметрам и критериям, обозначенным в разделе “Безопасность и надежность теплоснабжения” утвержденной в установленном порядке схемы теплоснабжения.
6.5 Температура на поверхности теплоизоляционной конструкции теплопроводов, арматуры и оборудования должна соответствовать СП 61.13330 и не должна превышать:
при прокладке теплопроводов в подвалах зданий, технических подпольях, тоннелях и проходных каналах, 45 °С;
при надземной прокладке, в местах доступных для обслуживания, 55 °С.
6.6 Система теплоснабжения (открытая, закрытая, в том числе с отдельными сетями горячего водоснабжения, смешанная) выбирается на основании утвержденной в установленном порядке схемы теплоснабжения.
6.7 Непосредственный водоразбор сетевой воды у потребителей в закрытых системах теплоснабжения не допускается.
6.8 В открытых системах теплоснабжения подключение части потребителей горячего водоснабжения через водо-водяные теплообменники на тепловых пунктах абонентов (по закрытой системе) допускается как временное при условии обеспечения (сохранения) качества сетевой воды согласно требованиям действующих нормативных документов.
6.9 При использовании атомных источников теплоты должны проектироваться системы теплоснабжения, исключающие вероятность попадания радионуклидов от самого источника в сетевую воду, трубопроводы, оборудование СЦТ и в приемники теплоты потребителей.
6.10 В составе СЦТ должны предусматриваться:
аварийно-восстановительные службы (ABC), численность персонала и техническая оснащенность которых должны обеспечивать полное восстановление теплоснабжения при отказах на тепловых сетях в сроки, указанные в таблице 2;
Таблица 2
Диаметр труб тепловых сетей, мм
Время восстановления теплоснабжения, ч
собственные ремонтно-эксплуатационные базы (РЭБ) – для районов тепловых сетей с объемом эксплуатации 1000 условных единиц и более. Численность персонала и техническая оснащенность РЭБ определяются с учетом состава оборудования, применяемых конструкций теплопроводов, тепловой изоляции и т.д.;
механические мастерские – для участков (цехов) тепловых сетей с объемом эксплуатации менее 1000 условных единиц;
единые ремонтно-эксплуатационные базы – для тепловых сетей, которые входят в состав подразделений тепловых электростанций, районных котельных или промышленных предприятий.
Схемы тепловых сетей
6.11 Водяные тепловые сети надлежит проектировать, как правило, двухтрубными, подающими одновременно теплоту на отопление, вентиляцию, горячее водоснабжение и технологические нужды.
Многотрубные и однотрубные магистральные тепловые сети допускается применять при технико-экономическом обосновании.
Многотрубные распределительные тепловые сети следует прокладывать после центральных тепловых пунктов при наличии у потребителей системы централизованного горячего водоснабжения, а также при различных температурных графиках в системах отопления, вентиляции и технологических потребителей при независимом присоединении.
Тепловые сети, транспортирующие в открытых системах теплоснабжения сетевую воду в одном направлении, при надземной прокладке допускается проектировать в однотрубном исполнении при длине транзита до 5 км. При большей протяженности и отсутствии резервной подпитки СЦТ от других источников теплоты тепловые сети должны выполняться в два (или более) параллельных теплопровода.
Самостоятельные тепловые сети для присоединения технологических потребителей теплоты следует предусматривать, если качество и параметры теплоносителя отличаются от принятых в тепловых сетях.
6.12 Схема и конфигурация тепловых сетей должны обеспечивать теплоснабжение на уровне заданных показателей надежности путем:
применения наиболее прогрессивных конструкций и технических решений;
совместной работы нескольких источников теплоты;
прокладки резервных теплопроводов;
устройства перемычек между тепловыми сетями смежных тепловых районов.
6.13 Тепловые сети могут быть кольцевыми и тупиковыми, резервированными и нерезервированными.
Число и места размещения резервных трубопроводных соединений между смежными теплопроводами следует определять по критерию вероятности безотказной работы.
6.14 Системы отопления потребителей могут присоединяться к двухтрубным водяным тепловым сетям по независимой и зависимой схеме в соответствии с заданием на проектирование.
Как правило, по независимой схеме, предусматривающей установку в тепловых пунктах водоподогревателей, допускается присоединять, при обосновании, системы отопления и вентиляции зданий в 12 этажей и выше, а также других потребителей, если такое присоединение обусловлено гидравлическим режимом работы системы.
6.15 Горячая вода, поступающая к потребителю, должна отвечать требованиям технических регламентов, санитарных правил и нормативов, определяющих ее безопасность.
Качество подпиточной и сетевой воды для открытых систем теплоснабжения и качество воды горячего водоснабжения в закрытых системах должно удовлетворять требованиям к питьевой воде в соответствии с СанПиН 2.1.4.1074.
Использование в закрытых системах теплоснабжения технической воды допускается при наличии термической деаэрации с температурой не менее 100 °С (деаэраторы атмосферного давления). Для открытых систем теплоснабжения деаэрация также должна производиться при температуре не менее 100 °С в соответствии с СанПиН 2.1.4.2496.
Другие требования, предъявляемые к качеству сетевой и подпиточной воды, приведены в приложении Б.
6.16 Установка для подпитки системы теплоснабжения на теплоисточнике должна обеспечивать подачу в тепловую сеть в рабочем режиме воду соответствующего качества и аварийную подпитку водой из систем хозяйственно-питьевого или производственного водопроводов [4, п.4.11.6].
Расход подпиточной воды в рабочем режиме должен компенсировать расчетные (нормируемые) потери сетевой воды в системе теплоснабжения.
Расчетные (нормируемые) потери сетевой воды в системе теплоснабжения включают расчетные технологические потери (затраты) сетевой воды и потери сетевой воды с нормативной утечкой из тепловой сети и систем теплопотребления.
Среднегодовая утечка теплоносителя (м/ч) из водяных тепловых сетей должна быть не более 0,25% среднегодового объема воды в тепловой сети и присоединенных системах теплоснабжения независимо от схемы присоединения (за исключением систем горячего водоснабжения, присоединенных через водоподогреватели). Сезонная норма утечки теплоносителя устанавливается в пределах среднегодового значения.
Технологические потери теплоносителя включают количество воды на наполнение трубопроводов и систем теплопотребления при их плановом ремонте и подключении новых участков сети и потребителей, промывку, дезинфекцию, проведение регламентных испытаний трубопроводов и оборудования тепловых сетей [4, п.4.12.30].
Для компенсации этих расчетных технологических потерь (затрат) сетевой воды необходима дополнительная производительность водоподготовительной установки и соответствующего оборудования (свыше 0,25% объема теплосети), которая зависит от интенсивности заполнения трубопроводов. Во избежание гидравлических ударов и лучшего удаления воздуха из трубопроводов максимальный часовой расход воды () при заполнении трубопроводов тепловой сети с условным диаметром () не должен превышать значений, приведенных в таблице 3. При этом скорость заполнения тепловой сети должна быть увязана с производительностью источника подпитки и может быть ниже указанных расходов [8, п.5.2.1.4].
Таблица 3 – Максимальный часовой расход воды при заполнении трубопроводов тепловой сети
В результате для закрытых систем теплоснабжения максимальный часовой расход подпиточной воды (, м/ч) составляет:
где – расход воды на заполнение наибольшего по диаметру секционированного участка тепловой сети, принимаемый по таблице 3, либо ниже при условии такого согласования;
– объем воды в системах теплоснабжения, м.
При отсутствии данных по фактическим объемам воды допускается принимать его равным 65 м на 1 МВт расчетной тепловой нагрузки при закрытой системе теплоснабжения, 70 м на 1 МВт – при открытой системе и 30 м на 1 МВт средней нагрузки – для отдельных сетей горячего водоснабжения.
В закрытых системах теплоснабжения на источниках теплоты мощностью 100 МВт и более следует предусматривать установку баков запаса химически обработанной и деаэрированной подпиточной воды вместимостью 3% объема воды в системе теплоснабжения.
Внутренняя поверхность баков должна быть защищена от коррозии, а вода в них – от аэрации, при этом должно обеспечиваться обновление воды в баках.
Число баков независимо от системы теплоснабжения принимается не менее двух по 50% рабочего объема каждый.
6.17 Для открытых систем теплоснабжения, а также при отдельных тепловых сетях на горячее водоснабжение с целью выравнивания суточного графика расхода воды (производительности ВПУ) на источниках теплоты должны предусматриваться баки-аккумуляторы химически обработанной и деаэрированной подпиточной воды по СанПиН 2.1.4.2496.
Расчетная вместимость баков-аккумуляторов должна быть равной десятикратной величине среднечасового расхода воды на горячее водоснабжение. Внутренняя поверхность баков должна быть защищена от коррозии, а вода в них – от аэрации, при этом должно предусматриваться непрерывное обновление воды в баках.
При расположении всех баков-аккумуляторов на источнике теплоты максимальный часовой расход подпиточной воды (, м/ч), подаваемой с источника, составляет
где – максимальный расход воды на горячее водоснабжение, м/ч.
6.18 При расположении части баков-аккумуляторов в районе теплоснабжения расход подпиточной воды, подаваемой с источника теплоты, может быть уменьшен до усредненного значения (, м/ч), равного
где – коэффициент, определяемый проектной организацией в зависимости от объема баков-аккумуляторов, установленных на источнике теплоты и вне его;
– усредненный расчетный расход воды на горячее водоснабжение.
При этом на источнике теплоты должны предусматриваться баки-аккумуляторы вместимостью не менее 25% общей расчетной вместимости баков.
6.19 Устанавливать баки-аккумуляторы горячей воды в жилых кварталах не допускается. Расстояние от баков-аккумуляторов горячей воды до границы жилых кварталов должно быть не менее 30 м. При этом на грунтах 1-го типа просадочности расстояние, кроме того, должно быть не менее 1,5 толщины слоя просадочного грунта.
6.20 Баки-аккумуляторы должны быть ограждены общим валом высотой не менее 0,5 м. Обвалованная территория должна вмещать рабочий объем воды в наибольшем баке и иметь отвод воды в дренажную сеть или систему дождевой канализации.
Для повышения эксплуатационной надежности баков-аккумуляторов следует также предусматривать устройство для защиты от лавинообразного разрушения.
При размещении баков-аккумуляторов вне территории источников теплоты следует предусматривать их ограждение высотой не менее 2,5 м для исключения доступа посторонних лиц к бакам.
6.21 Баки-аккумуляторы горячей воды у потребителей должны предусматриваться в системах горячего водоснабжения промышленных предприятий для выравнивания сменного графика потребления воды объектами, имеющими сосредоточенные кратковременные расходы воды на горячее водоснабжение.
Для объектов промышленных предприятий, имеющих отношение средней тепловой нагрузки на горячее водоснабжение к максимальной тепловой нагрузке на отопление меньше 0,2, баки-аккумуляторы не устанавливаются.
6.22 Для открытых и закрытых систем теплоснабжения должна предусматриваться дополнительно аварийная подпитка химически не обработанной и не деаэрированной водой, расход которой принимается в количестве 2% среднегодового объема воды в тепловой сети и присоединенных системах теплоснабжения независимо от схемы присоединения (за исключением систем горячего водоснабжения, присоединенных через водоподогреватели), если другое не предусмотрено проектными (эксплуатационными) решениями. При наличии нескольких отдельных тепловых сетей, отходящих от коллектора источника тепла, аварийную подпитку допускается определять только для одной наибольшей по объему тепловой сети. Для открытых систем теплоснабжения аварийная подпитка должна обеспечиваться только из систем хозяйственно-питьевого водоснабжения.
6.23 В СЦТ с теплопроводами любой протяженности от источника теплоты до районов теплопотребления допускается использование теплопроводов в качестве теплоаккумулирующих емкостей.
6.24 Для уменьшения потерь сетевой воды и соответственно теплоты при плановых или вынужденных опорожнениях теплопроводов допускается установка в тепловых сетях специальных баков-накопителей, вместимость которых определяется объемом теплопроводов между двумя секционирующими задвижками.
Надежность
6.25 Способность проектируемых и действующих источников теплоты, тепловых сетей и в целом СЦТ обеспечивать в течение заданного времени требуемые режимы, параметры и качество теплоснабжения (отопления, вентиляции, горячего водоснабжения, а также технологических потребностей предприятий в паре и горячей воде) следует определять по трем показателям (критериям): вероятности безотказной работы [], коэффициенту готовности [], живучести [Ж].
Расчет показателей системы с учетом надежности должен производиться для каждого потребителя.
6.26 Минимально допустимые показатели вероятности безотказной работы следует принимать для:
источника теплоты 0,97;
тепловых сетей 0,9;
потребителя теплоты 0,99;
СЦТ в целом 0,9×0,97×0,99=0,86.
Заказчик вправе устанавливать в техническом задании на проектирование более высокие показатели.
6.27 Для обеспечения безотказности тепловых сетей следует определять:
предельно допустимую длину нерезервированных участков теплопроводов (тупиковых, радиальных, транзитных) до каждого потребителя или теплового пункта;
места размещения резервных трубопроводных связей между радиальными теплопроводами;
достаточность диаметров выбираемых при проектировании новых или реконструируемых существующих теплопроводов для обеспечения резервной подачи теплоты потребителям при отказах;
необходимость замены на конкретных участках конструкций тепловых сетей и теплопроводов на более надежные, а также обоснованность перехода на надземную или тоннельную прокладку;
очередность ремонтов и замен теплопроводов, частично или полностью утративших свой ресурс;
необходимость проведения работ по дополнительному утеплению зданий.
6.28 Готовность системы к исправной работе следует определять по числу часов ожидания готовности: источника теплоты, тепловых сетей, потребителей теплоты, а также – числу часов нерасчетных температур наружного воздуха в данной местности.
6.29 Минимально допустимый показатель готовности СЦТ к исправной работе принимается 0,97.
6.30 Для расчета показателя готовности следует определять (учитывать):
готовность СЦТ к отопительному сезону;
достаточность установленной тепловой мощности источника теплоты для обеспечения исправного функционирования СЦТ при нерасчетных похолоданиях;
способность тепловых сетей обеспечить исправное функционирование СЦТ при нерасчетных похолоданиях;
организационные и технические меры, необходимые для обеспечения исправного функционирования СЦТ на уровне заданной готовности;
максимально допустимое число часов готовности для источника теплоты;
температуру наружного воздуха, при которой обеспечивается заданная внутренняя температура воздуха.
Резервирование
6.31 Следует предусматривать следующие способы резервирования:
организацию совместной работы нескольких источников теплоты на единую систему транспортирования теплоты;
резервирование тепловых сетей смежных районов;
устройство резервных насосных и трубопроводных связей;
установку баков-аккумуляторов.
При подземной прокладке тепловых сетей в непроходных каналах и бесканальной прокладке величина подачи теплоты (%) для обеспечения внутренней температуры воздуха в отапливаемых помещениях не ниже 12 °С в течение ремонтно-восстановительного периода после отказа должна приниматься по таблице 4.
Таблица 4
Диаметр труб тепловых сетей, мм
Расчетная температура наружного воздуха для проектирования отопления , °C
Допускаемое снижение подачи теплоты, %, до
6.32 Участки надземной прокладки протяженностью до 5 км допускается не резервировать, кроме трубопроводов диаметром более 1200 мм в районах с расчетными температурами воздуха для проектирования отопления ниже минус 40 °С.
Резервирование подачи теплоты по тепловым сетям, прокладываемым в тоннелях и проходных каналах, допускается не предусматривать.
6.33 Для потребителей первой категории допускается предусматривать местные резервные источники теплоты (стационарные или передвижные) при отсутствии возможности резервирования от нескольких независимых источников тепла или тепловых сетей.
6.34 Для резервирования теплоснабжения промышленных предприятий допускается предусматривать местные источники теплоты.
Живучесть
6.35 Минимальная подача теплоты по теплопроводам, расположенным в неотапливаемых помещениях и снаружи, в подъездах, лестничных клетках, на чердаках и т.п., должна быть достаточной для поддержания температуры воды в течение всего ремонтно-восстановительного периода после отказа не ниже 3 °С.
6.36 В проектах должны быть разработаны мероприятия по обеспечению живучести элементов систем теплоснабжения, находящихся в зонах возможных воздействий отрицательных температур, в том числе:
организация локальной циркуляции сетевой воды в тепловых сетях до и после ЦТП;
спуск сетевой воды из систем теплоиспользования у потребителей, распределительных тепловых сетей, транзитных и магистральных теплопроводов;
прогрев и заполнение тепловых сетей и систем теплоиспользования потребителей во время и после окончания ремонтно-восстановительных работ;
проверка прочности элементов тепловых сетей на достаточность запаса прочности оборудования и компенсирующих устройств;
обеспечение необходимого пригруза бесканально проложенных теплопроводов при возможных затоплениях;
временное использование, при возможности, передвижных источников теплоты.
Сбор и возврат конденсата
6.37 Системы сбора и возврата конденсата источнику теплоты следует предусматривать закрытыми, при этом избыточное давление в сборных баках конденсата должно быть не менее 0,005 МПа.
Открытые системы сбора и возврата конденсата допускается предусматривать при количестве возвращаемого конденсата менее 10 т/ч и расстоянии до источника теплоты до 0,5 км.
6.38 Возврат конденсата от конденсатоотводчиков по общей сети допускается применять при разнице в давлении пара перед конденсатоотводчиками не более 0,3 МПа.
При возврате конденсата насосами число насосов, подающих конденсат в общую сеть, не ограничивается.
Параллельная работа насосов и конденсатоотводчиков, отводящих конденсат от потребителей пара на общую конденсатную сеть, не допускается.
6.39 Напорные конденсатопроводы следует рассчитывать по максимальному часовому расходу конденсата, исходя из условий работы трубопроводов полным сечением при всех режимах возврата конденсата и предохранения их от опорожнения при перерывах в подаче конденсата. Давление в сети конденсатопроводов при всех режимах должно приниматься избыточным.
Конденсатопроводы от конденсатоотводчиков до сборных баков конденсата следует рассчитывать с учетом образования пароводяной смеси.
6.40 Удельные потери давления на трение в конденсатопроводах после насосов надлежит принимать не более 100 Па/м при эквивалентной шероховатости внутренней поверхности конденсатопроводов 0,001 м.
6.41 Вместимость сборных баков конденсата, устанавливаемых в тепловых сетях, на тепловых пунктах потребителей должна приниматься не менее 10-минутного максимального расхода конденсата. Число баков при круглогодичной работе следует принимать не менее двух, вместимостью по 50% каждый. При сезонной работе и менее 3 мес в году, а также при максимальном расходе конденсата до 5 т/ч допускается установка одного бака.
При контроле качества конденсата число баков следует принимать, как правило, не менее трех с вместимостью каждого, обеспечивающей по времени проведение анализа конденсата по всем необходимым показателям, но не менее 30-минутного максимального поступления конденсата.
6.42 Подача (производительность) насосов для перекачки конденсата должна определяться по максимальному часовому расходу конденсата.
Напор насоса должен определяться по величине потери давления в конденсатопроводе с учетом высоты подъема конденсата от насосной до сборного бака и величины избыточного давления в сборных баках.
Напор насосов, подающих конденсат в общую сеть, должен определяться с учетом условий их параллельной работы при всех режимах возврата конденсата.
Число насосов в каждой насосной следует принимать не менее двух, один из которых является резервным.
6.43 Постоянный и аварийный сбросы конденсата в системы дождевой или бытовой канализации допускаются после охлаждения его до температуры 40 °С. При сбросе в систему производственной канализации с постоянными стоками конденсат допускается не охлаждать.
6.44 Возвращаемый от потребителей к источнику теплоты конденсат должен отвечать требованиям правил технической эксплуатации электрических станций и сетей.
Температура возвращаемого конденсата для открытых и закрытых систем не нормируется.
6.45 В системах сбора и возврата конденсата следует предусматривать использование его теплоты для собственных нужд предприятия.
7 Теплоносители и их параметры
7.1 В системах централизованного теплоснабжения для отопления, вентиляции и горячего водоснабжения жилых, общественных и производственных зданий в качестве теплоносителя следует, как правило, принимать воду.
Следует также проверять возможность применения воды как теплоносителя для технологических процессов.
Применение для предприятий в качестве единого теплоносителя пара для технологических процессов, отопления, вентиляции и горячего водоснабжения допускается при технико-экономическом обосновании.
7.2 Максимальная расчетная температура сетевой воды на выходе из источника теплоты, в тепловых сетях и приемниках теплоты устанавливается на основе технико-экономических расчетов.
При наличии в системах теплоснабжения нагрузки горячего водоснабжения минимальная температура сетевой воды на выходе из источника теплоты и в тепловых сетях должна обеспечивать возможность подогрева воды, поступающей на горячее водоснабжение, до нормируемого уровня.
7.3 Температура сетевой воды, возвращаемой на тепловые электростанции с комбинированной выработкой теплоты и электроэнергии, определяется технико-экономическим расчетом. Температура сетевой воды, возвращаемой в котельные, не регламентируется.
7.4 При расчете графиков температур сетевой воды в системах централизованного теплоснабжения начало и конец отопительного периода принимается при среднесуточной температуре наружного воздуха +8 °С в течение пяти суток.
Усредненная расчетная температура отапливаемых жилых, общественных и производственных помещений принимается по СП 60.13330 или по соответствующим нормам проектирования зданий.
7.5 Регулирование отпуска теплоты предусматривается: центральное – на источнике теплоты, групповое – в ЦТП, индивидуальное в ИТП и АУУ.
Основным критерием регулирования является поддержание температурного и гидравлического режима у потребителя тепла.
На источнике тепла следует предусматривать следующие способы регулирования:
количественное – изменение в зависимости от температуры наружного воздуха, расхода теплоносителя в тепловых сетях на выходных задвижках источника теплоты;
качественное – изменение в зависимости от температуры наружного воздуха, температуры теплоносителя на источнике теплоты;
центральное качественно-количественное по совместной нагрузке отопления, вентиляции и горячего водоснабжения – путем регулирования на источнике теплоты, как температуры, так и расхода сетевой воды.
7.6 При регулировании отпуска теплоты для подогрева воды в системах горячего водоснабжения потребителей температура воды в подающем трубопроводе должна обеспечивать, для открытых и закрытых систем теплоснабжения, температуру горячей воды у потребителя в диапазоне, установленном СанПиН 2.1.4.1074.
При центральном качественном и качественно-количественном регулировании по совместной нагрузке отопления, вентиляции и горячего водоснабжения точка излома графика температур воды в подающем и обратном трубопроводах должна приниматься при температуре наружного воздуха, соответствующей точке излома графика регулирования по нагрузке отопления.
7.7 Для раздельных водяных тепловых сетей от одного источника теплоты к предприятиям и жилым районам допускается предусматривать разные графики температур теплоносителя.
7.8 При теплоснабжении от центральных тепловых пунктов зданий общественного и производственного назначения, для которых возможно снижение температуры воздуха в ночное и нерабочее время, следует предусматривать автоматическое регулирование температуры или расхода теплоносителя.
8 Гидравлические режимы
8.1 При проектировании новых и реконструкции действующих СЦТ, а также при разработке мероприятий по повышению эксплуатационной готовности и безотказности работы всех звеньев системы расчет гидравлических режимов обязателен.
8.2 Для магистральных водяных тепловых сетей следует предусматривать следующие гидравлические режимы:
расчетный – по расчетным расходам сетевой воды в отопительный период;
летний – при максимальной нагрузке горячего водоснабжения в неотопительный период;
статический – при отсутствии циркуляции теплоносителя в тепловой сети;
аварийный;
для открытых систем теплоснабжения:
зимний – при максимальном отборе воды на горячее водоснабжение из обратного трубопровода;
переходный – при максимальном отборе воды на горячее водоснабжение из подающего трубопровода;
для распределительных тепловых сетей следует предусматривать:
расчетный режим – по расчетным расходам теплоносителя в отопительный период.
8.3 Результаты гидравлического расчета являются исходными данными для выбора насосного оборудования, мест установки узлов рассечек, диаметров трубопроводов и других элементов СЦТ.
8.4 Расход пара в паровых тепловых сетях, обеспечивающих предприятия с различными суточными режимами работы, следует определять с учетом несовпадения максимальных часовых расходов пара отдельными предприятиями.
Для паропроводов насыщенного пара в суммарном расходе должно учитываться дополнительное количество пара, конденсирующегося за счет потерь теплоты в трубопроводах.
8.5 Эквивалентную шероховатость внутренней поверхности стальных труб следует принимать:
для паровых тепловых сетей 0,0002 м;
для водяных тепловых сетей 0,0005 м;
для сетей горячего водоснабжения 0,001 м.
При применении в тепловых сетях трубопроводов из других материалов значения эквивалентных шероховатостей допускается принимать при подтверждении их фактической величины испытаниями с учетом срока эксплуатации.
8.6 Диаметры подающего и обратного трубопроводов двухтрубных водяных тепловых сетей при совместной подаче теплоты на отопление, вентиляцию и горячее водоснабжение рекомендуется принимать одинаковыми.
8.7 Наименьший внутренний диаметр труб должен приниматься в тепловых сетях не менее 32 мм, а для циркуляционных трубопроводов горячего водоснабжения – не менее 25 мм.
8.8 Статическое давление в системах теплоснабжения при теплоносителе воде должно определяться для температуры сетевой воды, равной 100 °С. Следует исключать при статических режимах недопустимое повышение давления в трубопроводах и оборудовании.
Граничные условия при расчете гидравлических режимов
8.9 Давление воды в подающих трубопроводах водяных тепловых сетей при работе сетевых насосов должно приниматься, исходя из условий невскипания воды при ее максимальной температуре в любой точке подающего трубопровода, в оборудовании источника теплоты и в приборах систем потребителей, непосредственно присоединенных к тепловым сетям.
8.10 Давление воды в обратных трубопроводах водяных тепловых сетей при работе сетевых насосов должно быть избыточным (не менее 0,05 МПа) и не превышать допускаемого давления в системах теплоиспользования потребителей.
8.11 Давление воды в обратных трубопроводах водяных тепловых сетей открытых систем теплоснабжения в неотопительный период, а также в подающем и циркуляционном трубопроводах сетей горячего водоснабжения следует принимать не менее чем на 0,05 МПа больше статического давления систем горячего водоснабжения потребителей.
8.12 Давление и температура воды на всасывающих патрубках сетевых, подпиточных, подкачивающих и смесительных насосов не должны быть ниже давления кавитации и не должны превышать допускаемых по условиям прочности конструкций насосов.
8.13 Напор сетевых насосов следует определять для отопительного и неотопительного периодов и принимать равным сумме потерь напора в установках на источнике теплоты, в подающем и обратном трубопроводах от источника теплоты до наиболее удаленного потребителя и в системе потребителя (включая потери в тепловых пунктах и насосных) при суммарных расчетных расходах воды.
Напор подкачивающих насосов на подающем и обратном трубопроводах следует определять по пьезометрическим графикам при максимальных расходах воды в трубопроводах с учетом гидравлических потерь в оборудовании и трубопроводах.
8.14 Напор подпиточных насосов должен определяться из условий поддержания в водяных тепловых сетях статического давления и проверяться для условий работы сетевых насосов в отопительный и неотопительный периоды.
Допускается предусматривать установку отдельных групп подпиточных насосов с различными напорами для отопительного, неотопительного периодов и для статического режима.
8.15 Подачу (производительность) рабочих подпиточных насосов на источнике теплоты в закрытых системах теплоснабжения следует принимать равной расходу воды на компенсацию потерь сетевой воды из тепловой сети, а в открытых системах – равной сумме максимального расхода воды на горячее водоснабжение и расхода воды на компенсацию потерь.
8.16 Напор смесительных насосов следует определять по наибольшему перепаду давлений между подающим и обратным трубопроводами.
8.17 Число насосов следует принимать:
сетевых – не менее двух, один из которых является резервным; при пяти рабочих сетевых насосах в одной группе резервный насос допускается не устанавливать;
подкачивающих и смесительных (в тепловых сетях) – не менее трех, один из которых является резервным, при этом резервный насос предусматривается независимо от числа рабочих насосов;
подпиточных – в закрытых системах теплоснабжения не менее двух, один из которых является резервным, в открытых системах – не менее трех, один из которых также является резервным;
в узлах деления водяной тепловой сети на зоны (в узлах рассечки) допускается в закрытых системах теплоснабжения устанавливать один подпиточный насос без резерва, а в открытых системах – один рабочий и один резервный.
Число насосов определяется с учетом их совместной работы на тепловую сеть.
8.18 При определении напора сетевых насосов перепад давлений на вводе двухтрубных водяных тепловых сетей в здания (при элеваторном присоединении систем отопления) следует принимать равным расчетным потерям давления на вводе и в местной системе с коэффициентом 1,5, но не менее 0,15 МПа. Избыточный напор гасить в тепловых пунктах зданий.
8.19 При проектировании СЦТ следует определять необходимость комплексной системы защиты, предотвращающей возникновение гидравлических ударов, недопустимых давлений и вскипания сетевой воды в оборудовании водоподогревательных установок источников теплоты, в тепловых сетях, системах теплоиспользования потребителей.
В подкачивающих насосных станциях следует устанавливать на обводной линии, соединяющей напорные и всасывающие коллекторы, обратный клапан, диаметром равным диаметру подходящего к насосной станции трубопровода.
Отказ от выполнения защитных мероприятий должен быть обоснован расчетными или экспериментальными исследованиями.
9 Трассы и способы прокладки тепловых сетей
9.1 В населенных пунктах для тепловых сетей предусматривается, как правило, подземная прокладка (бесканальная, в каналах или в тоннелях (коллекторах) совместно с другими инженерными сетями).
При обосновании допускается надземная прокладка тепловых сетей, кроме территорий детских и лечебных учреждений.
Байпасные трубопроводы тепловых сетей (при их эксплуатации менее одного года и служащие для бесперебойного теплоснабжения потребителей), используемые при реконструкции и капитальном ремонте, прокладываются, как правило, наземно.
При прохождении байпасных трубопроводов по территории детских и лечебных учреждений проектной документацией должны быть выполнены требования, обеспечивающие безопасность эксплуатации в соответствии с разделом 6 и предусмотрены мероприятия, установленные приложением Д настоящих правил.
9.2 Прокладку тепловых сетей по территории, не подлежащей застройке вне населенных пунктов, следует предусматривать надземную на низких опорах.
Прокладка тепловых сетей по насыпям автомобильных дорог общего пользования I, II и III категорий не допускается.
9.3 При выборе трассы допускается пересечение жилых и общественных зданий транзитными водяными тепловыми сетями с диаметрами теплопроводов до 300 включительно и давлением 1,6 МПа при условии прокладки сетей в технических подпольях и тоннелях (высотой не менее 1,8 м) с устройством дренирующего колодца в нижней точке на выходе из здания.
В виде исключения пересечение жилых и общественных зданий транзитными водяными тепловыми сетями диаметром 400-600 мм допускается при выполнении требований раздела 6 и применении мероприятий в соответствии с приложением Д настоящих правил.
При выполнении этих же требований допускается устройство пристенного (пристроенного к фундаменту здания) канала, при этом устройство пристенных каналов ниже уровня фундаментов зданий не допускается.
9.4 Пересечение транзитными тепловыми сетями зданий и сооружений детских дошкольных, школьных и лечебно-профилактических учреждений не допускается.
Прокладка транзитных тепловых сетей по территории перечисленных учреждений допускается только подземная в монолитных железобетонных каналах с гидроизоляцией. При этом устройство вентиляционных шахт, люков и выходов наружу из каналов в пределах территории учреждений не допускается, запорная арматура на транзитных трубопроводах должна устанавливаться за пределами территории.
Ответвления от магистральных тепловых сетей для теплоснабжения зданий и сооружений, относящихся к детским дошкольным, школьным и лечебно-профилактическим учреждениям и расположенных на их территории, прокладываются в монолитных железобетонных каналах (в том числе и запесоченных), в сборных железобетонных каналах с применением оклеечной гидроизоляции и при условии монтажа конструкций, обеспечивающих герметичность канала.
Установка запорной арматуры на ответвлениях допускается только с применением бесканальных узлов и камер с устройством мероприятий по предотвращению несанкционируемого доступа третьих лиц и обеспечению самотечного водовыпуска из камер в систему дождевой канализации.
9.5 Прокладка тепловых сетей при рабочем давлении пара выше 2,2 МПа и температуре выше 350 °С в тоннелях совместно с другими инженерными сетями не допускается.
9.6 Уклон тепловых сетей независимо от направления движения теплоносителя и способа прокладки должен быть не менее 0,002. При катковых и шариковых опорах уклон не должен превышать
где – радиус катка или шарика, см.
Уклон тепловых сетей к отдельным зданиям при подземной прокладке должен приниматься, как правило, от здания к ближайшей камере.
На отдельных участках (при пересечении коммуникаций, прокладке по мостам и т.п.) допускается принимать прокладку тепловых сетей без уклона.
При прокладке тепловых сетей из гибких труб предусматривать уклон не требуется.
9.7 Подземную прокладку тепловых сетей допускается предусматривать совместно с перечисленными ниже инженерными сетями:
в каналах – с водопроводами, трубопроводами сжатого воздуха давлением до 1,6 МПа, контрольными кабелями, предназначенными для обслуживания тепловых сетей;
в тоннелях – с водопроводами диаметром до 500 мм, кабелями связи, силовыми кабелями напряжением до 10 кВ, трубопроводами сжатого воздуха давлением до 1,6 МПа, трубопроводами напорной канализации, холодопроводами.
Прокладка трубопроводов тепловых сетей в каналах и тоннелях с другими инженерными сетями, кроме указанных, не допускается.
Прокладка трубопроводов тепловых сетей должна предусматриваться в одном ряду или над другими инженерными сетями.
9.8 При новом строительстве расстояния по горизонтали и вертикали от наружной грани строительных конструкций каналов и тоннелей или оболочки изоляции трубопроводов при бесканальной прокладке тепловых сетей до зданий, сооружений и инженерных сетей следует принимать по приложению А. При прокладке теплопроводов по территории промышленных предприятий – по соответствующим нормам для промышленных предприятий.
Уменьшение нормативных указаний в приложении А возможно при обосновании и регламентируется постановлением Правительства Российской Федерации [11], раздел I, пункт 5.
9.9 При реконструкции и капитальном ремонте тепловых сетей, при стесненных условиях строительства и сохранении границ охранной зоны тепловой сети возможно уменьшение нормативных расстояний до зданий, сооружений и инженерных сетей (приложение А) путем выполнения мероприятий по обеспечению сохранности существующих зданий, сооружений и инженерных коммуникаций (приложение Д).
9.10 Пересечение тепловыми сетями рек, автомобильных дорог, трамвайных путей, а также зданий и сооружений следует, как правило, предусматривать под прямым углом. Допускается при обосновании пересечение под меньшим углом, но не менее 45°, а сооружений метрополитена, железных дорог – не менее 60°.
9.11 Пересечение подземными тепловыми сетями трамвайных путей следует предусматривать на расстоянии от стрелок и крестовин не менее 3 м (в свету).
9.12 При подземном пересечении тепловыми сетями железных дорог наименьшие расстояния по горизонтали в свету следует принимать, м:
до стрелок и крестовин железнодорожного пути и мест присоединения отсасывающих кабелей к рельсам электрифицированных железных дорог – 10;
до стрелок и крестовин железнодорожного пути при просадочных грунтах – 20;
до мостов, тоннелей и других искусственных сооружений – 30.
9.13 Прокладка тепловых сетей при пересечении железных дорог общей сети, а также рек, оврагов, открытых водостоков должна предусматриваться, как правило, надземной. При этом допускается использовать постоянные автодорожные и железнодорожные мосты.
Бесканальная прокладка тепловых сетей при подземном пересечении железных, автомобильных, магистральных дорог, улиц, проездов общегородского и районного значения, а также улиц и дорог местного значения, трамвайных путей и линий метрополитена не допускается.
При прокладке тепловых сетей под водными преградами следует предусматривать, как правило, устройство дюкеров.
Пересечение тепловыми сетями станционных сооружений метрополитена не допускается.
При подземном пересечении тепловыми сетями линий метрополитена каналы и тоннели следует предусматривать из монолитного железобетона с гидроизоляцией.
Пересечение проездов в пределах квартальной застройки тепловыми сетями из гибких труб следует выполнять в футлярах с хомутовыми центрирующими опорами.
9.14 Длину каналов, тоннелей или футляров в местах пересечений необходимо принимать в каждую сторону не менее чем на 3 м больше размеров пересекаемых сооружений, в том числе сооружений земляного полотна железных и автомобильных дорог, с учетом таблицы А.3.
При пересечении тепловыми сетями железных дорог общей сети, линий метрополитена, рек и водоемов следует предусматривать запорную арматуру с обеих сторон пересечения, а также устройства для спуска воды из трубопроводов тепловых сетей, каналов, тоннелей или футляров на расстоянии не более 100 м от границы пересекаемых сооружений.
9.15 При прокладке тепловых сетей в футлярах должна предусматриваться антикоррозионная защита труб тепловых сетей и футляров. В местах пересечения электрифицированных железных дорог и трамвайных путей должна предусматриваться электрохимическая защита.
Между тепловой изоляцией и футляром должен предусматриваться зазор не менее 100 мм.
9.16 В местах пересечения при подземной прокладке тепловых сетей с газопроводами не допускается прохождение газопроводов через строительные конструкции камер, непроходных каналов и тоннелей.
9.17 При пересечении тепловыми сетями сетей водопровода и канализации, расположенных над трубопроводами тепловых сетей, при расстоянии от конструкции тепловых сетей до трубопроводов пересекаемых сетей 300 мм и менее (в свету), а также при пересечении газопроводов следует предусматривать устройство футляров на трубопроводах водопровода, канализации и газа на длине 2 м по обе стороны от пересечения (в свету). На футлярах следует предусматривать защитное покрытие от коррозии.
9.18 В местах пересечения тепловых сетей при их подземной прокладке в каналах или тоннелях с газопроводами должны предусматриваться на тепловых сетях на расстоянии не более 15 м по обе стороны от газопровода устройства для отбора проб на утечку газа.
При прокладке тепловых сетей с попутным дренажом на участке пересечения с газопроводом дренажные трубы следует предусматривать без отверстий на расстоянии по 2 м в обе стороны от газопровода, с герметичной заделкой стыков.
9.19 На вводах трубопроводов тепловых сетей в здания в газифицированных районах необходимо предусматривать устройства, предотвращающие проникание воды и газа в здания, а в негазифицированных – воды.
9.20 В местах пересечения надземных тепловых сетей с воздушными линиями электропередачи и электрифицированными железными дорогами следует предусматривать заземление всех электропроводящих элементов тепловых сетей (с сопротивлением заземляющих устройств не более 10 Ом), расположенных на расстоянии по горизонтали по 5 м в каждую сторону от проводов.
9.21 Прокладка тепловых сетей вдоль бровок террас, оврагов, откосов, искусственных выемок должна предусматриваться за пределами призмы обрушения грунта от замачивания. При этом при расположении под откосом зданий и сооружений различного назначения следует предусматривать мероприятия по отводу аварийных вод из тепловых сетей с целью недопущения затопления территории застройки.
9.22 В зоне отапливаемых пешеходных переходов, в том числе совмещенных с входами в метрополитен, следует предусматривать прокладку тепловых сетей в монолитном железобетонном канале, выходящем на 5 м за габарит переходов.
10 Конструкция трубопроводов
10.1 Трубы, арматуру и изделия из стали и чугуна для тепловых сетей с температурой теплоносителя выше 115 °С следует принимать в соответствии с [1].
Расчет стальных и чугунных трубопроводов на прочность следует выполнять по нормам расчета, указанным в [2] и [3], расчетный срок службы – не менее 30 лет.
Допускается производить расчеты на прочность стальных трубопроводов тепловых сетей, а также производить расчеты на устойчивость гибких трубопроводов по аналогичным методикам, согласованным с Федеральной службой по экологическому, технологическому и атомному надзору.
10.2 Для трубопроводов тепловых сетей следует предусматривать стальные электросварные трубы или бесшовные стальные трубы.
Трубы из высокопрочного чугуна с шаровидным графитом (ВЧШГ) допускается применять для тепловых сетей при температуре воды до 150 °С и давлении до 1,6 МПа включительно.
10.3 Для трубопроводов тепловых сетей при рабочем давлении пара 0,07 МПа и ниже и температуре воды 135 °С и ниже при давлении до 1,6 МПа включительно допускается применять неметаллические трубы, разрешенные к использованию в соответствии с действующим законодательством и санитарными нормами и правилами.
При проектировании тепловых сетей из неметаллических труб их расчетный срок службы должен составлять не менее 30 лет.
10.4 Для сетей горячего водоснабжения в закрытых системах теплоснабжения должны применяться трубы из коррозионно-стойких материалов. Трубы из ВЧШГ, из полимерных материалов и неметаллические трубы допускается применять как для закрытых, так и открытых систем теплоснабжения.
10.5 Максимальные расстояния между подвижными опорами труб на прямых участках надлежит определять расчетом на прочность, исходя из возможности максимального использования несущей способности труб* и по допускаемому прогибу, принимаемому не более 0,02, м.
________________
* Текст документа соответствует оригиналу. – Примечание изготовителя базы данных.
10.6 Для выбора труб, арматуры, оборудования и деталей трубопроводов, а также для расчета трубопроводов на прочность и при определении нагрузок от трубопроводов на опоры труб и строительные конструкции рабочее давление и температуру теплоносителя следует принимать:
а) для паровых сетей:
при получении пара непосредственно от котлов – по номинальным значениям давления и температуры пара на выходе из котлов;
при получении пара из регулируемых отборов или противодавления турбин – по давлению и температуре пара, принятым на выводах от ТЭЦ для данной системы паропроводов;
при получении пара после редукционно-охладительных, редукционных или охладительных установок (РОУ, РУ, ОУ) – по давлению и температуре пара после установки;
б) для подающего и обратного трубопроводов водяных тепловых сетей:
давление – по наибольшему давлению в подающем трубопроводе за выходными задвижками на источнике теплоты при работе сетевых насосов с учетом рельефа местности (без учета потерь давления в сетях), но не менее 1,0 МПа;
температуру – по температуре в подающем трубопроводе при расчетной температуре наружного воздуха для проектирования отопления;
в) для конденсатных сетей:
давление – по наибольшему давлению в сети при работе насосов с учетом рельефа местности;
температуру после конденсатоотводчиков – по температуре насыщения при максимально возможном давлении пара непосредственно перед конденсатоотводчиком, после конденсатных насосов – по температуре конденсата в сборном баке;
г) для подающего и циркуляционного трубопроводов сетей горячего водоснабжения:
давление – по наибольшему давлению в подающем трубопроводе при работе насосов с учетом рельефа местности;
температуру – до 75 °С.
10.7 Рабочее давление и температура теплоносителя должны приниматься едиными для всего трубопровода, независимо от его протяженности от источника теплоты до теплового пункта каждого потребителя или до установок в тепловой сети, изменяющих параметры теплоносителя (водоподогреватели, регуляторы давления и температуры, редукционно-охладительные установки, насосные). После указанных установок должны приниматься параметры теплоносителя, предусмотренные для этих установок.
10.8 Параметры теплоносителя реконструируемых водяных тепловых сетей принимаются по параметрам в существующих сетях.
10.9 Для трубопроводов тепловых сетей, кроме тепловых пунктов и сетей горячего водоснабжения, не допускается применять арматуру из:
серого чугуна – в районах с расчетной температурой наружного воздуха для проектирования отопления ниже минус 10 °С;
ковкого чугуна – в районах с расчетной температурой наружного воздуха для проектирования отопления ниже минус 30 °С;
высокопрочного чугуна в районах с расчетной температурой наружного воздуха для проектирования отопления ниже минус 40 °С.
На спускных, продувочных и дренажных устройствах применять арматуру из серого чугуна не допускается.
На трубопроводах тепловых сетей допускается применение арматуры из латуни и бронзы при температуре теплоносителя не выше 250 °С.
На выводах тепловых сетей от источников теплоты и на вводах в центральные тепловые пункты (ЦТП) должна предусматриваться стальная запорная арматура.
10.10 При установке чугунной арматуры в тепловых сетях должна предусматриваться защита ее от изгибающих усилий.
10.11 Принимать запорную арматуру в качестве регулирующей не допускается.
10.12 Для тепловых сетей, как правило, должна приниматься арматура с концами под приварку или фланцевая.
Муфтовую арматуру допускается принимать условным проходом 100 мм при давлении теплоносителя 1,6 МПа и ниже и температуре 115 °С и ниже в случаях применения водогазопроводных труб.
10.13 Для задвижек и затворов на водяных тепловых сетях диаметром 500 мм при давлении 1,6 МПа и 300 мм при 2,5 МПа, а на паровых сетях 200 мм при 1,6 МПа следует предусматривать обводные трубопроводы с запорной арматурой (разгрузочные байпасы).
При применении шаровой запорной арматуры устройство разгрузочных байпасов, как правило, не требуется.
10.14 Задвижки и затворы 500 мм следует предусматривать с электроприводом.
При дистанционном телеуправлении задвижками арматуру на байпасах следует принимать также с электроприводом.
10.15 Задвижки и затворы с электроприводом при подземной прокладке должны размещаться в камерах с надземными павильонами или в подземных камерах с естественной вентиляцией, обеспечивающей параметры воздуха в соответствии с техническими условиями на электроприводы к арматуре.
При надземной прокладке тепловых сетей на низких опорах, для задвижек и затворов с электроприводом следует предусматривать металлические кожухи, исключающие доступ посторонних лиц и защищающие их от атмосферных осадков, а на транзитных магистралях, как правило, павильоны. При прокладке на эстакадах или высоких отдельно стоящих опорах – козырьки (навесы) для защиты арматуры от атмосферных осадков.
10.16 В районах строительства с расчетной температурой наружного воздуха минус 40 °С и ниже при применении арматуры из углеродистой стали должны предусматриваться мероприятия, исключающие возможность снижения температуры стали ниже минус 30 °С при транспортировании, хранении, монтаже и эксплуатации, а при прокладке тепловых сетей на низких опорах для задвижек и затворов 500 мм должны предусматриваться павильоны с электрическим отоплением, исключающим снижение температуры воздуха в павильонах ниже минус 30 °С при останове сетей.
10.17 Запорную арматуру в тепловых сетях следует предусматривать:
а) на всех трубопроводах выводов тепловых сетей от источников теплоты, независимо от параметров теплоносителя и диаметров трубопроводов и на конденсатопроводах на вводе к сборному баку конденсата; при этом не допускается дублирование арматуры внутри и вне здания;
б) на трубопроводах водяных тепловых сетей 100 мм на расстоянии не более 1000 м друг от друга (секционирующие задвижки) с устройством перемычки между подающим и обратным трубопроводами диаметром, равным 0,3 диаметра трубопровода, но не менее 50 мм; на перемычке надлежит предусматривать две задвижки и контрольный вентиль между ними 25 мм.
Допускается увеличивать расстояние между секционирующими задвижками для трубопроводов 400-500 мм – до 1500 м, для трубопроводов 600 мм – до 3000 м, а для трубопроводов надземной прокладки 900 мм – до 5000 м при обеспечении спуска воды и заполнения секционированного участка одного трубопровода за время, не превышающее указанное в 10.19, при максимальных расходах воды, указанных в 6.16.
На паровых и конденсатных тепловых сетях секционирующие задвижки допускается не устанавливать.
в) в водяных и паровых тепловых сетях на трубопроводах ответвлений независимо от диаметров.
10.18 В нижних точках трубопроводов водяных тепловых сетей и конденсатопроводов, а также секционируемых участков необходимо предусматривать штуцеры с запорной арматурой для спуска воды (спускные устройства).
На водяных тепловых сетях с применением труб из полимерных материалов спускные устройства в нижних точках трубопроводов допускается не предусматривать. При этом в проектной документации следует предусматривать технические решения по удалению (сбросу) воды из трубопровода сжатым воздухом.
10.19 Спускные устройства водяных тепловых сетей следует предусматривать, исходя из обеспечения продолжительности спуска воды и заполнения секционированного участка (одного трубопровода):
для трубопроводов 300 мм – не более 2 ч;
350-500 не более 4 ч;
600 – не более 5 ч.
Если спуск воды из трубопроводов в нижних точках не обеспечивается в указанные сроки, должны дополнительно предусматриваться промежуточные спускные устройства.
Если заполнение отдельных секционированных участков не обеспечивается в указанные сроки при максимальных расходах воды, приведенных в 6.16, то должны быть уменьшены расстояния между секционирующими задвижками.
10.20 Грязевики в водяных тепловых сетях следует предусматривать на трубопроводах перед насосами и перед регуляторами давления в узлах рассечки. Грязевики в узлах установки секционирующих задвижек предусматривать не требуется.
10.21 Устройство обводных трубопроводов вокруг грязевиков и регулирующих клапанов не допускается, кроме регуляторов давления “до себя” на обратном трубопроводе тепловых пунктов.
10.22 В высших точках трубопроводов тепловых сетей, в том числе на каждом секционируемом участке, должны предусматриваться штуцеры с запорной арматурой для выпуска воздуха (воздушники).
В узлах трубопроводов на ответвлениях до задвижек и в местных изгибах трубопроводов высотой менее 1 м устройства для выпуска воздуха можно не предусматривать.
10.23 Спуск воды из трубопроводов в низших точках водяных тепловых сетей должен предусматриваться отдельно из каждой трубы с разрывом струи в сбросные колодцы с последующим отводом воды самотеком или передвижными насосами в систему дождевой канализации. Температура отводимой воды должна быть снижена до 40 °С.
Спуск воды непосредственно в камеры тепловых сетей или на поверхность земли не допускается. При надземной прокладке трубопроводов по незастроенной территории спуск воды можно предусматривать в бетонированные приямки с отводом из них воды кюветами, лотками или трубопроводами.
Допускается предусматривать отвод воды из сбросных колодцев или приямков в естественные водоемы и на рельеф местности при условии согласования с соответствующими органами.
При отводе воды в бытовую канализацию на самотечном трубопроводе должны предусматриваться меры, исключающие подтопление строительных конструкций тепловых сетей сточными водами, конструкция системы водоудаления должна быть газонепроницаемой.
Допускается слив воды непосредственно из одного участка трубопровода в смежный с ним участок, а также из подающего трубопровода в обратный.
10.24 В нижних точках паровых сетей и перед вертикальными подъемами следует предусматривать постоянный дренаж паропроводов. В этих же местах, а также на прямых участках паропроводов через каждые 400-500 м при попутном уклоне и через каждые 200-300 м при встречном уклоне должен предусматриваться пусковой дренаж паропроводов.
10.25 Для пускового дренажа паровых сетей должны предусматриваться штуцеры с запорной арматурой.
На каждом штуцере при рабочем давлении пара 2,2 МПа и менее следует предусматривать по одной задвижке или вентилю; при рабочем давлении пара выше 2,2 МПа – по два последовательно расположенных вентиля.
10.26 Для постоянного дренажа паровых сетей или при совмещении постоянного дренажа с пусковым должны предусматриваться штуцера с заглушками и конденсатоотводчики, подключенные к штуцеру через дренажный трубопровод.
При прокладке нескольких паропроводов для каждого из них (в том числе при одинаковых параметрах пара) должен предусматриваться отдельный конденсатоотводчик.
10.27 Отвод конденсата от постоянных дренажей паровых сетей в напорный конденсатопровод допускается при условии, что в месте присоединения давление конденсата в дренажном конденсатопроводе превышает давление в напорном конденсатопроводе не менее чем на 0,1 МПа. В остальных случаях сброс конденсата предусматривается наружу. Специальные конденсатопроводы для сброса конденсата не предусматриваются.
10.28 Для компенсации тепловых деформаций трубопроводов тепловых сетей, рассчитанных в соответствии с 10.1, следует применять следующие способы компенсации и компенсирующие устройства:
гибкие компенсаторы (различной формы) из стальных труб и углы поворотов трубопроводов – при любых параметрах теплоносителя и способах прокладки;
сильфонные и линзовые компенсаторы – для параметров теплоносителя и способов прокладки согласно технической документации заводов-изготовителей;
стартовые компенсаторы, предназначенные для частичной компенсации температурных деформаций за счет изменения осевого напряжения в защемленной трубе.
Допускается применять бескомпенсаторные прокладки, когда компенсация температурных деформаций полностью или частично осуществляется за счет знакопеременных изменений осевых напряжений сжатия – растяжения в трубе. Проверка на продольный изгиб при этом обязательна.
При прокладке тепловых сетей из гибких самокомпенсирующихся труб устройство компенсаторов и проверку на продольный изгиб проводить не требуется.
10.29 При надземной прокладке следует предусматривать металлические кожухи, исключающие доступ к осевым (сильфонным и линзовым) компенсаторам посторонних лиц и защищающие их от атмосферных осадков.
10.30 Установку указателей перемещения для контроля за тепловыми удлинениями трубопроводов в тепловых сетях независимо от параметров теплоносителя и диаметров трубопроводов предусматривать не требуется.
10.31 Для тепловых сетей должны приниматься, как правило, детали и элементы трубопроводов заводского изготовления.
Для гибких компенсаторов, углов поворотов и других гнутых элементов трубопроводов должны приниматься крутоизогнутые отводы заводского изготовления с радиусом гиба не менее одного диаметра трубы.
Для трубопроводов водяных тепловых сетей с рабочим давлением теплоносителя до 2,5 МПа и температурой до 200 °С, а также для паровых тепловых сетей с рабочим давлением до 2,2 МПа и температурой до 350 °С допускается принимать сварные секторные отводы.
Штампосварные тройники и отводы допускается принимать для теплоносителей всех параметров.
Примечания
1 Штампосварные и сварные секторные отводы допускается принимать при условии проведения 100%-ного контроля сварных соединений отводов ультразвуковой дефектоскопией или радиационным просвечиванием.
2 Сварные секторные отводы допускается принимать при условии их изготовления с внутренним подваром сварных швов.
3 Не допускается изготавливать детали трубопроводов, в том числе отводы из электросварных труб со спиральным швом.
4 Сварные секторные отводы для трубопроводов из труб из ВЧШГ допускается принимать без внутренней подварки сварных швов, если обеспечивается формирование обратного валика, а непровар по глубине не превышает 0,8 мм на длине не более 10% длины шва на каждом стыке.
10.32 Расстояние между соседними сварными швами на прямых участках трубопроводов приведены в [1].
Расстояние от поперечного сварного шва до начала гиба должно быть не менее 100 мм.
10.33 Крутоизогнутые отводы допускается сваривать между собой без прямого участка. Крутоизогнутые и сварные отводы вваривать непосредственно в трубу без штуцера (трубы, патрубка) не допускается.
10.34 Подвижные опоры труб следует предусматривать:
скользящие – независимо от направления горизонтальных перемещений трубопроводов при всех способах прокладки и для всех диаметров труб;
катковые – для труб диаметром 200 мм и более при осевом перемещении труб при прокладке в тоннелях, на кронштейнах, на отдельно стоящих опорах и эстакадах;
шариковые – для труб диаметром 200 мм и более при горизонтальных перемещениях труб под углом к оси трассы при прокладке в тоннелях, на кронштейнах, на отдельно стоящих опорах и эстакадах;
пружинные опоры или подвески – для труб диаметром 150 мм и более в местах вертикальных перемещений труб;
жесткие подвески – при надземной прокладке трубопроводов с гибкими компенсаторами и на участках самокомпенсации.
Примечание – На участках трубопроводов с осевыми сильфонными компенсаторами предусматривать прокладку трубопроводов на подвесных опорах не допускается.
10.35 Длина жестких подвесок должна приниматься для водяных и конденсатных тепловых сетей не менее десятикратного, а для паровых сетей – не менее двадцатикратного теплового перемещения трубы с подвеской, наиболее удаленной от неподвижной опоры.
10.36 Осевые сильфонные компенсаторы (СК) устанавливаются в помещениях, в проходных каналах. Допускается установка СК на открытом воздухе и в тепловых камерах в металлической оболочке, защищающей сильфоны от внешних воздействий и загрязнения.
Осевые сильфонные компенсирующие устройства (СКУ) (сильфонные компенсаторы, защищенные от загрязнения, внешних воздействий и поперечных нагрузок прочным кожухом) могут применяться при всех видах прокладки.
Место установки СК и СКУ на трубопроводе определяется расчетом в соответствии с техническими условиями завода-изготовителя.
При выборе места размещения должна быть обеспечена возможность сдвига кожуха компенсатора в любую сторону на его полную длину.
10.37 При применении СК и СКУ на теплопроводах при подземной прокладке в каналах, тоннелях, камерах, при надземной прокладке и в помещениях необходимость установки направляющих опор определяется с учетом требований предприятия-изготовителя и подтверждается расчетом трубопровода на устойчивость и прочность.
При установке стартовых компенсаторов направляющие опоры не ставятся.
10.38 Направляющие опоры следует применять, как правило, охватывающего типа (хомутовые, трубообразные, рамочные), принудительно ограничивающие возможность поперечного сдвига и не препятствующие осевому перемещению трубы.
10.39 Требования к размещению трубопроводов при их прокладке в непроходных каналах, тоннелях, камерах, павильонах, при надземной прокладке и в тепловых пунктах приведены в приложении Б.
При капитальном ремонте и реконструкции тепловых сетей с сохранением строительных конструкций каналов допускается уменьшение нормативных расстояний, указанных в приложении Б, при обеспечении возможности монтажа, ремонта и осмотра трубопроводов.
10.40 Технические характеристики компенсаторов должны удовлетворять расчету на прочность в холодном и в рабочем состоянии трубопроводов.
10.41 Теплопроводы при бесканальной (кроме теплопроводов из гибких самокомпенсирующих труб) прокладке следует проверять на устойчивость (продольный изгиб) в следующих случаях:
при малой глубине заложения теплопроводов (менее 1 м от оси труб до поверхности земли);
при вероятности затопления теплопровода грунтовыми, паводковыми или другими водами;
при вероятности ведения рядом с теплотрассой земляных работ.
11 Тепловая изоляция
11.1 Для тепловых сетей следует, как правило, принимать теплоизоляционные материалы и конструкции, проверенные практикой эксплуатации. Новые материалы и конструкции допускаются к применению при положительных результатах независимых испытаний, проведенных специализированными лабораториями, аккредитованными на выполнение данных испытаний в установленном порядке.
При выборе изоляционной конструкции срок ее службы должен составлять не менее 10 лет.
11.2 Материалы тепловой изоляции и покровного слоя теплопроводов должны отвечать требованиям СП 61.13330, норм пожарной безопасности и выбираться в зависимости от конкретных условий и способов прокладки.
При совместной подземной прокладке в тоннелях (коммуникационных коллекторах) теплопроводов с электрическими или слаботочными кабелями не допускается применять тепловую изоляцию из горючих материалов без покровного слоя из негорючего материала и устройства противопожарных вставок длиной 3 м, на каждые 100 м трубопровода.
При отдельной прокладке теплопроводов в проходных и полупроходных каналах, без постоянного присутствия обслуживающего персонала, допускается применение горючих материалов теплоизоляционного и покровного слоев, при устройстве противопожарных вставок длиной 3 м, на каждые 100 м трубопровода.
При надземной прокладке теплопроводов рекомендуется применять для покровного слоя теплоизоляции негорючие материалы групп горючести Г1 и Г2.
При подземной бесканальной прокладке и в непроходных каналах допускается применять горючие материалы теплоизоляционного и покровного слоев.
11.4* При прокладке теплопроводов в теплоизоляции из горючих материалов следует предусматривать вставки из негорючих материалов длиной не менее 3 м:
________________
* Нумерация соответствует оригиналу. – Примечание изготовителя базы данных.
на вводе в здания;
при надземной прокладке – через каждые 100 м, при этом для вертикальных участков через каждые 10 м;
в местах выхода теплопроводов из грунта.
При применении конструкций теплопроводов в теплоизоляции из горючих материалов в негорючей оболочке допускается вставки не делать.
11.5 Детали крепления теплопроводов должны выполняться из коррозионно-стойких материалов или покрываться антикоррозионными покрытиями.
11.6 Выбор материала тепловой изоляции и конструкции теплопровода следует производить по экономическому оптимуму суммарных эксплуатационных затрат и капиталовложений в тепловые сети, сопутствующие конструкции и сооружения.
Выбор толщины теплоизоляции следует производить по СП 61.13330 на заданные параметры с учетом климатологических данных пункта строительства, стоимости теплоизоляционной конструкции и теплоты.
11.7 При расчете теплового потока через изоляционный слой расчетная температура теплоносителя принимается для подающих теплопроводов водяных тепловых сетей:
при постоянной температуре сетевой воды и количественном регулировании – максимальная температура теплоносителя;
при переменной температуре сетевой воды и качественном регулировании – среднегодовая температура теплоносителя принимается:
110 °С при температурном графике регулирования 180 – 70 °С,
90 °С при 150 – 70 °С,
65 °С при 130 – 70 °С,
55 °С при 95 – 70 °С.
Среднегодовая температура для обратных теплопроводов водяных тепловых сетей принимается 50 °С.
11.8 При размещении теплопроводов в служебных помещениях, технических подпольях и подвалах жилых зданий температура внутреннего воздуха принимается равной 20 °С, а температура на поверхности конструкции теплопроводов не выше 45 °С.
11.9 При выборе конструкций теплопроводов надземной и канальной прокладки следует соблюдать требования к теплопроводам в сборке:
при применении конструкций с негерметичными покрытиями покровный слой теплоизоляции должен быть водонепроницаемым и не препятствовать высыханию увлажненной теплоизоляции;
при применении конструкций с герметичными покрытиями обязательно устройство системы оперативного дистанционного контроля (ОДК) увлажнения теплоизоляции;
показатели температуростойкости, противостояния инсоляции должны находиться в заданных пределах в течение всего расчетного срока службы для каждого элемента или конструкции.
11.10 При выборе конструкций для подземных бесканальных прокладок тепловых сетей следует рассматривать две группы конструкций теплопроводов:
группа “а”- теплопроводы в герметичной паронепроницаемой гидрозащитной оболочке. Представительная конструкция – теплопроводы заводского изготовления в пенополиуретановой теплоизоляции с полиэтиленовой оболочкой по ГОСТ 30732;
группа “б” – теплопроводы с паропроницаемым гидрозащитным покрытием или в монолитной теплоизоляции, наружный уплотненный слой которой должен быть водонепроницаемым и одновременно паропроницаемым, а внутренний слой, прилегающий к трубе, – защищать стальную трубу от коррозии. Представительные конструкции – теплопроводы заводского изготовления в пенополимерминеральной или армопенобетонной теплоизоляции.
11.11 Обязательные требования к теплопроводам группы “а”:
равномерная плотность заполнения конструкции теплоизоляционным материалом;
герметичность оболочки и наличие системы ОДК, организация замены влажного участка сухим;
показатели температуростойкости должны находиться в заданных пределах в течение расчетного срока службы;
скорость наружной коррозии труб не должна превышать 0,03 мм/год;
стойкость к истиранию защитного покрытия – не более 2 мм/25 лет.
Обязательные требования к физико-техническим характеристикам конструкций теплопроводов группы “б”:
показатели температуростойкости должны находиться в заданных пределах в течение расчетного срока службы;
скорость наружной коррозии стальных труб не должна превышать 0,03 мм/год.
11.12 При расчете толщины изоляции и определении годовых потерь теплоты теплопроводами, проложенными бесканально на глубине заложения оси теплопровода более 0,7 м, за расчетную температуру окружающей среды принимается средняя за год температура грунта на этой глубине.
При глубине заложения теплопровода от верха теплоизоляционной конструкции менее 0,7 м за расчетную температуру окружающей среды принимается та же температура наружного воздуха, что и при надземной прокладке.
Для определения температуры грунта в температурном поле подземного теплопровода температура теплоносителя должна приниматься:
для водяных тепловых сетей – по температурному графику регулирования при средней месячной температуре наружного воздуха расчетного месяца;
для сетей горячего водоснабжения – по максимальной температуре горячей воды.
11.13 При выборе конструкций надземных теплопроводов следует учитывать следующие требования к физико-техническим характеристикам конструкций теплопроводов:
показатели температуростойкости должны находиться в заданных пределах в течение расчетного срока службы конструкции;
скорость наружной коррозии стальных труб не должна превышать 0,03 мм/год.
11.14 При определении толщины теплоизоляции теплопроводов, проложенных в проходных каналах и тоннелях, следует принимать температуру воздуха в них не более 40 °С.
11.15 При определении годовых потерь теплоты теплопроводами, проложенными в каналах и тоннелях, параметры теплоносителя следует принимать по 11.7.
11.16 При прокладке тепловых сетей в непроходных каналах и бесканально коэффициент теплопроводности теплоизоляции должен приниматься с учетом возможного увлажнения конструкции теплопроводов.
12 Строительные конструкции
Подземная прокладка
12.1 Проектирование конструкций должно осуществляться в соответствии с СП 43.13330, а также с учетом требований настоящего свода правил.
12.2 Монтаж строительных конструкций тепловых сетей выполнять согласно СП 70.13330.
12.3 Каркасы, кронштейны и другие стальные конструкции под трубопроводы тепловых сетей должны быть защищены от коррозии.
В качестве дополнительных мер по защите от коррозии стальных конструкций допускается применять их обетонивание.
12.4 Для наружных поверхностей каналов, тоннелей, камер и других конструкций при прокладке тепловых сетей вне зоны уровня грунтовых вод должна предусматриваться обмазочная изоляция и оклеечная гидроизоляция перекрытий указанных сооружений.
12.5 При прокладке тепловых сетей в каналах ниже максимального уровня стояния грунтовых вод следует предусматривать попутный дренаж, а для наружных поверхностей строительных конструкций и закладных частей – гидрозащитную изоляцию.
При невозможности применения попутного дренажа должна предусматриваться оклеечная гидроизоляция на высоту, превышающую максимальный уровень грунтовых вод на 0,5 м, или другая эффективная гидроизоляция.
При бесканальной прокладке теплопроводов с полиэтиленовым покровным слоем устройство попутного дренажа не требуется.
12.6 Для попутного дренажа должны приниматься трубы со сборными элементами, а также готовые трубофильтры. Диаметр дренажных труб должен приниматься по расчету.
12.7 На углах поворота и на прямых участках попутных дренажей не реже чем через 50 м следует предусматривать устройство смотровых колодцев. Отметка дна колодца должна приниматься на 0,3 м ниже отметки заложения примыкающей дренажной трубы.
12.8 Для сбора воды должен предусматриваться резервуар вместимостью не менее 30% максимального часового количества дренажной воды.
Отвод воды из системы попутного дренажа должен предусматриваться самотеком или откачкой насосами в дождевую канализацию, водоемы или овраги.
12.9 Для откачки воды из системы попутного дренажа, при отсутствии возможности соединения его с самотечной дождевой канализацией, должна предусматриваться установка в насосной не менее двух насосов, один из которых является резервным. Подача (производительность) рабочего насоса должна приниматься по величине максимального часового количества поступающей воды с коэффициентом 1,2, учитывающим отвод случайных вод.
12.10 Уклон труб попутного дренажа должен приниматься не менее 0,003.
12.11 Конструкции щитовых неподвижных опор в каналах, при использовании теплопроводов с навесной изоляцией, должны приниматься только с воздушным зазором между трубопроводом и опорой и позволять возможность замены трубопровода без разрушения железобетонного тела опоры. В щитовых опорах должны предусматриваться отверстия, обеспечивающие сток воды и вентиляцию канала.
Конструкции неподвижных опор при использовании предизолированных теплопроводов разрабатываются по индивидуальным чертежам с выполнением расчета на устойчивость и прочность.
Бетон неподвижных опор к моменту гидравлических испытаний и/или пуску в эксплуатацию теплопроводов должен достигнуть 100% проектной прочности.
12.12 Высота проходных каналов и тоннелей должна быть не менее 1,8 м. Ширина проходов между теплопроводами должна быть равна:
наружному диаметру неизолированной трубы плюс 100 мм, но не менее 700 мм, при прокладке теплопроводов с навесной изоляцией;
наружному диаметру изолированного трубопровода плюс 100 мм, но не менее 700, при прокладке предизолированных теплопроводов.
Высота камер в свету от уровня пола до низа выступающих конструкций должна приниматься не менее 2 м. Допускается местное уменьшение высоты камеры до 1,8 м.
12.13 Для тоннелей (коллекторов) следует предусматривать входы с лестницами на расстоянии не более 300 м друг от друга, а также аварийные и входные люки на расстоянии не более 200 м для водяных тепловых сетей.
Входные люки должны предусматриваться во всех конечных точках тупиковых участков тоннелей, на поворотах и в узлах, где по условиям компоновки трубопроводы и арматура затрудняют проход.
При использовании автоматизированных средств перемещения персонала расстояния между выходами с лестницами допускается увеличивать до 1000 м.
12.14 В тоннелях (коллекторах) не реже чем через 300 м следует предусматривать монтажные проемы длиной не менее 4 м и шириной не менее наибольшего диаметра прокладываемой трубы плюс 0,1 м, но не менее 0,7 м, для неизолированных трубопроводов и не менее наибольшего диаметра изолированного трубопровода плюс 0,1 м, но не менее 0,7 м, для предизолированных трубопроводов.
При использовании автоматизированных средств перемещения персонала расстояния между монтажными проемами допускается увеличивать до 1000 м.
12.15 Число люков для камер с установленной запорной арматурой (задвижки, спускники, воздушники) следует предусматривать не менее двух, расположенных по диагонали. Для камер без запорной арматуры допускается установка одного люка.
12.16 Из приямков камер и тоннелей в нижних точках должны предусматриваться самотечный отвод случайных вод в сбросные колодцы и устройство отключающих клапанов на входе самотечного трубопровода в колодец. Отвод воды из приямков других камер (не в нижних точках) должен предусматриваться передвижными насосами или непосредственно самотеком в системы канализации с устройством на самотечном трубопроводе гидрозатвора, а в случае возможности обратного хода воды – дополнительно отключающих клапанов.
12.17 В тоннелях надлежит предусматривать приточно-вытяжную вентиляцию. Вентиляция тоннелей должна обеспечивать как в зимнее, так и летнее время температуру воздуха в тоннелях не выше 40 °С, а на время производства ремонтных работ – не выше 33 °С. Температуру воздуха в тоннелях с 40 до 33 °С допускается снижать с помощью передвижных вентиляционных установок.
Необходимость естественной вентиляции каналов устанавливается в проектах. При применении для теплоизоляции труб материалов, выделяющих в процессе эксплуатации вредные вещества в количествах, превышающих ПДК в воздухе рабочей зоны, устройство вентиляции обязательно.
В камерах должен быть обеспечен двухкратный обмен воздуха в течение часа при скорости движения не более 1,5 м/с.
12.18 Вентиляционные шахты для тоннелей могут совмещаться с входами в них. Расстояние между приточными и вытяжными шахтами следует определять расчетом.
12.19 При бесканальной прокладке тепловых сетей теплопроводы укладываются на песчаное основание при несущей способности грунтов не менее 0,15 МПа. При несущей способности грунтов 0,15-0,1 МПа основание должно устраиваться по индивидуальному проекту с учетом требований СП 45.13330.
В слабых грунтах с несущей способностью менее 0,1 МПа, а также в грунтах с возможной неравномерной осадкой (неслежавшихся насыпных грунтах) требуется устройство искусственного основания. Ширину основания следует определять расчетом.
12.20 Бесканальная прокладка теплопроводов может проектироваться под непроезжей частью улиц и внутри кварталов жилой застройки, под улицами и дорогами V категории и местного значения. Прокладка теплопроводов под проезжей частью автомобильных дорог I-IV категорий, магистральных дорог и улиц допускается в каналах или футлярах.
12.21 При подземном пересечении дорог и улиц должны соблюдаться требования, изложенные в приложении А.
12.22 При компенсации температурных расширений за счет углов поворота трассы, П-образных, Г-образных, Z-образных компенсаторов при бесканальной прокладке трубопроводов следует предусматривать амортизирующие прокладки в местах максимальных перемещений (углах поворота). Толщину амортизирующих прокладок следует определять расчетом.
Ответвления трубопроводов следует предусматривать с устройством амортизирующих прокладок.
12.23 При разработке проектной документации на капитальный ремонт и реконструкцию тепловых сетей с использованием существующих строительных конструкций следует проводить предпроектное обследование таких конструкций с целью определения возможности их использования на весь срок службы ремонтируемой (реконструируемой) сети.
Надземная прокладка
12.24 На эстакадах и отдельно стоящих опорах в местах пересечения железных дорог, рек, оврагов и на других труднодоступных для обслуживания участках трубопроводов надлежит предусматривать проходные мостики шириной не менее 0,6 м.
12.25 Расстояние по вертикали от планировочной отметки земли до низа трубопроводов следует принимать:
для низких опор – от 0,3 до 1,2 м в зависимости от планировки земли и уклонов теплопроводов;
для высоких отдельно стоящих опор и эстакад – для обеспечения проезда под теплопроводами и конструкциями эстакад железнодорожного и автомобильного транспорта под теплопроводами и конструкциями эстакад по приложению А (таблица А.1).
12.26 При надземной прокладке тепловых сетей должен соблюдаться уклон теплопроводов.
12.27 Для обслуживания арматуры и оборудования, расположенных на высоте 2,5 м и более, следует предусматривать стационарные площадки шириной 0,6 м с ограждениями и лестницами.
Лестницы с углом наклона более 75° и высотой более 3 м должны иметь ограждения.
13 Защита трубопроводов от коррозии
Защита от внутренней коррозии
13.1 При выборе способа защиты стальных труб тепловых сетей от внутренней коррозии и схем подготовки подпиточной воды следует учитывать следующие основные характеристики подпиточной и сетевой воды:
жесткость;
водородный показатель рН;
содержание в воде кислорода и свободной угольной кислоты;
содержание сульфатов и хлоридов;
содержание в воде органических примесей (окисляемость воды).
13.2 Защиту труб от внутренней коррозии следует выполнять путем:
повышения рН сетевой воды в пределах рекомендаций [4] и приведенных в приложении Е;
уменьшения содержания кислорода в сетевой воде;
покрытия внутренней поверхности стальных труб антикоррозионными составами или применения труб из коррозионно-стойких материалов;
применения соответствующих технологий водоподготовки и деаэрации подпиточной воды;
применения ингибиторов коррозии;
применения безреагентных магнитного и электрохимического способов обработки воды.
13.3 Для контроля за внутренней коррозией на подающих и обратных трубопроводах водяных тепловых сетей на выводах с источника теплоты и в наиболее характерных местах следует предусматривать установку индикаторов коррозии.
13.4 Допускаемую скорость внутренней коррозии следует принимать 0,085 мм/год.
Защита от наружной коррозии
13.5 При проектировании должны предусматриваться конструктивные решения, предотвращающие наружную коррозию труб тепловой сети, с учетом требований [5], при этом скорость наружной коррозии, учитываемая в проектной документации, для стальных труб не должна превышать 0,03 мм/год.
13.6 Для конструкций теплопроводов в пенополиуретановой теплоизоляции с герметичной наружной оболочкой по ГОСТ 30732 нанесение антикоррозионного покрытия на стальные трубы не требуется.
Независимо от способов прокладки при применении труб из ВЧШГ, конструкций теплопроводов в пенополимерминеральной теплоизоляции защита от наружной коррозии металла труб не требуется.
Для конструкций теплопроводов с другими теплоизоляционными материалами независимо от способов прокладки должны применяться антикоррозионные покрытия, наносимые непосредственно на наружную поверхность стальной трубы.
13.7 Неизолированные в заводских условиях концы трубных секций, отводов, тройников и других металлоконструкций должны покрываться антикоррозионным слоем.
13.8 При бесканальной прокладке в условиях высокой коррозионной активности грунтов, в поле блуждающих токов при положительной и знакопеременной разности потенциалов между трубопроводами и землей должна предусматриваться дополнительная защита металлических трубопроводов тепловых сетей, кроме конструкций с герметичным защитным покрытием.
13.9 В качестве дополнительной защиты стальных трубопроводов тепловых сетей от коррозии блуждающими токами при подземной прокладке (в непроходных каналах или бесканальной) следует предусматривать мероприятия:
удаление трассы тепловых сетей от рельсовых путей электрифицированного транспорта и уменьшение числа пересечений с ним;
увеличение переходного сопротивления строительных конструкций тепловых сетей путем применения электроизолирующих неподвижных и подвижных опор труб;
увеличение продольной электропроводности трубопроводов путем установки электроперемычек на сильфонных компенсаторах и на фланцевой арматуре;
уравнивание потенциалов между параллельными трубопроводами путем установки поперечных токопроводящих перемычек между смежными трубопроводами при применении электрохимической защиты;
установку электроизолирующих фланцев на трубопроводах на вводе тепловой сети (или в ближайшей камере) к объектам, которые могут являться источниками блуждающих токов (трамвайное депо, тяговые подстанции, ремонтные базы и т.п.);
электрохимическую защиту трубопроводов.
13.10 Поперечные токопроводящие перемычки следует предусматривать в камерах с ответвлениями труб и на транзитных участках тепловых сетей.
13.11 Токопроводящие перемычки на осевых компенсаторах должны выполняться из многожильного медного провода, кабеля, стального троса, в остальных случаях допускается применение прутковой или полосовой стали.
Сечение перемычек надлежит определять расчетом и принимать не менее 50 мм по меди. Длину перемычек следует определять с учетом максимального теплового удлинения трубопровода. Стальные перемычки должны иметь защитное покрытие от коррозии.
13.12 Контрольно-измерительные пункты (КИП) для измерения потенциалов трубопроводов с поверхности земли следует устанавливать с интервалом не более 200 м:
в камерах или местах установки неподвижных опор труб вне камер;
в местах установки электроизолирующих фланцев;
в местах пересечения тепловых сетей с рельсовыми путями электрифицированного транспорта; при пересечении более двух путей КИП устанавливаются по обе стороны пересечения с устройством при необходимости специальных камер;
в местах пересечения или при параллельной прокладке со стальными инженерными сетями и сооружениями;
в местах сближения трассы тепловых сетей с пунктами присоединения отсасывающих кабелей к рельсам электрифицированных дорог.
13.13 При подземной прокладке теплопроводов для проведения инженерной диагностики коррозионного состояния стальных труб неразрушающими методами следует предусматривать устройство мест доступа к трубам в камерах тепловых сетей.
14 Тепловые пункты
14.1 В закрытых и открытых системах теплоснабжения способ присоединения зданий к тепловым сетям через ЦТП или ИТП определяется на основании технико-экономического обоснования или в соответствии с заданием на проектирование, с учетом гидравлического режима работы и температурного графика тепловых сетей и зданий.
14.2 Проектирование тепловых пунктов должно осуществляться в соответствии с СП 60.13330 и [6], с учетом требований настоящего раздела, которые распространяются на тепловые пункты, классифицируемые как сооружения на тепловых сетях и находящиеся на балансе теплоснабжающей (теплосетевой) компании.
14.3 Устройство узла ввода обязательно для каждого здания независимо от наличия ЦТП, при этом в узле ввода предусматриваются только те мероприятия, которые необходимы для присоединения данного здания и не предусмотрены в ЦТП.
14.4 В тепловых пунктах предусматривается размещение оборудования, арматуры, приборов контроля, управления и автоматизации, посредством которых осуществляются:
преобразование вида теплоносителя или его параметров;
контроль параметров теплоносителя;
учет тепловых нагрузок, расходов теплоносителя и конденсата;
регулирование расхода теплоносителя и распределение по системам потребления теплоты (через распределительные сети в ЦТП или непосредственно в системы ИТП);
защита местных систем от аварийного повышения параметров теплоносителя;
заполнение и подпитка систем потребления теплоты;
сбор, охлаждение, возврат конденсата и контроль его качества;
аккумулирование теплоты;
подготовка воды для систем горячего водоснабжения.
В тепловом пункте в зависимости от его назначения и местных условий могут осуществляться все перечисленные мероприятия или только их часть. Приборы контроля параметров теплоносителя и учета расхода теплоты следует предусматривать во всех тепловых пунктах.
14.5 Основные требования к размещению трубопроводов, оборудования и арматуры в тепловых пунктах следует принимать по приложению Б.
14.6 Присоединение потребителей теплоты к тепловым сетям в тепловых пунктах следует предусматривать по схемам, обеспечивающим минимальный расход воды в тепловых сетях, а также экономию теплоты за счет применения регуляторов расхода теплоты и ограничителей максимального расхода сетевой воды, корректирующих насосов или элеваторов с автоматическим регулированием температуры воды, поступающей в системы отопления, вентиляции кондиционирования воздуха, в зависимости от температуры наружного воздуха.
14.7 Расчетная температура воды в подающих трубопроводах после ЦТП должна приниматься:
при присоединении систем отопления зданий по зависимой схеме – равной, как правило, расчетной температуре воды в подающем трубопроводе тепловых сетей до ЦТП;
при независимой схеме – равной или не более чем на 30 °С ниже расчетной температуры воды в подающем трубопроводе тепловых сетей до ЦТП, но не выше 150 °С и не ниже расчетной, принятой в системе потребителя;
при присоединении к ЦТП зданий с разной расчетной температурой воды в системах отопления температура после ЦТП должна приниматься по более высокой температуре, с организацией раздельных контуров циркуляции с помощью насосов смешения с рабочей температурой воды для каждого потребителя.
Самостоятельные трубопроводы от ЦТП для присоединения систем вентиляции при независимой схеме присоединения систем отопления предусматриваются при максимальной тепловой нагрузке на вентиляцию более 50% максимальной тепловой нагрузки на отопление.
14.8 При расчете поверхности нагрева водо-водяных водоподогревателей для систем горячего водоснабжения и отопления температуру воды в подающем трубопроводе тепловой сети следует принимать равной температуре в точке излома графика температур воды или минимальной температуре воды, если отсутствует излом графика температур, а для систем отопления – также температуру воды, соответствующую расчетной температуре наружного воздуха для проектирования отопления. В качестве расчетной следует принимать большую из полученных величин поверхности нагрева.
14.9 Температура горячей воды на выходе из подогревателя должна обеспечивать температуру горячей воды у потребителя в пределах, регламентированных СанПиН 2.1.4.2496, с учетом снижения температуры горячей воды в тепловых сетях и стояках зданий.
14.11 Для скоростных секционных водо-водяных водоподогревателей следует принимать противоточную схему потоков теплоносителей, при этом греющая вода из тепловой сети должна поступать:
в кожухотрубные водоподогреватели систем отопления – в трубки;
то же, горячего водоснабжения – в межтрубное пространство;
в пластинчатые водонагреватели – по схеме изготовителя.
В пароводяные водоподогреватели пар должен поступать в межтрубное пространство.
Для систем горячего водоснабжения при паровых тепловых сетях допускается применять емкие водоподогреватели, используя их в качестве баков-аккумуляторов горячей воды при условии соответствия их вместимости, требуемой при расчете для баков-аккумуляторов.
Кроме скоростных водоподогревателей возможно применение водоподогревателей других типов, имеющих высокие теплотехнические и эксплуатационные характеристики, малые габариты.
14.12 Минимальное число водо-водяных водоподогревателей следует принимать:
два, параллельно включенных, каждый из которых должен рассчитываться на 100% тепловой нагрузки – для систем отопления зданий, не допускающих перерывов в подаче теплоты;
два, рассчитанных на 75% тепловой нагрузки каждый – для систем отопления зданий, сооружаемых в районах с расчетной температурой наружного воздуха ниже минус 40 °С;
один – для остальных систем отопления;
по одному в каждой ступени подогрева – для систем горячего водоснабжения.
При нагрузке в системе ГВС более 2 МВт – два теплообменника в каждой ступени нагрева, рассчитанных на 50% тепловой нагрузки.
При установке в системах отопления, вентиляции или горячего водоснабжения пароводяных водоподогревателей число их должно приниматься не менее двух, включаемых параллельно, резервные водоподогреватели можно не предусматривать.
Для технологических установок, не допускающих перерывов в подаче теплоты, должны предусматриваться резервные водоподогреватели, рассчитанные на тепловую нагрузку в соответствии с режимом работы технологических установок предприятия.
14.13 На трубопроводах следует предусматривать устройство штуцеров с запорной арматурой условным проходом 15 мм для выпуска воздуха в высших точках всех трубопроводов и условным проходом не менее 25 мм – для спуска воды в низших точках трубопроводов воды и конденсата, также допускается установка автоматических воздухоотводчиков, присоединенных к трубопроводу через запорную арматуру.
Допускается устройство для спуска воды выполнять не в приямке ЦТП, а за пределами ЦТП в специальных камерах с последующим самотечным водоудалением в приемные колодцы.
14.14 Грязевики следует устанавливать:
в тепловом пункте на подающих трубопроводах на вводе;
на обратном трубопроводе перед регулирующими устройствами и приборами учета расходов воды и теплоты – не более одного;
в ИТП – независимо от наличия их в ЦТП;
в тепловых узлах потребителей 3-й категории – на подающем трубопроводе на вводе.
При установке фильтров на вводе в тепловой пункт дополнительная установка фильтров перед механическими водосчетчиками (крыльчатыми, турбинными), пластинчатыми теплообменниками и другим оборудованием по ходу воды не требуется, кроме особых требований заводов-производителей оборудования.
14.15 В тепловых пунктах не допускается устройство пусковых перемычек между подающим и обратным трубопроводами тепловых сетей, а также обводных трубопроводов помимо насосов (кроме подкачивающих), элеваторов, регулирующих клапанов, грязевиков и приборов для учета расхода воды и теплоты.
При установке на обратном трубопроводе на выходе из теплового пункта регулятора давления “до себя” вокруг него должен быть предусмотрен обводной трубопровод с запорным устройством для возможности заполнения систем теплопотребления.
Регуляторы перелива и конденсатоотводчики должны иметь обводные трубопроводы.
14.16 Для защиты от внутренней коррозии и образования накипи трубопроводов и оборудования централизованных систем горячего водоснабжения, присоединяемых к тепловым сетям через водоподогреватели, следует предусматривать обработку воды, осуществляемую, как правило, в ЦТП. Отбор воды из тепловой сети для подпитки систем горячего водоснабжения при независимой схеме присоединения не допускается.
Для защиты трубопроводов тепловых сетей от отложений солей жесткости допускается применение методов обработки воды, возможность использования которых подтверждена в порядке, установленном законодательством Российской Федерации в области технического регулирования и санитарно-эпидемиологического благополучия населения.
Решение о выборе технологии обработки воды, а также об отказе в использовании технологии обработки воды должно приниматься на основании химического анализа исходной воды.
14.17 Обработка питьевой воды не должна ухудшать ее санитарно-гигиенические показатели. Реагенты и материалы, применяемые для обработки воды, поступающей в систему горячего водоснабжения, должны быть разрешены надзорными органами.
14.18 При установке баков-аккумуляторов для систем горячего водоснабжения в тепловых пунктах с деаэрацией воды необходимо предусматривать защиту внутренней поверхности баков от коррозии и воды в них от аэрации путем применения герметизирующих жидкостей. При отсутствии деаэрации внутренняя поверхность баков должна быть защищена от коррозии за счет применения защитных покрытий или катодной защиты. В конструкции бака следует предусматривать устройство, исключающее попадание герметизирующей жидкости в систему горячего водоснабжения.
14.19 Для тепловых пунктов (кроме встроенных ИТП мощностью менее 0,7 МВт) следует предусматривать приточно-вытяжную вентиляцию, рассчитанную на воздухообмен, определяемый по тепловыделениям от трубопроводов и оборудования. Расчетную температуру воздуха в рабочей зоне в холодный период года следует принимать не выше 28 °С, в теплый период года – на 5 °С выше температуры наружного воздуха. При размещении тепловых пунктов в жилых и общественных зданиях следует производить проверочный расчет теплопоступлений из теплового пункта в смежные с ним помещения. В случае превышения в этих помещениях допускаемой температуры воздуха следует предусматривать мероприятия по дополнительной теплоизоляции ограждающих конструкций смежных помещений.
Для встроенных тепловых пунктов отдельных зданий (частей зданий) с нагрузкой менее 0,7 МВт и имеющие ограждения из сетки или металлической решетки устройство приточно-вытяжной вентиляции не требуется.
Размещение водопроводных подкачивающих насосов в таких пунктах не допускается, насосы отопления и горячего водоснабжения устанавливаются без резерва.
ИТП следует проектировать по техническим условиям эксплуатирующей организации тепловой сети с указанием всех параметров подающего и обратного трубопроводов, ограничением максимального расхода и техническим условиям на узел учета.
14.20 В полу теплового пункта следует устанавливать трап, а при невозможности самотечного отвода воды – устраивать водосборный приямок размером не менее 0,5х0,5х0,8 м. Приямок перекрывается съемной решеткой.
Для откачки воды из водосборного приямка в систему канализации, водостока или попутного дренажа следует предусматривать один дренажный насос. Насос, предназначенный для откачки воды из водосборного приямка, не допускается использовать для промывки систем потребления теплоты.
14.21 В тепловых пунктах следует предусматривать мероприятия по предотвращению превышения допускаемого уровня шума в соответствии с СН 2.2.4/2.1.8.562.
14.22 Минимальные расстояния в свету от отдельно стоящих наземных ЦТП до наружных стен жилых зданий и сооружений должны быть не менее 25 м.
В особо стесненных условиях допускается уменьшение расстояния до 15 м при условии принятия дополнительных мер по снижению шума до допустимого по санитарным нормам уровня. При этом проведение расчета шумового воздействия обязательно.
14.23 Тепловые пункты по размещению на генеральном плане подразделяются на отдельно стоящие, пристроенные к зданиям и сооружениям и встроенные в здания и сооружения.
14.24 Встроенные в здания тепловые пункты следует размещать в отдельных помещениях у наружных стен зданий. В особо стесненных условиях допускается размещение ИТП в подвальных помещениях зданий, с обязательным проведением в данных помещениях работ по обеспечению шумоизоляции.
14.25 Из центрального теплового пункта должны предусматриваться выходы:
при длине помещения теплового пункта 12 м и менее – один выход в соседнее помещение, коридор или лестничную клетку;
при длине помещения теплового пункта более 12 м – два выхода, один из которых должен быть непосредственно наружу, второй – в соседнее помещение, лестничную клетку или коридор.
Помещения тепловых пунктов потребителей пара давлением более 0,07 МПа должны иметь не менее двух выходов независимо от габаритов помещения.
14.26 Проемы для естественного освещения тепловых пунктов предусматривать не требуется. Двери и ворота должны открываться из помещения или здания теплового пункта от себя.
14.27 По взрывопожарной и пожарной опасности помещения тепловых пунктов должны соответствовать категории Д по СП 12.13130.
14.28 Тепловые пункты, размещаемые в помещениях производственных и складских зданий, а также административно-бытовых зданиях промышленных предприятий, в жилых и общественных зданиях, должны отделяться от других помещений перегородками или ограждениями, предотвращающими доступ посторонних лиц в тепловой пункт.
14.29 Для монтажа оборудования, габариты которого превышают размеры дверей, в наземных тепловых пунктах следует предусматривать монтажные проемы или ворота в стенах.
При этом размеры монтажного проема и ворот должны быть на 0,2 м более габаритных размеров наибольшего оборудования или блока трубопроводов.
14.30 Для перемещения оборудования и арматуры или неразъемных частей блоков оборудования следует предусматривать инвентарные подъемно-транспортные устройства.
При невозможности применения инвентарных устройств допускается предусматривать стационарные подъемно-транспортные устройства:
при массе перемещаемого груза от 0,1 до 1 т – монорельсы с ручными талями и кошками или краны подвесные ручные однобалочные;
то же, более 1 до 2 т – краны подвесные ручные однобалочные;
то же, более 2 т – краны подвесные электрические однобалочные.
Допускается предусматривать возможность использования подвижных подъемно-транспортных средств.
14.31 Для обслуживания оборудования и арматуры, расположенных на высоте от 1,5 до 2,5 м от пола, должны предусматриваться передвижные площадки или переносные устройства (стремянки). В случае невозможности создания проходов для передвижных площадок, а также обслуживания оборудования и арматуры, расположенных на высоте 2,5 м и более, необходимо предусматривать стационарные площадки с ограждением и постоянными лестницами. Размеры площадок, лестниц и ограждений следует принимать в соответствии с требованиями ГОСТ 23120.
Расстояние от уровня стационарной площадки до верхнего перекрытия должно быть не менее 2 м.
14.32 В ЦТП с постоянным обслуживающим персоналом следует предусматривать санузел с умывальником.
15 Электроснабжение и система управления
Электроснабжение
15.1 Электроснабжение электроприемников тепловых сетей установлено в [7].
Электроприемники тепловых сетей по надежности электроснабжения следует предусматривать:
I категории – подкачивающие насосы насосных станций, узлы рассечки, запорно-регулирующая арматура тепловых сетей диаметром труб более 500 мм и дренажные насосы дюкеров, диспетчерские пункты;
II категории – запорная арматура при телеуправлении, подкачивающие, смесительные и циркуляционные насосы тепловых сетей при диаметре труб менее 500 мм и систем отопления и вентиляции в тепловых пунктах, насосы для зарядки и разрядки баков-аккумуляторов для подпитки тепловых сетей в открытых системах теплоснабжения, подпиточные насосы в узлах рассечки;
III категории – остальные электроприемники.
15.2 Аппаратура управления электроустановками в подземных тепловых пунктах и камерах должна размещаться выше возможного уровня аварийного разлива воды. Высоту разлива воды следует определять расчетом, а при отсутствии расчетов – располагать выше уровня земли.
15.3 Электроосвещение следует предусматривать в насосных, в тепловых пунктах, павильонах, в тоннелях и дюкерах, камерах, оснащенных электрооборудованием, а также на площадках эстакад и отдельно стоящих высоких опор в местах установки арматуры с электроприводом, регуляторов, контрольно-измерительных приборов. Освещенность должна приниматься по действующим нормам. Постоянное аварийное и эвакуационное освещение следует предусматривать в помещениях постоянного пребывания эксплуатационного и ремонтного персонала. В остальных помещениях аварийное освещение осуществляется переносными аккумуляторными светильниками.
Автоматизация и контроль
15.4 В тепловых сетях следует предусматривать:
а) автоматические регуляторы, противоударные устройства и блокировки, обеспечивающие:
заданное давление воды в подающем или обратном трубопроводах водяных тепловых сетей с поддержанием в подающем трубопроводе постоянного давления “после себя” и в обратном – “до себя” (регулятор подпора);
деление (рассечку) водяной сети на гидравлически независимые зоны при повышении давления воды сверх допустимого;
включение подпиточных устройств в узлах рассечки для поддержания статического давления воды в отключенной зоне на заданном уровне;
б) отборные устройства с необходимой запорной арматурой для измерения:
температуры воды в подающих (выборочно) и обратных трубопроводах перед секционирующими задвижками и, как правило, в обратном трубопроводе ответвлений 300 перед задвижкой по ходу воды;
давления воды в подающих и обратных трубопроводах до и после секционирующих задвижек и регулирующих устройств, и, как правило, в подающих и обратных трубопроводах ответвлений 300 перед задвижкой;
расхода воды в подающих и обратных трубопроводах ответвлений 400;
давления пара в трубопроводах ответвлений перед задвижкой;
в) защиту оборудования тепловых сетей и систем теплоиспользования потребителей от недопустимых изменений давления в узлах регулирования.
В узлах регулирования давления и рассечки следует обеспечить:
дублирование регулирующей и запорной арматуры, установкой в параллель или устройство байпасной линии, на которой установлен клапан, обеспечивающий быстрое открытие или мембранно-предохранительные устройства.
15.5 В тепловых камерах следует предусматривать возможность измерения температуры и давления теплоносителя в трубопроводах.
15.6 Автоматизация подкачивающих насосных станций на подающих и обратных трубопроводах водяных тепловых сетей должна обеспечивать:
постоянное заданное давление при любых режимах работы сети насосной станции в подающем трубопроводе в напорном коллекторе;
постоянное заданное давление при любых режимах работы сети насосной станции в обратном трубопроводе во всасывающем коллекторе;
включение резервного насоса, установленного на обратном трубопроводе, при повышении давления сверх допустимого во всасывающем трубопроводе насосной или установленного на подающем трубопроводе – при снижении давления в напорном трубопроводе насосной;
автоматическое включение резервного насоса (АВР) при отключении работающего насоса или при повышении давления во всасывающем коллекторе насосной станции выше уставки в обратном трубопроводе;
автоматическое закрытие напорной задвижки рабочего насоса при его отключении и открытие соответствующей задвижки резервного насоса при его включении;
включение резервного источника питания при падении напряжения в основном источнике: автоматическое включение секционного выключателя при исчезновении напряжения на одной из секций источника питания;
рассечку тепловой сети на гидравлически независимые зоны, если в статическом режиме либо в рабочем режиме (при отключенной насосной станции) давление в тепловой сети превышает допустимое;
отключение всех работающих сетевых насосов НПС при полном закрытии клапана рассечки;
последовательное отключение всех перекачивающих насосов при снижении давления в напорном или всасывающем коллекторе насосной станции в подающем трубопроводе до давления вскипания и блокировка на включение АВР перекачивающих насосов.
15.7 Дренажные насосы должны обеспечивать автоматическую откачку поступающей воды.
15.8 Автоматизация смесительных насосных должна обеспечивать постоянство заданного коэффициента смешения и защиту тепловых сетей после смесительных насосов от повышения температуры воды против заданной при остановке насосов.
15.9 Насосные должны быть оснащены комплектом показывающих и регистрирующих приборов (включая измерение расходов воды), устанавливаемых по месту или на щите управления, сигнализацией состояния и неисправности оборудования на щите управления.
15.10 Баки-аккумуляторы (включая насосы для зарядки и разрядки баков) горячего водоснабжения должны быть оборудованы контрольно-измерительными приборами для измерения:
уровня – регистрирующий прибор;
давления на всех подводящих и отводящих трубопроводах – показывающий прибор; температуры воды в баке – показывающий прибор;
блокировками, обеспечивающими полное прекращение подачи воды в бак при достижении верхнего предельного уровня заполнения бака; и прекращения разбора воды при достижении нижнего уровня (отключение разрядных насосов);
сигнализацией верхнего предельного уровня (начало перелива в переливную трубу); сигнализацией отключения насосов разрядки.
15.11 При установке баков-аккумуляторов на объектах с постоянным обслуживающим персоналом светозвуковая сигнализация выводится в помещение дежурного персонала.
На объектах, работающих без постоянного обслуживающего персонала, сигнал неисправности выносится на диспетчерский пункт. По месту фиксируется причина вызова обслуживающего персонала.
15.12 Тепловые пункты следует оснащать средствами автоматизации, приборами теплотехнического контроля, учета и регулирования, которые устанавливаются по месту или на щите управления.
15.13 Средства автоматизации и контроля должны обеспечивать работу тепловых пунктов без постоянного обслуживающего персонала (с пребыванием персонала не более 50% рабочего времени).
15.14 Автоматизация тепловых пунктов должна обеспечивать:
регулирование расхода теплоты в системе отопления и ограничение максимального расхода сетевой воды у потребителя;
заданную температуру воды в системе горячего водоснабжения;
поддержание статического давления в системах потребления теплоты при их независимом присоединении;
заданное давление в обратном трубопроводе или требуемый перепад давлений воды в подающем и обратном трубопроводах тепловых сетей;
защиту систем потребления теплоты от повышенного давления воды в случае возникновения опасности превышения допустимых предельных параметров с установкой быстродействующих клапанов отсечки от магистральных сетей и быстродействующих сбросных устройств;
защиту систем потребления теплоты от повышения температуры воды в случае возникновения опасности превышения допустимых предельных параметров;
включение резервного насоса при отключении рабочего;
прекращение подачи воды в бак-аккумулятор при достижении верхнего уровня воды в баке и разбора воды из бака при достижении нижнего уровня;
защиту системы отопления от опорожнения.
Диспетчерское управление
15.15 На предприятиях тепловых сетей, сооружения которых территориально разобщены, следует предусматривать диспетчерское управление.
15.16 Диспетчерское управление следует разрабатывать с учетом перспективного развития тепловых сетей всего города. В обоснованных случаях – для части города с учетом развития системы теплоснабжения.
15.17 Для тепловых сетей, как правило, предусматривается одноступенчатая структура диспетчерского управления с одним центральным диспетчерским пунктом. Для крупных систем теплоснабжения (города с населением свыше 1 млн чел.) или особо сложных по структуре необходимо предусматривать двухступенчатую структуру диспетчерского управления с центральным и районными диспетчерскими пунктами.
Диспетчерское управление тепловыми сетями с тепловыми нагрузками 100 МВт и менее определяется структурой управления городских коммунальных служб и, как правило, является частью объединенной диспетчерской службы города (ОДС) или района.
15.18 Вновь строящиеся диспетчерские пункты предприятий тепловых сетей следует, как правило, располагать в помещении ремонтно-эксплуатационной базы.
15.19 Для тепловых сетей городов допускается предусматривать АСУ ТП при технико-экономическом обосновании.
Телемеханизация
15.20 Применение технических средств телемеханизации определяется задачами диспетчерского управления и разрабатывается в комплексе с техническими средствами контроля, сигнализации, управления и автоматизации, определенными заданием на проектирование.
15.21 Телемеханизация должна обеспечить работу насосных станций без постоянного обслуживающего персонала.
15.22 Для насосных и центральных тепловых пунктов должны предусматриваться следующие устройства телемеханики:
телесигнализация о неисправностях оборудования или о нарушении заданного значения контролируемых параметров (обобщенный сигнал);
телеуправление пуском, остановкой насосов и арматурой с электроприводом, имеющее оперативное значение;
телесигнализация положения арматуры с электроприводами, насосов и коммутационной аппаратуры, обеспечивающей подвод напряжения в насосную;
телеизмерение давления, температуры, расхода теплоносителя, в электродвигателях – тока статора.
Арматура на байпасах задвижек, подлежащих телеуправлению, должна приниматься с электроприводом, в схемах управления должна быть обеспечена блокировка электродвигателей, основной задвижки и ее байпаса.
В узлах регулирования тепловых сетей при необходимости следует предусматривать:
телеизмерение давления теплоносителя в подающем и обратном трубопроводах, температуры в обратных трубопроводах ответвлений;
телеуправление запорной арматурой и регулирующими клапанами, имеющими оперативное значение.
15.23 На выводах тепловых сетей от источников теплоты следует предусматривать:
телеизмерение давления, температуры и расхода теплоносителя в подающем и обратном трубопроводах сетевой воды, а также трубопроводах пара и конденсата, расхода подпиточной воды;
аварийно-предупредительную телесигнализацию предельных значений расхода подпиточной воды, перепада давлений между подающей и обратной магистралями.
15.24 Аппаратура телемеханики, датчики телеинформации должны располагаться в специальных помещениях, совмещенных с помещениями электротехнических устройств, исключающих воздействие на эту аппаратуру воды и пара при возникновении аварийных ситуаций.
15.25 Выбор датчиков следует производить из расчета одновременной передачи сигнализации на диспетчерский пункт и на щит управления контролируемого объекта.
Связь
15.26 На диспетчерских пунктах предусматривается устройство оперативной (диспетчерской) телефонной связи.
15.27 ЦТП с постоянным пребыванием персонала должны быть оборудованы телефонной связью.
16 Дополнительные требования к проектированию тепловых сетей в особых природных и климатических условиях строительства
Общие требования
16.1 При проектировании тепловых сетей и сооружений на них в районах с сейсмичностью 8 и 9 баллов, на подрабатываемых территориях, в районах с просадочными грунтами II типа, засоленными, набухающими, заторфованными и вечномерзлыми наряду с требованиями настоящего свода правил следует соблюдать также строительные требования к зданиям и сооружениям, размещаемым в указанных районах.
Примечание – При просадочных грунтах I типа тепловые сети могут проектироваться без учета требований данного раздела.
16.2 Запорную, регулирующую и предохранительную арматуру независимо от диаметров труб и параметров теплоносителя следует принимать стальной.
16.3 Расстояние между секционирующими задвижками следует принимать не более 1000 м. При обосновании допускается увеличивать расстояние на транзитных трубопроводах до 3000 м.
16.4 Прокладку тепловых сетей следует предусматривать с использованием металлических и неметаллических гибких трубопроводов, разрешенных к использованию в особых природных и климатических условиях в соответствии с действующим законодательством.
16.5 Совместная прокладка тепловых сетей с газопроводами в каналах и тоннелях независимо от давления газа не допускается.
Допускается предусматривать совместную прокладку с газопроводами природного газа только во внутриквартальных тоннелях и общих траншеях при давлении газа не более 0,005 МПа.
Районы с сейсмичностью 8 и 9 баллов
16.6 Расчетная сейсмичность для зданий и сооружений тепловых сетей должна приниматься равной сейсмичности района строительства.
16.7 Бесканальную прокладку тепловых сетей допускается предусматривать для трубопроводов 400.
Бесканальная прокладка трубопроводов 500-700 мм возможна при выполнении требований постановления Правительства Российской Федерации [11], раздел I, пункт 5. Бесканальная прокладка трубопроводов 700 запрещена.
16.8 Прокладка транзитных тепловых сетей под жилыми, общественными и производственными зданиями, а также по стенам зданий, фермам, колоннам и т.п. не допускается.
16.9 В местах прохождения трубопроводов тепловых сетей через фундаменты и стены зданий должен предусматриваться зазор между поверхностью теплоизоляционной конструкции трубы и верхом проема, обеспечивающий перемещение трубопровода, без смятия изоляции, но не менее 0,2 м. Для заделки зазора следует применять эластичные водогазонепроницаемые материалы.
16.10 В местах присоединения трубопроводов к насосам, водоподогревателям и бакам должны предусматриваться мероприятия, обеспечивающие продольные и угловые перемещения трубопроводов.
16.11 Подвижные катковые и шариковые опоры труб принимать не допускается.
16.12 При надземной прокладке должны применяться эстакады или низкие отдельно стоящие опоры.
Прокладка на высоких отдельно стоящих опорах и использование труб тепловых сетей для связи между опорами не допускаются.
Районы вечномерзлых грунтов
16.13 Выбор трассы тепловых сетей, а также размещение компенсаторов, камер, неподвижных опор, дренажных устройств трубопроводов следует производить на основе материалов инженерно-геокриологических изысканий на застраиваемой территории с учетом прогноза изменения мерзлотно-грунтовых условий и принятого принципа использования вечномерзлых грунтов как оснований проектируемых и эксплуатируемых зданий и сооружений.
16.14 Для компенсации тепловых удлинений трубопроводов следует применять гибкие компенсаторы (различной формы) из стальных труб и углы поворотов трубопроводов. Допускается предусматривать сильфонные и линзовые компенсаторы для тепловых сетей.
16.15 Схемы тепловых сетей городов и других населенных пунктов должны предусматривать подачу теплоты не менее чем по двум взаимно резервируемым трубопроводам. Независимо от способа прокладки каждый трубопровод должен быть рассчитан на подачу 100% теплоты при заданном уровне показателей надежности.
Трубопроводы должны прокладываться на расстоянии не менее 50 м друг от друга и иметь между собой резервирующие перемычки.
16.16 При подземном и надземном способах прокладки тепловых сетей в просадочных (при оттаивании) вечномерзлых грунтах необходимо предусматривать следующие мероприятия по сохранению устойчивости конструкций тепловых сетей:
прокладку сетей в каналах или тоннелях с естественной или искусственной вентиляцией, обеспечивающей требуемый температурный режим грунта;
замену грунта в основании каналов и тоннелей на непросадочный;
устройство свайного основания, обеспечение водонепроницаемости каналов, тоннелей и камер;
удаление случайных и аварийных вод из камер и тоннелей.
Выбор мероприятий по сохранению устойчивости тепловых сетей должен выполняться на основе расчетов зоны оттаивания мерзлого грунта около трубопроводов и общего прогноза изменения мерзлотно-грунтовых условий застраиваемой территории.
16.17 Надземная прокладка тепловых сетей должна предусматриваться на эстакадах, низких или высоких отдельно стоящих опорах, а также в наземных каналах, расположенных на поверхности земли.
16.18 При подземной прокладке тепловых сетей для ответвлений к отдельным зданиям, возводимым или возведенным на вечномерзлых грунтах с сохранением мерзлого состояния (принцип I по СП 25.13330), необходимо на расстоянии 6 м от стены здания предусматривать надземную прокладку сетей. Допускается предусматривать подземную прокладку тепловых сетей совместно с другими инженерными сетями в вентилируемых каналах с выходом их на поверхность в пределах проветриваемого подполья зданий, при этом должны быть приняты меры по предотвращению протаивания грунтов под фундаментами зданий.
16.19 При подземной прокладке тепловых сетей, строящихся по принципу сохранения мерзлоты (принцип I), бесканальную прокладку принимать не допускается.
16.20 По трассе тепловых сетей должна быть предусмотрена планировка земли, обеспечивающая отвод горячей воды при авариях от основания строительных конструкций на расстояние, исключающее ее тепловое влияние на вечномерзлый грунт.
16.21 При прокладке тепловых сетей в каналах должна предусматриваться оклеечная гидроизоляция из битумных рулонных материалов наружных поверхностей строительных конструкций и закладных частей.
16.22 Спускные устройства водяных тепловых сетей должны приниматься исходя из условий спуска воды из одного трубопровода секционируемого участка в течение одного часа. Спуск воды должен предусматриваться из трубопроводов непосредственно в системы канализации с охлаждением воды до температуры, допускаемой конструкциями сетей канализации и исключающей вредное тепловое воздействие на вечномерзлые грунты в основании.
Спуск воды в каналы и камеры не допускается.
16.23 Для узлов трубопроводов при надземной прокладке тепловых сетей на низких отдельно стоящих опорах или в наземных каналах должны предусматриваться надземные камеры (павильоны).
16.24 Наименьший диаметр труб независимо от расхода и параметров теплоносителя должен приниматься 50 мм.
16.25 Минимальная высота скользящих опор для труб при подземной прокладке тепловых сетей должна приниматься не менее 150 мм.
16.26 Расстояние между подвижными опорами труб при прокладке тепловых сетей в наземных каналах должно приниматься с коэффициентом 0,7 к расстояниям, полученным при расчете трубопроводов на прочность.
16.27 При прокладке тепловых сетей в каналах минимальные расстояния в свету между трубопроводами и строительными конструкциями, приведенные в приложении А, должны увеличиваться до перекрытия каналов – на 100 мм, до дна каналов – на 50 мм.
16.28 Расстояния в свету по горизонтали от тепловых сетей при их подземной прокладке до фундаментов зданий и сооружений должны приниматься:
при строительстве зданий и сооружений на вечномерзлых грунтах по принципу I – не менее 2 м от зоны оттаивания грунта около канала, определяемой расчетом, но не менее величин, указанных в таблице 5;
при строительстве зданий и сооружений на вечномерзлых грунтах по принципу II (без сохранения вечной мерзлоты) – не менее величин, указанных в таблице 5.
Таблица 5
Среднегодовая температура вечномерзлого грунта, °С
СП 77.13330.2016 Системы автоматизации. Актуализированная редакция СНиП 3.05.07-85
5 ЗАРЕГИСТРИРОВАН Федеральным агентством по техническому регулированию и метрологии (Росстандарт). Пересмотр СП 77.13330.2011 “СНиП 3.05.07-85 Системы автоматизации”
В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в установленном порядке. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования – на официальном сайте разработчика (Минстрой России) в сети Интернет
Введение
Настоящий свод правил разработан в соответствии с требованиями Федерального закона от 27 декабря 2002 г. N 184-ФЗ “О техническом регулировании”, Федерального закона от 30 декабря 2009 г. N 384-ФЗ “Технический регламент о безопасности зданий и сооружений” и Федеральным законом от 22 июля 2008 г. N 123-ФЗ “Технический регламент о требованиях пожарной безопасности”.
Актуализация выполнена авторским коллективом ОАО – Ассоциация “Монтажавтоматика” В.С.Сиротенко – руководитель темы, М.А.Чудинов.
1 Область применения
1.1 Настоящий свод правил распространяется на производство и приемку работ по монтажу и наладке систем автоматизации, выполняющих функции контроля, регулирования и автоматизированного управления технологическими процессами и инженерным оборудованием при строительстве и техническом перевооружении действующих предприятий, зданий и сооружений всех отраслей промышленности, агропромышленного комплекса и жилищно-коммунального хозяйства.
Настоящий свод правил не распространяется на монтаж:
систем автоматизации специальных объектов (атомные установки, шахты, предприятия по производству и хранению взрывчатых веществ, изотопов);
систем СЦБ железнодорожного транспорта; систем связи и сигнализации; автоматики установок пожарной сигнализации и пожаротушения автоматических и систем противодымной вентиляции, систем оповещения и управления эвакуацией людей при пожарах;
приборов с использованием радиоизотопных методов измерения;
технических средств автоматизации, встроенных в станки, машины и другое оборудование, поставляемое предприятиями-изготовителями.
2 Нормативные ссылки
В настоящем своде правил использованы нормативные ссылки на следующие документы:
ГОСТ 2.601-2013 Единая система конструкторской документации. Эксплуатационные документы
ГОСТ 8.586.1-2005 (ИСО 5167-1:2003) Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 1. Принцип метода измерений и общие требования
ГОСТ 8.586.5-2005 Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 5. Методика выполнения измерений
ГОСТ 21.001-2013 Система проектной документации для строительства. Общие положения
ГОСТ 21.208-2013 Система проектной документации для строительства. Автоматизация технологических процессов. Обозначения условные приборов и средств автоматизации в схемах
ГОСТ 21.408-2013 Система проектной документации для строительства. Правила выполнения рабочей документации автоматизации технологических процессов
ГОСТ 34.003-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Термины и определения
ГОСТ 34.201-89 Информационная технология. Комплекс стандартов на автоматизированные системы. Виды, комплектность и обозначение документов при создании автоматизированных систем
ГОСТ 9400-81 Концы присоединительные резьбовые для арматуры, соединительных частей и трубопроводов под линзовое уплотнение на 20-100 МПа (200-1000 кгс/см). Размеры
ГОСТ 16037-80 Соединения сварные стальных трубопроводов. Основные типы, конструктивные элементы и размеры
ГОСТ 19249-73 Соединения паяные. Основные типы и размеры
ГОСТ 22791-83 – 22826-83 Сборочные единицы и детали трубопроводов на св. 10 до 100 МПа (св. 100 до 1000 кгс/см). Конструкция и размеры. Общие технические условия
ГОСТ 32569-2013 Трубопроводы технологические стальные. Требования к устройству и эксплуатации на взрывопожароопасных и химически опасных производствах
ГОСТ Р 50571.5.52-2011/МЭК 60364-5-52:2009 Электроустановки низковольтные. Часть 5-52. Выбор и монтаж электрооборудования. Электропроводки
ГОСТ Р 50571.5.54-2013/МЭК 60364-5-54:2011 Электроустановки низковольтные. Часть 5-54. Выбор и монтаж электрооборудования. Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов
ГОСТ Р 52266-2004 Кабельные изделия. Кабели оптические. Общие технические условия
ГОСТ Р 52350.14-2006 (МЭК 60079-14.2002) Электрооборудование для взрывоопасных газовых сред. Часть 14. Электроустановки во взрывоопасных зонах (кроме подземных выработок)
ГОСТ Р 52868-2007 (МЭК 61537:2006) Системы кабельных лотков и системы кабельных лестниц для прокладки кабелей. Общие технические требования и методы испытаний
ГОСТ Р 53246-2008 Информационные технологии. Системы кабельные структурированные. Проектирование основных узлов системы. Общие требования
ГОСТ Р 55599-2013 Сборочные единицы и детали трубопроводов на давление свыше 10 до 100 МПа. Общие технические требования
ГОСТ IEC 60050-300-2015 Международный электротехнический словарь. Электрические и электронные измерения и измерительные приборы. Часть 311. Общие термины, относящиеся к измерениям. Часть 312. Общие термины, относящиеся к электрическим измерениям. Часть 313. Типы электрических приборов. Часть 314. Специальные термины, соответствующие типу прибора
ГОСТ IEC 60079-14-2013 Взрывоопасные среды. Часть 14. Проектирование, выбор и монтаж электроустановок
СП 48.13330.2011 “СНиП 12-01-2004 Организация строительства”
СП 62.13330.2011 “СНиП 42-01-2002 Газораспределительные системы”
СП 75.13330.2011 “СНиП 3.05.05-84 Технологическое оборудование и технологические трубопроводы”
3 Термины, определения и сокращения
3.1 Термины и определения
В настоящем своде правил применены следующие термины с соответствующими определениями:
3.1.3 системы автоматизации; СА: Технические средства или совокупность технических и программных средств, обеспечивающих:
– получение и представление измерительной информации о ходе технологического процесса на объекте строительства (или технического перевооружения), поддержании его согласно технологическому регламенту (функция контроля и регулирования);
– выработку и реализацию управляющих воздействий на ход технологического процесса (функции управления).
3.1.7 эксплуатационная документация: Документация, предназначенная для наладки и дальнейшей эксплуатации средств автоматизации (в т.ч. эксплуатационная документация на составные части и компоненты систем) и разрабатываемая по требованиям ГОСТ 2.601 и ГОСТ 34.201.
3.1.8 проект производства работ; ППР: Организационно-технологический документ, разрабатываемый для реализации проекта и определяющий технологии строительных работ (технологические процессы и операции), качество их выполнения, сроки, ресурсы и мероприятия по безопасности.
3.1.9 измерительный прибор: Средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия.
Пример – Вольтметр, микрометр, термометр, электронные весы.
Примечание – Измерительный прибор, в котором сигнал измерительной информации представлен в визуальной форме, называют показывающим измерительным прибором.
3.1.12 технические средства автоматизации (средства автоматизации): Измерительные приборы, регуляторы, функциональные блоки, исполнительные механизмы, регулирующие органы (далее приборы), а также электроаппараты, щиты, пульты, комплексы и др. средства автоматизации.
3.1.13 монтажные конструкции: Конструкции, предназначенные для установки приборов и прокладки проводок:
– стенды, стативы, стойки, кронштейны;
– опорные конструкции проводок – полки, стойки, кронштейны и др.;
– несущие конструкции проводок – короба, лотки, мосты.
3.1.14 струна: Струной как несущим элементом электропроводки называется стальная проволока, натянутая вплотную к поверхности стены, потолка и т.п., предназначенная для крепления к ней проводов, кабелей или их пучков.
3.1.15 полоса: Полосой как несущим элементом электропроводки называется металлическая полоса, закрепленная вплотную к поверхности стены, потолка и т.п., предназначенная для крепления к ней проводов, кабелей или их пучков.
3.1.16 трос: Тросом как несущим элементом электропроводки называется стальная проволока или стальной канат, натянутые в воздухе, предназначенные для подвески к ним проводов, кабелей или их пучков.
3.1.17 короб: Закрытая полая конструкция прямоугольного или другого сечения, предназначенная для прокладки в ней проводов и кабелей. Короб должен служить защитой от механических повреждений и светового (ультрафиолетового) излучения проложенных в нем проводов и кабелей.
Примечания:
1 Короба могут быть глухими или с открываемыми крышками, со сплошными или перфорированными стенками и крышками. Глухие короба должны быть оснащены только сплошными стенками со всех сторон и могут не иметь крышек.
2 Короба применяют в помещениях и наружных установках.
3.1.18 лоток: Открытая конструкция, предназначенная для прокладки на ней проводов и кабелей.
Примечание – Лоток не служит защитой от внешних механических повреждений, проложенных на нем проводов и кабелей. Лотки должны изготовляться из несгораемых материалов. Они могут быть сплошными, перфорированными или решетчатыми. Лотки могут применяться в помещениях и наружных установках.
трубная проводка: Совокупность труб (трубных кабелей), соединений, присоединений, защитных устройств и арматуры.
[ГОСТ 21.408-2013 пункт 3.1.7].
3.1.23 импульсная линия связи: Трубная проводка, соединяющая отборное устройство с измерительным прибором, датчиком или регулятором для передачи импульсных сигналов воздействий контролируемой или регулируемой технологической среды на чувствительные органы контрольно-измерительных приборов, датчиков или регуляторов, непосредственно или через разделительные среды.
Примечание – К импульсным линиям связи относят также капилляры манометрических термометров и регуляторов температуры, соединяющие термочувствительные элементы (термобаллоны) с манометрическими измерительными устройствами.
3.1.24 командная линия связи: Трубная проводка, соединяющая между собой отдельные функциональные блоки автоматики (датчики, переключатели, измерительные приборы, преобразователи, вычислительные, регулирующие и управляющие устройства, исполнительные механизмы) и предназначенная для передачи командных сигналов (давления воздуха, воды, масла).
3.1.25 линия питания: Трубная проводка, соединяющая измерительные приборы и средства автоматизации с источниками питания (насосами, компрессорами и другими источниками).
3.1.26 линия обогрева: Трубная проводка, посредством которой подводятся (и отводятся) теплоносители (воздух, вода, пар и др.) к устройствам обогрева отборных устройств, измерительным приборам, техническим средствам автоматизации, щитам и потокам импульсных, командных и других трубных проводок.
3.1.27 линия охлаждения: Трубная проводка, посредством которой подводятся (и отводятся) охлаждающие агенты (воздух, вода, рассол и др.) к устройствам охлаждения отборных устройств, датчикам, исполнительным механизмам и другим техническим средствам автоматизации.
3.1.28 вспомогательная линия: Трубная проводка, посредством которой:
а) подводятся к импульсным линиям связи защитные жидкости или газы, создающие в них встречные потоки для предохранения от агрессивных воздействий, закупорки, засорения и других явлений, вызывающих порчу и отказ в работе отборных устройств, измерительных приборов, средств автоматизации и самих импульсных линий;
б) подводятся к приборам, регуляторам, импульсным линиям связи жидкости или газы для периодической промывки или продувки их во время эксплуатации;
в) создается параллельный поток части продукта, отбираемого из технологического аппарата или трубопровода для анализа, с целью ускорения подачи пробы к измерительному прибору, удаленному от места отбора (например, к анализатору жидких нефтепродуктов и др.).
3.1.29 дренажная линия: Трубная проводка, посредством которой сбрасываются продукты продувки и промывки (газы и жидкости) из приборов и регуляторов, импульсных и командных линий связи, вспомогательных и других линий в отведенные для этого места (специальные емкости, атмосферу, канализацию и др.).
3.1.30 трубный блок: Определенное число труб необходимой длины и конфигурации, уложенных и закрепленных в определенном положении и полностью подготовленных к соединению со смежными узлами трубной проводки.
3.2 Сокращения
В настоящем своде правил принято следующее сокращение:
ПОС: Проект организации строительства.
4 Общие положения
4.1 Свод правил следует соблюдать монтажным и пусконаладочным организациям, разработчикам проектной документации (проектировщикам), застройщикам (заказчикам), службам эксплуатации и другим юридическим и физическим лицам – участникам инвестиционных процессов при строительстве, реконструкции и капитальном ремонте объектов, оснащенных системами автоматизации, независимо от их подчиненности и форм собственности
4.2 Организации, выполняющие монтажные и пусконаладочные работы по системам автоматизации, должны иметь “свидетельство о допуске” к видам работ, которые оказывают влияние на безопасность объектов капитального строительства, выданное саморегулируемыми организациями (СРО) в соответствии с требованиями Градостроительного кодекса.
4.3 Перед началом выполнения работ на объектах, поднадзорных Федеральной службе по экологическому, технологическому и атомному надзору (Ростехнадзор), персонал организации должен быть подготовлен и аттестован согласно распорядительным документам Ростехнадзора [1].
4.4 Перед началом выполнения монтажных работ на объекте капитального строительства, находящегося на территории действующего предприятия, необходимо оформить акт-допуск для производства монтажных работ, а также наряд-допуск для выполнения работ, связанных с повышенной опасностью, производимых в местах действия вредных и опасных производственных факторов.
4.5 При организации производства и производстве работ по монтажу и наладке систем автоматизации должны соблюдаться требования настоящего свода правил, [2], [3].
4.6 Работы по монтажу и наладке систем автоматизации должны производиться в соответствии с утвержденной рабочей документацией со штампом “К производству работ”, проектом производства работ (ППР) или другим, заменяющим его документом, технологическими картами, а также с технической документацией предприятий-изготовителей.
Разработку ППР рекомендуется выполнять в случаях, предусмотренных СП 48.13330.
4.7 Пусконаладочные работы на системах автоматизации выполняют в соответствии с ГОСТ 34.201 и эксплуатационной документацией предприятий – изготовителей технических средств автоматизации.
4.8 В процессе выполнения монтажных, пусконаладочных работ на системах автоматизации и при сдаче их в эксплуатацию документацию следует оформлять в соответствии с приложением А.
4.9 Окончанием работ по монтажу систем автоматизации является завершение испытаний трубных, волоконно-оптических и электрических проводок, выполняемых в соответствии с разделом 7 настоящего свода правил, и подписание акта приемки смонтированных систем автоматизации в объеме рабочей документации.
4.10 Окончанием работ по наладке систем автоматизации является завершение комплексной наладки систем автоматизации и оформление акта о приемке систем автоматизации в эксплуатацию.
5 Подготовка к производству монтажных работ
5.1 Общие требования
5.1.1 Монтажу систем автоматизации должна предшествовать подготовка в соответствии с СП 48.13330 и настоящим сводом правил.
5.1.2 В договоре подряда (субподряда) или приложении к нему, как правило, определяют:
а) виды работ и услуг;
б) объем работ по каждому виду, при необходимости с разбивкой на этапы;
в) порядок и сроки поставки (комплектации) оборудования и материалов;
г) перечень нормативных документов, включая настоящий свод правил, по выполнению работ;
д) перечень технических средств автоматизации, монтируемых с привлечением шефмонтажного персонала;
е) сроки выполнения каждого вида и этапа работ, а также по объекту в целом;
ж) условия сдачи-приемки объектов для производства монтажных и наладочных работ систем автоматизации;
и) необходимость разработки ППР или технологической записки;
к) порядок перерыва в работах по причинам, не зависящим от подрядчика (субподрядчика);
л) объем приемо-сдаточной документации и порядок согласования выполненных работ с заказчиком.
Договор подряда (субподряда) может предусматривать выполнение работ по созданию систем автоматизации в едином технологическом цикле: проектирование, изготовление, комплектация, монтаж, наладка и гарантийное обслуживание.
5.1.3 Монтажная (наладочная) организация, заключившая договор (договора) на выполнение работ, должна до начала их выполнения;
а) произвести приемку рабочей документации;
б) выполнить подготовительные работы и, при необходимости, разработать ППР;
в) произвести приемку строительной и технологической готовности объекта под монтаж;
г) осуществить комплектацию объекта материально-техническими ресурсами;
д) выполнить предусмотренные нормами и правилами мероприятия по охране труда и противопожарной безопасности.
5.1.4 В составе общей организационно-технологической подготовки должны быть согласованы с генподрядчиком, с организацией, монтирующей технологические блоки, и заказчиком:
а) условия комплектования объекта техническими средствами автоматизации, изделиями и материалами поставки заказчика, предусматривающие поставку их на технологический блок, узел, линию;
б) перечень технических средств автоматизации, агрегатных и вычислительных комплексов АСУТП, монтируемых с привлечением шефмонтажного персонала предприятий-изготовителей;
в) условия транспортирования блоков щитов, пультов, групповых установок приборов, трубных блоков к месту монтажа.
5.1.5 До начала монтажа систем автоматизации монтажной организацией совместно с генподрядчиком должны быть решены следующие вопросы:
а) установлены опережающие сроки строительства специальных помещений, предназначенных для систем автоматизации, обеспечивающие своевременное проведение индивидуальных испытаний вводимых в действие технологических линий, узлов и блоков;
б) определены технологические линии, узлы, блоки и сроки их передачи под индивидуальные испытания после выполнения монтажа систем автоматизации;
в) предусмотрены необходимые производственные мастерские, бытовые и конторские помещения, оборудованные отоплением, освещением и телефоном;
г) предусмотрено использование основных строительных машин, находящихся в распоряжении генподрядчика (транспортных средств, подъемно-разгрузочных машин и механизмов и т.п.), для перемещения крупногабаритных узлов (блоков щитов, пультов, труб и т.п.) от производственных баз монтажных организаций до установки их в проектное положение на строительной площадке;
д) разработаны рекомендации и схемы подъема крупногабаритных узлов на проектные отметки и их перемещение через монтажные проемы;
е) предусмотрены постоянные или временные сети, подводящие к объектам электроэнергию, воду, сжатый воздух, с устройствами для подключения оборудования и инструмента;
ж) предусмотрены в соответствии с рабочей документацией мероприятия, обеспечивающие защиту технических средств автоматизации, щитов, пультов, трубных и электрических проводок от влияния атмосферных осадков, грунтовых вод и низких температур, от загрязнения и повреждений, а средств вычислительной техники – от статического электричества.
5.2 Приемка рабочей документации
5.2.1 В рабочей документации систем автоматизации, принимаемой к производству работ, монтажная организация должна проверить следующее:
а) с участием генподрядчика (заказчика) взаимоувязки с технологической, электротехнической, сантехнической и другой рабочей документацией;
б) привязки в рабочих чертежах технических средств автоматизации, поставляемых предприятиями-изготовителями комплектно с технологическим оборудованием;
в) учет требований высокой заводской и монтажной готовности оборудования, передовых методов монтажных работ, максимального переноса трудоемких работ в монтажно-заготовительные мастерские;
г) указания категорий трубных проводок в соответствии с приложением Б;
д) наличие взрывоопасных или пожароопасных зон и их границы, категории, группы и наименования взрывоопасных смесей; места установки разделительных уплотнений и их типы;
е) наличие документации на выполнение работ по монтажу и испытанию трубных проводок на давление свыше 10 МПа (100 кгс/см).
5.2.2 Приемку рабочей документации производят в объеме, предусмотренном ГОСТ 21.408.
При приемке документации СА (АС) уточняют наличие и соответствие требованиям монтажа СА в рабочей документации других марок: закладных конструкций, первичных приборов и технических средств автоматизации.
В перечень закладных конструкций, измерительных приборов, первичных измерительных преобразователей и других средств автоматизации включают:
а) закладные конструкции, предназначенные для установки приборов и датчиков измерения температуры, отборных устройств давления, уровня, состава и качества вещества;
б) первичные измерительные приборы (объемные и скоростные счетчики, сужающие устройства, ротаметры, датчики расходомеров и концентратомеров);
в) поплавковые и буйковые уровнемеры и сигнализаторы уровня;
г) регулирующие клапаны.
Перечень приводят в общих данных по рабочим чертежам по форме 3 ГОСТ 21.408-2013.
Форма 3 – Перечень закладных конструкций, первичных приборов
Окончание формы 3
Перечень закладных конструкций, устройств и сооружений для прокладки трубных и электрических проводок и установки технических средств автоматизации приводят по форме 4 ГОСТ 21.408-2013.
Наименование закладной конструкции, устройства, сооружения
Место размещения закладной конструкции, устройства, сооружения
Марка рабочей документации
В перечень включают: закладные конструкции для установки кабельных конструкций и проходы трубных и электрических проводок через стены и перекрытия, конструкции для установки приборов, исполнительных механизмов, щитов, кабельные каналы, эстакады для трубных и электрических проводок, помещения для размещения щитов и пунктов управления, анализаторные и другие помещения для размещения технических средств автоматизации с указанием требуемых климатических условий.
В общих указаниях должны быть также приведены:
– сведения об особых характеристиках промышленной безопасности проектируемого объекта;
– сведения о классах и границах взрывоопасных и пожароопасных зон в помещениях и наружных установках, о категориях и группах взрывоопасных смесей.
При рассмотрении документации на трубные проводки следует проверить наличие указаний о категории трубной проводки, наличие чертежей в изометрической проекции для проводок свыше 10 МПа, наличие решений по компенсации тепловых удлинений для трубопроводов СА, заполняемых горячей жидкостью или паром, с учетом возможных тепловых перемещений технологического трубопровода в точках размещения отборных устройств.
При рассмотрении документации на электрические проводки, в особенности на проводки с искробезопасными цепями, следует проверить наличие чертежей на системы заземления, а при наличии технических средств с цифровыми сетями – наличие схем уравнивания потенциала.
5.2.3 Кроме рабочей документации, генподрядчик (заказчик) передает подрядчику (субподрядчику) эксплуатационную документацию предприятий (фирм) – изготовителей технических средств автоматизации, за исключением документации на оборудование, комплектуемое подрядчиком (субподрядчиком).
В случае комплектации технических средств автоматизации Подрядчиком (субподрядчиком), порядок передачи документации регулируется договором на поставку технических средств с заказчиком (генподрядчиком).
5.2.4 Для производства монтажных работ подрядчику (субподрядчику) передают на бумажных носителях рабочую документацию в двух экземплярах, сметную документацию, эксплуатационную документацию предприятий (фирм)-изготовителей технических средств автоматизации в одном экземпляре. Дополнительно передают рабочую документацию на электронных носителях в одном экземпляре. Для выполнения наладочных работ передают один экземпляр проектной и рабочей документации.
5.2.5 Приемку документации оформляют актом или накладной. На принятой к производству работ рабочей и проектной документации должен стоять штамп генподрядчика (заказчика) “К производству работ”.
При отсутствии стыковки с чертежами других марок, а также выявленных недостатках в рабочей документации, следует направить замечания генподрядчику (заказчику) для устранения недостатков.
5.3 Приемка строительной и технологической готовности объекта под монтаж
5.3.1 Приемку строительной и технологической готовности для выполнения монтажных работ производят в два этапа, если в составе работ по монтажу СА необходимо проложить защитные трубы или короба в строительных конструкциях зданий (полах, перекрытиях, стенах, фундаментах оборудования).
В этом случае на первом этапе необходимо получить разрешение на монтаж конструкций для скрытых проводок у генподрядчика до заливки полов и выполнение других работ, препятствующих монтажу СА на данном этапе.
5.3.2 До начала монтажа систем автоматизации на втором этапе на строительной площадке, а также в зданиях и помещениях, сдаваемых под монтаж систем автоматизации, должны быть выполнены строительные работы, предусмотренные рабочей документацией и проектом производства работ:
а) нанесены разбивочные оси и рабочие высотные отметки;
б) установлены площадки для обслуживания технических средств автоматизации.
В строительных конструкциях зданий и сооружений (полах, перекрытиях, стенах, фундаментах оборудования) в соответствии с архитектурно-строительными чертежами должны быть:
– установлены закладные конструкции под технические средства автоматизации;
– выполнены каналы, туннели, ниши, борозды, закладные трубы для скрытой проводки, проемы для прохода трубных и электрических проводок с установкой в них коробов, гильз, патрубков, обрамлений и других закладных конструкций;
– выполнен монтаж кабельных конструкций эстакад по чертежам марки КМ;
– оставлены монтажные проемы для перемещения крупногабаритных узлов и блоков.
5.3.3 В помещениях, предназначенных для систем автоматизации, а также в производственных помещениях в местах, предназначенных для монтажа технических средств автоматизации, должны быть закончены строительные и отделочные работы, произведена разборка опалубок, строительных лесов и подмостей, не требующихся для монтажа систем автоматизации, смонтированы системы пожарной сигнализации и автоматического пожаротушения, а также тщательно убрана пыль.
Входные двери и проходы в помещение должны обеспечить подачу технических средств автоматизации без разрушения целостности строительных конструкций.
5.3.4 Помещения, предназначенные для систем автоматизации, должны быть оборудованы отоплением, вентиляцией, освещением, при необходимости кондиционированием, смонтированными по постоянной схеме, иметь остекление и дверные запоры. В помещениях должна поддерживаться температура не ниже 5°С.
После сдачи указанных помещений под монтаж систем автоматизации в них не допускается производство строительных работ и монтаж санитарно-технических систем.
5.3.5 В помещениях автоматики, предназначенных для монтажа технических средств агрегатных и вычислительных комплексов АСУТП, в дополнение к требованиям 5.3.3, 5.3.4 должны быть смонтированы системы охранно-пожарной сигнализации и автоматического пожаротушения.
Окраска помещений меловой побелкой запрещается.
На окнах должны быть предусмотрены средства защиты от прямых солнечных лучей (жалюзи, шторы).
5.3.6 К началу монтажа систем автоматизации на технологическом, санитарно-техническом и других видах оборудования, а также на трубопроводах должны быть установлены:
– закладные и защитные конструкции для монтажа первичных измерительных приборов и измерительных преобразователей (датчиков). Закладные конструкции для установки отборных устройств давления, расхода и уровня должны заканчиваться запорной арматурой;
– первичные измерительные преобразователи (датчики), встраиваемые в трубопроводы, воздуховоды и аппараты (сужающие устройства, объемные и скоростные счетчики, ротаметры, проточные датчики расходомеров и концентратомеров, уровнемеры всех типов, регулирующие органы и т.п.).
5.3.7 На объекте в соответствии с технологическими, сантехническими, электротехническими и другими рабочими чертежами должны быть:
– проложены магистральные трубопроводы и разводящие сети с установкой арматуры для отбора теплоносителей к обогреваемым устройствам систем автоматизации, а также проложены трубопроводы для отвода теплоносителей;
– установлено оборудование и проложены магистральные и разводящие сети для обеспечения приборов и средств автоматизации электроэнергией и энергоносителями (сжатым воздухом, газом, маслом, паром, водой и т.п.), а также проложены трубопроводы для отвода энергоносителей;
– проложена канализационная сеть для сбора стоков от дренажных трубных проводок систем автоматизации;
– выполнена заземляющая сеть;
– выполнены работы по монтажу установок автоматического пожаротушения и пожарной сигнализации.
5.3.8 Заземляющая сеть для технических средств агрегатных и вычислительных комплексов АСУТП должна отвечать требованиям предприятий – изготовителей этих технических средств.
5.3.9 Приемка объекта оформляется актом готовности объекта к производству работ по монтажу систем автоматизации согласно приложению А.2.
5.4 Передача в монтаж оборудования, изделий, материалов и технической документации
5.4.1. Передачу в монтаж оборудования, изделий, материалов и технической документации осуществляют в соответствии с правилами о договорах подряда на капитальное строительство.
5.4.2 Принимаемые оборудование, материалы и изделия должны соответствовать рабочей документации, стандартам, техническим условиям и иметь соответствующие сертификаты, технические паспорта или другие документы, удостоверяющие их качество. Трубы, арматура и соединения для кислородных трубных проводок должны быть обезжирены, что должно быть указано в документации, подтверждающей проведение этой операции.
При приемке оборудования, материалов и изделий проверяют комплектность, отсутствие повреждений и дефектов, сохранность окраски и специальных покрытий, сохранность пломб, наличие специального инструмента и приспособлений, поставляемых предприятиями-изготовителями.
Устранение дефектов оборудования, обнаруженных в процессе приемки, осуществляют в соответствии с договором между заказчиком и исполнителем.
5.4.3 Детали трубных проводок на давление свыше 10 МПа (100 кгс/см), предусмотренные в рабочей документации для сборки из сборочных единиц, передают в монтаж в виде подготовленных к монтажу сборочных единиц (трубы или детали из них, фасонные части к ним, соединительные детали, метизы, арматура и т.п.) или собранными в узлы, укомплектованными по спецификации деталировочных чертежей. Отверстия труб должны быть закрыты пробками. На изделия и сборочные единицы, имеющие сварные швы, должны передаваться акты или другие документы, подтверждающие качество сварных соединений.
5.4.4 При приемке барабанов с электрическим или оптическим кабелем проверяют состояние щек кабельных барабанов, обшивки, а также заделку концов кабеля.
6 Производство монтажных работ
6.1 Общие требования
6.1.1 Монтаж систем автоматизации производят в соответствии с рабочей документацией с учетом требований предприятий – изготовителей приборов, средств автоматизации, агрегатных и вычислительных комплексов, предусмотренных техническими условиями или инструкциями по монтажу и эксплуатации этого оборудования.
Работы по монтажу рекомендуется выполнять индустриальным методом с использованием средств малой механизации, механизированного и электрифицированного инструмента и приспособлений, сокращающих применение ручного труда.
6.1.2 Технологию производства работ следует вести в соответствии с утвержденными технологическими картами, а также ППР или заменяющим его документом и инструкциями производителей материалов и изделий.
6.1.3 Работы по монтажу систем автоматизации рекомендуется выполнять в две стадии (два этапа).
На первой стадии выполняют закладку в сооружаемые фундаменты, стены, полы и перекрытия труб и глухих коробов для скрытых проводок; разметку трасс и установку опорных и несущих конструкций для электрических и трубных проводок, исполнительных механизмов, приборов.
На второй стадии выполняют разметку трасс и установку опорных и несущих конструкций для электрических и трубных проводок, исполнительных механизмов, приборов, прокладку трубных и электрических проводок по установленным конструкциям, установку технических средств автоматизации, подключение к ним трубных и электрических проводок и их проверку в соответствии с разделом 7.
6.1.4 Смонтированные приборы и средства автоматизации электрической ветви, щиты и пульты, конструкции, электрические проводки, подлежащие заземлению согласно рабочей документации, должны быть присоединены к контуру заземления. При наличии требований предприятий – изготовителей средства агрегатных и вычислительных комплексов должны быть присоединены к контуру специального заземления.
6.1.5 Скрытые работы (закладные конструкции в строительных конструкциях, технологическом и инженерном оборудовании и трубопроводах, заложенные в фундаменты, стены, полы и перекрытия трубы и короба) перед закрытием подлежат осмотру представителями заказчика и монтажной организации, результаты которого оформляют актом по форме, приведенной в приложении А.6.
6.1.6 Работы по монтажу и наладке систем автоматизации на объектах газораспределительной системы: газонаполнительные станции (ГНС), газорегуляторные пункты и установки (ГРП и ГРУ), шкафные регуляторные пункты (ШРП), должны выполняться с учетом дополнительных требований СП 62.13330, [4] и [5].
6.1.7 При возникновении вынужденных перерывов в работах по причинам, не зависящим от подрядчика (субподрядчика), составляют акт приостановки (консервации) монтажных работ по СА с приложением ведомостей выполненных работ, смонтированных технических средств автоматизации по форме, приведенной в приложении А.24.
Ответственность за сохранность смонтированных технических средств автоматизации несет генподрядчик (заказчик).
6.2 Монтаж конструкций
6.2.1 Разметку мест установки конструкций для систем автоматизации выполняют в соответствии с рабочей документацией.
Способы монтажа конструкций под электропроводки для различных условий применения приведены в ГОСТ Р 50571.5.52-2011/МЭК 60364-5-52:2009, приложение А.
Разметку и установку конструкций и элементов крепления следует производить, по возможности, после монтажа технологических трубопроводов, технологического оборудования, вентиляции и т.п., так как иначе могут быть нарушены минимально допустимые расстояния до этого оборудования и сохраняется вероятность повреждения конструкций СА при последующем его монтаже.
6.2.2 Конструкции должны быть установлены так, чтобы трасса электропроводки проходила на расстоянии не менее:
– 100 мм от технологических трубопроводов, идущих параллельно электропроводке;
– 500 мм от технологических трубопроводов, заполненных горючими жидкостями или газами, идущих параллельно электропроводке;
– 50 мм от технологических трубопроводов при пересечении с ними;
– 100 мм от технологических трубопроводов, заполненных горючими жидкостями или газами, при пересечении с ними;
– 250 мм от коробов до технологических трубопроводов, проходящих над ними;
– 300 мм от крышки короба до потолка или балки.
Во всех случаях принимают расстояние до технологического трубопровода с нанесенной тепловой изоляцией.
6.2.3 При разметке должны учитываться следующие требования:
– при установке конструкций не должны быть нарушены скрытые проводки, прочность и огнестойкость строительных конструкций (оснований);
– должна быть исключена возможность механического повреждения смонтированных технических средств автоматизации.
6.2.4 Расстояние между опорными конструкциями на горизонтальных и вертикальных участках трассы для прокладки трубных и электрических проводок, а также пневматических кабелей принимают по рабочей документации.
6.2.5 Опорные конструкции следует устанавливать таким образом, чтобы были параллельны между собой, а также параллельны или перпендикулярны (в зависимости от вида конструкций) строительным конструкциям (основаниям).
6.2.6 Угловые и разветвительные секции несущих конструкций (лотков и коробов) устанавливают таким образом, чтобы была обеспечена прокладка проводок с допустимыми радиусами поворота.
6.2.7 Монтаж тросовых несущих конструкций необходимо выполнять согласно рабочей документации и технологии с учетом температуры воздуха во время монтажа (величина провеса или усилие тяжения).
6.2.8 Приборы, устанавливаемые на стене, следует крепить таким образом, чтобы их конструкции были перпендикулярны стенам. Стойки, устанавливаемые на полу, должны быть выверены по отвесу или уровню.
6.2.9 При болтовом соединении электропроводных коробов и лотков должна быть обеспечена надежность электрического контакта. При соединении сваркой не допускается прожог коробов и лотков.
Примечание – Требования к величине электропроводности соединений секций для электропроводных коробов и лотков зависит от того, предназначены ли они для использования в качестве защитного проводника РЕ или нет.
Электропроводность соединений между секциями обеспечивают выполнением требований руководства по монтажу и эксплуатации применяемых конструкций (см. ГОСТ Р 52868-2007, приложение С, пункт С.2].
Проверку электропроводности производят после завершения монтажа трассы коробов и лотков между конечными точками в местах их соединения с заземляющими проводниками.
6.2.10 Короба следует располагать таким образом, чтобы после их установки была исключена возможность скопления в них влаги. Угол уклона коробов и защитных труб при прокладке для удаления влаги 1%-3%.
6.2.11 В местах пересечения осадочных и температурных швов зданий и сооружений короба и лотки должны быть оснащены компенсирующими устройствами.
6.2.12 Все конструкции должны быть окрашены согласно указаниям, приведенным в рабочей документации.
6.2.13 Проходы трубных и электрических проводок через стены (наружные или внутренние) и перекрытия выполняют в соответствии с рабочей документацией.
6.3 Трубные проводки
6.3.1 Настоящий свод правил распространяется на монтаж и испытание трубных проводок систем автоматизации: импульсных, командных, питающих, обогревающих, охлаждающих, вспомогательных и дренажных, работающих при абсолютном давлении от 650 Па до 320 МПа (3200 кгс/см).
Настоящий свод правил не распространяется на монтаж трубных проводок внутри щитов и пультов.
6.3.2 Применяемые при монтаже трубных проводок оборудование, приспособления, оснастка, методы производства работ выбирают таким образом, чтобы обеспечивалась возможность монтажа металлических, полимерных и композитных труб.
Выбор конкретного сортамента труб в зависимости от свойств транспортируемой среды, величины измеряемых параметров, видов передаваемых сигналов и расстояний между соединяемыми приборами осуществляют в соответствии с рабочей документацией.
6.3.3 Трубные проводки прокладывают по кратчайшим расстояниям между соединяемыми приборами, параллельно стенам, перекрытиям и колоннам, как можно дальше от технологических агрегатов и электрооборудования, с минимальным количеством поворотов и пересечений, в местах, доступных для монтажа и обслуживания, не имеющих резких колебаний температуры окружающего воздуха, не подверженных сильному нагреванию или охлаждению, сотрясению и вибрации.
6.3.4 Трубные проводки всех назначений прокладывают на расстоянии, обеспечивающем удобство монтажа и эксплуатации, а также возможность проведения всех видов испытаний (включая радиографический метод).
В пыльных помещениях трубные проводки должны быть проложены в один слой на расстояниях от стен и перекрытий, допускающих производить механическую очистку пыли.
6.3.5 Общая ширина группы горизонтальных и вертикальных трубных проводок, закрепляемых на одной конструкции, должна быть не более 600 мм при обслуживании проводки с одной стороны и 1200 мм – с двух сторон.
6.3.6 Все трубные проводки, заполняемые средой с температурой свыше 45°С внутри помещений и 60°С снаружи помещений, проложенные на высоте менее 2,5 м от пола, ограждают или изолируют.
6.3.7 Трубные проводки, за исключением заполняемых сухим газом или сухим воздухом, прокладывают с уклоном, обеспечивающим сток конденсата и отвод газа (воздуха), и устанавливают устройства для их удаления.
Размещение трубной проводки должно быть таким, чтобы в трубной проводке, заполняемой газом, не накапливался конденсат, а в трубной проводке, заполняемой жидкостью, не накапливались выделяющиеся из жидкости газы.
Трубную проводку, заполняемую паром, конфигурируют аналогично проводке, заполняемой жидкостью.
Для обеспечения данных условий следует:
– для газовой измеряемой среды размещать прибор выше отбора;
– для жидкостной измеряемой среды размещать прибор ниже отбора.
При таких конфигурациях конденсат и газовые выделения будут уходить в сторону отбора.
Если такое размещение невозможно, то для линии с газовой средой во всех нижних точках может потребоваться установка влагосборников, а для линий с жидкостной средой во всех верхних точках – установка газосборников, а в нижних точках – установка арматуры для опорожнения линии. Направление уклонов должно обеспечивать сток конденсата к влагосборникам и перемещение выделяющегося газа к газосборникам.
Направление и величина уклонов должны быть указаны в рабочей документации, а при отсутствии таких указаний проводки должны прокладываться со следующими минимальными уклонами:
– импульсные к манометрам для всех статических давлений, мембранным или трубным тягонапоромерам, газоанализаторам – 1:50;
– импульсные к расходомерам пара, жидкости, воздуха и газа, регуляторам уровня, сливные самотечные маслопроводы гидравлических струйных регуляторов – 1:10,
– дренажные линии 1:100.
Уклоны обогревающих трубных проводок следует выбирать в соответствии с требованиями к системам отопления. Трубные проводки, требующие различных уклонов, закрепляемые на общих конструкциях, следует прокладывать по наибольшему уклону.
6.3.8 Выбор внутреннего диаметра импульсных линий к сужающим устройствам производят в соответствии с требованиями ГОСТ 8.586.5-2005, пункт 6.2.9. В Приложении Г приведены требования к прокладке импульсных линий (соединительных трубок) к сужающим устройствам. В Приложении Д приведены сведения о внутреннем диаметре импульсной линии для измерения давления, разрежения, перепада давления в зависимости от длины для различных измеряемых веществ [9].
6.3.9 В рабочей документации должны быть предусмотрены меры, обеспечивающие компенсацию тепловых удлинений трубных проводок. Для случаев, когда рабочей документацией предусмотрена самокомпенсация температурных удлинений трубных проводок на поворотах и изгибах, в ней должны быть указаны расстояния от узлов крепления трубы до поворота (изгиба), а также места расположения неподвижного и подвижного крепления, конструкция узлов специального крепления (свободного в двух осях), величина натяга трубы с учетом температуры воздуха во время монтажа.
6.3.10 Расстановку неподвижных креплений, не допускающих перемещение проводок в осевом направлении, следует производить так, чтобы разделить трассу на участки, температурная деформация которых происходит независимо одна от другой и самокомпенсируется.
6.3.11 Компенсация температурных изменений длины пластмассовых трубных проводок должна быть обеспечена за счет рациональной расстановки подвижных (свободных) и неподвижных (жестких) креплений и изогнутых элементов самой трубной проводки (отводы, утки, прокладка “змейкой”).
Неподвижными должны быть крепления у соединительных коробок, шкафов, щитов и т.п., а также в середине участков между двумя поворотами.
Во всех остальных случаях, где допускается перемещение труб и пневмокабелей в осевом направлении, следует применять подвижные крепления.
6.3.12 Крепление пластмассовых труб и пневмокабелей на поворотах не допускается.
При горизонтальной прокладке вершину поворота устанавливают на плоской опоре. На расстоянии 0,5-0,7 м от вершины поворота пластмассовые трубы и пневмокабели должны быть закреплены подвижными креплениями.
6.3.13 Металлические трубные проводки в местах перехода через температурные швы зданий должны быть оснащены П-образными компенсаторами. Места установки компенсаторов и их число должны быть указаны в рабочей документации.
6.3.14 На трубных проводках, прокладываемых с уклоном, П-образные компенсаторы и аналогичные устройства следует располагать так, чтобы они не нарушали уклон трубной проводки (исключалась возможность накопления в них воздуха (газа) или конденсата).
6.3.15 Минимальная высота прокладки наружных трубных проводок должна быть (в свету):
– в непроезжей части территории, в местах прохода людей – 2,2 м;
– в местах пересечений с автодорогами – 5 м.
6.3.16 Монтаж трубных проводок должен обеспечивать:
– прочность и плотность проводок, соединений труб между собой и присоединений их к арматуре, техническим средствам автоматизации;
– надежность закрепления труб на конструкциях.
6.3.17 Закрепление трубных проводок на опорных и несущих конструкциях производят нормализованными крепежными деталями, крепление трубных проводок приваркой запрещается. Закрепление должно быть выполнено без нарушения целостности труб.
6.3.18 Не разрешается закрепление трубных проводок на внешней стороне щитов и других технических средствах автоматизации.
Допускается закрепление трубных проводок на разбираемом технологическом оборудовании у отборных устройств, но не более чем в двух точках.
Закрепление трубных проводок на неразбираемом технологическом оборудовании допускается по согласованию с заказчиком. Трубные проводки в местах подхода к оборудованию оснащают разъемными соединениями.
6.3.19 Трубные проводки должны быть закреплены:
– на расстояниях не более 200 мм от ответвительных частей (с каждой стороны);
– по обе стороны поворотов (изгибов труб) на расстояниях, обеспечивающих самокомпенсацию тепловых удлинений трубных проводок;
– по обе стороны арматуры отстойных и прочих сосудов, если арматура и сосуды не закреплены; при длине соединительной линии с какой-либо стороны сосуда менее 250 мм крепление трубы к несущей конструкции не производят;
– по обе стороны П-образных компенсаторов на расстояниях 250 мм от их изгиба при установке компенсаторов в местах перехода трубных проводок через температурные швы в стенах.
6.3.20 Изменение направления трубных проводок выполняют соответствующим изгибом труб. Допускается для изменения направления трассы труб применять стандартизированные или нормализованные гнутые элементы.
6.3.21 Способы гнутья труб выбираются монтажной организацией.
Гнутье труб осуществляют так, чтобы после него были выполнены следующие требования:
– на изогнутой части труб отсутствуют складки, трещины, смятия и т.п.;
– овальность сечения труб в местах изгиба не превышает 10%.
6.3.22 Минимальный радиус внутренней кривой изгиба труб должен быть:
а) для полиэтиленовых труб, изгибаемых в холодном состоянии:
– ПНП – не менее 6, где – наружный диаметр;
– ПВП – не менее 10;
б) для полиэтиленовых труб, изгибаемых в горячем состоянии, – не менее 3;
в) для поливинилхлоридных пластифицированных труб (гибких), изгибаемых в холодном состоянии, – не менее 3;
г) для пневмокабелей – не менее 10;
д) для стальных труб, изгибаемых в холодном состоянии, – не менее 4, а изгибаемых в горячем состоянии, – не менее 3;
е) для отожженных медных труб, изгибаемых в холодном состоянии, – не менее 2;
ж) для отожженных труб из алюминия и алюминиевых сплавов при изгибании их в холодном состоянии – не менее 3.
6.3.23 Соединение труб при монтаже разрешается осуществлять как неразъемными, так и разъемными соединениями. При соединении трубных проводок запрещается устранение зазоров и несоосности труб путем нагрева, натяжения или подгибания труб.
6.3.24 Присоединение трубных проводок к закладным конструкциям технологического оборудования и трубопроводов, ко всем техническим средствам автоматизации рекомендуется производить разъемными соединениями.
6.3.25 Для разъемных соединений и присоединений трубных проводок применяют нормализованные резьбовые соединения. При этом для труб из нержавеющей стали, алюминия и алюминиевых сплавов должны применяться соединительные части, специально предназначенные для этих труб.
6.3.26 Запрещается располагать соединения труб любого типа: на компенсаторах; на изогнутых участках; в местах крепления на опорных и несущих конструкциях; в проходах через стены и перекрытия зданий и сооружений; в местах, недоступных для обслуживания при эксплуатации.
6.3.27 Соединения труб следует располагать на расстояниях не менее 200 мм от мест крепления.
6.3.28 При соединениях труб в групповых трубных проводках соединения располагают со сдвигом для обеспечения возможности работы инструментом при монтаже или демонтаже трубных проводок.
При групповых прокладках блоками расстояния между разъемными соединениями должны быть указаны в рабочей документации с учетом технологии блочного монтажа.
6.3.29 Резиновые трубы или трубы из иного эластичного материала, соединяющие трубные проводки с приборами и средствами автоматизации, должны быть надеты на всю длину присоединительных наконечников; трубы прокладывают без перегибов, свободно.
6.3.30 Арматуру (вентили, краны, редукторы и т.п.), устанавливаемую на трубных проводках из медных, алюминиевых и пластмассовых труб, жестко укрепляют на конструкциях.
6.3.31 Все трубные проводки должны быть промаркированы. Маркировочные знаки наносят на бирки в соответствии с маркировкой проводок, приведенной в рабочей документации.
6.3.32 Нанесение защитных покрытий следует производить на хорошо очищенную и обезжиренную поверхность труб. Цвет окраски трубных проводок должен быть указан в рабочей документации.
Стальные трубы, предназначенные для защиты трубных проводок, окрашивают снаружи. Пластмассовые трубы окраске не подлежат. Трубы из цветных металлов окрашивают только в случаях, оговоренных в рабочей документации.
6.3.33 При монтаже пластмассовых труб и пневмокабелей необходимо применять минимальное количество соединений, максимально используя строительную длину труб и пневмокабеля.
6.3.34 Пластмассовые трубы и пневмокабели следует прокладывать по конструкциям, выполненным из негорючих (НГ) материалов, и укладывать по ним свободно, без натяжения, с учетом изменения длины от перепада температур.
В местах соприкосновения с острыми кромками металлических конструкций и крепежных деталей небронированные кабели и пластмассовые трубы необходимо защищать прокладками (резина, поливинилхлорид), выступающими на 5 мм по обе стороны от кромок опор и крепежных скоб.
Детали крепления необходимо устанавливать так, чтобы не деформировать сечение пластмассовых труб и пневмокабелей.
6.3.35 Монтаж пластмассовых трубных проводок необходимо производить, не допуская повреждений труб (надрезов, глубоких царапин, вмятин, оплавления, прожогов и т.д.). Участки труб, получившие повреждения, должны быть заменены.
6.3.36 Пластмассовые трубы и пневмокабели, проложенные открыто в местах возможных механических воздействий на высоте до 2,5 м от пола, должны быть защищены от повреждений металлическими кожухами, трубами или другими устройствами. Конструкция защитных устройств должна допускать их свободный демонтаж и обслуживание трубных проводок.
Участки труб длиной до 1 м у приборов, исполнительных механизмов и средств автоматизации, установленных на технологических трубопроводах и аппаратах, допускается не защищать.
6.3.37 Наружная трубная проводка из пластмассовых труб должна быть защищена от попадания прямых солнечных лучей.
6.3.38 Пластмассовые трубы и пневмокабели в коробах и лотках, проложенных горизонтально, должны быть уложены свободно, без креплений. При прокладке в коробах и лотках, проложенных вертикально, трубы и кабели должны быть закреплены с интервалом не более 1 м.
В местах поворота трассы или ответвления для всех случаев прокладки лотков пневмокабели должны быть закреплены в соответствии с п.6.3.12 настоящего свода правил.
В коробах при прокладке пластмассовых труб и пневмокабелей должны быть установлены перегородки 1-го типа с пределом огнестойкости не менее EI45 через каждые 50 м.
Бронированные пневмокабели в коробах прокладывать не допускается.
Трубы и кабели из короба выводят через отверстия в его стенке или дне. В отверстия должны быть установлены пластмассовые втулки.
6.3.39 Расстояния между местами крепления пластмассовых труб или пучков из них должны быть не более указанных в таблице 1.
6.3.40 Трубные проводки из пластмассовых труб, по которым транспортируются жидкости или влажные газы, а также пластмассовые трубы при температуре окружающей или заполняющей среды 40°С и выше должны прокладываться на горизонтальных участках на сплошных несущих конструкциях, а на вертикальных участках расстояние между местами креплениями должно быть уменьшено вдвое по сравнению с указанным в таблице 1.
Наружный диаметр трубы или пучка труб , мм
Расстояние между местами крепления при прокладке, м,
6.3.41 При присоединении к приборам, аппаратуре и переборочным соединениям (с учетом допускаемых радиусов изгиба) пластмассовые трубы должны иметь запас не менее 50 мм на случай возможных повреждений при многократном перемонтаже присоединений.
6.3.42 При прокладке пневмокабелей на кабельных конструкциях выполняют следующие условия:
– пневмокабели прокладывают в один слой;
– стрела провеса должна образовываться только под действием собственного веса пневмокабеля и не должна превышать 1% длины пролета.
Крепление при горизонтальной прокладке осуществляют через одну опору.
6.3.43 При монтаже металлических трубных проводок допускается применение любых способов сварки, обеспечивающих качественное выполнение соединений, если вид или способ сварки не оговорен рабочей документацией.
6.3.44 Сварку стальных трубопроводов и контроль качества сварных соединений следует производить в соответствии с нормативно-техническими документами на сварку.
Способ и технологический режим сварки труб, материалы для сварки и порядок контроля сварки должны приниматься в соответствии с типовым технологическим процессом по сварке. Типы и конструктивные элементы сварных швов приведены в ГОСТ 16037.
Способ контроля указывают в рабочей документации.
6.3.45 После выполнения сварочных работ оформляют схему расположения сварных швов. Схему составляют только для трубопроводов с PN свыше 10 МПа (100 кгс/см) и трубопроводов I-IV категории.
Схему наносят на рабочий чертеж трубной проводки, выполненный в диметрической проекции разработчиком рабочей документации в соответствии с ГОСТ 21.408-2013, пункт 5.7.13, или выполняют как исполнительный чертеж при PN до 10 МПа включительно.
При выполнении схемы (исполнительного чертежа) наносят обозначения и положение только сварных швов. Позиции клапанов, резьбовых соединений и других деталей трубопровода не обозначают.
Номера сварных швов, обведенные окружностью, помещают на выносной линии. Положение сварного шва на участках трубопровода привязывают к элементам трубопровода. Положение сварных швов у соединений, арматуры и других деталей трубопровода допускается не сопровождать размерными линиями.
Номера сварных швов на схеме должны соответствовать журналу по сварке трубопроводов.
На свободном поле чертежа трубной проводки в диметрической проекции проставляют штамп привязки сварных швов по форме 1.
Номера сварных швов по журналу сварки трубопроводов
Сварное соединение ГОСТ 16037 – С2
Руководитель работ по сварке
Руководитель монтажных работ
В связи с малыми размерами диаметра и толщины стенки трубных проводок СА, клеймение сварных швов личным клеймом сварщика невозможно без нарушения формы и прочности трубопровода, поэтому клеймение сварных швов не производят. Идентификацию сварных швов при выполнении контроля осуществляют по схемам расположения сварных швов (исполнительным чертежам) и журналу сварки.
В приложении А.12 приведен пример оформления схемы расположения сварных швов.
6.3.46 Неразъемное соединение медных труб должно осуществляться пайкой по ГОСТ 19249.
Контроль качества паяных соединений следует выполнять путем внешнего осмотра, а также проведения гидравлического или пневматического испытания.
По внешнему виду паяные швы должны иметь гладкую поверхность.
Не допускаются наплывы, плены, раковины, посторонние включения и непропаи.
6.3.47 Крепление одиночных металлических трубных проводок должно производиться на каждой опоре.
6.3.48 При сдаче трубных проводок оформляют производственную документацию по формам, приведенным в приложениях А.7-А.15.
6.4 Дополнительные требования к монтажу кислородных трубных проводок
6.4.1 Работы по монтажу кислородных трубных проводок должны выполняться персоналом, изучившим специальные требования к выполнению этих работ.
6.4.2 В процессе монтажа и сварки трубопровода должно быть исключено загрязнение его внутренней поверхности жирами и маслами.
6.4.3 При необходимости проведения обезжиривания труб, арматуры и соединений его осуществляют в соответствии с инструкцией по безопасному проведению работ по обезжириванию кислородного оборудования и трубопроводов, которая должна быть разработана и утверждена заказчиком.
Трубы, арматура и соединения, предназначенные для трубных проводок, заполняемых кислородом, снабжают документом, свидетельствующим о проведении их обезжиривания и пригодности к монтажу по форме, приведенной в приложении А.9.
6.4.4 При выполнении резьбовых соединений запрещается подмотка льна, пеньки, а также промазка суриком и другими материалами, содержащими масла и жиры.
6.5 Дополнительные требования к монтажу трубных проводок на давление свыше 10 МПа (100 кгс/кв. см)
6.5 Дополнительные требования к монтажу трубных проводок на давление свыше 10 МПа (100 кгс/см)
6.5.1 Для монтажа трубных проводок СА на давление свыше 10 МПа не требуется изготовление элементов трубных проводок вне строительной площадки, за исключением проводок, собираемых на линзовых уплотнениях по ГОСТ 9400, ГОСТ Р 55599, ГОСТ 22791 – ГОСТ 22826 или по техническим условиям изготовителя.
6.5.2 До начала работ по монтажу трубных проводок на давление свыше 10 МПа (100 кгс/см) назначают ответственных лиц из числа инженерно-технических работников, на которых возлагают руководство и контроль качества работ по монтажу трубных проводок и оформление документации.
Назначенные инженерно-технические работники должны быть аттестованы после специальной подготовки в соответствии с [6].
6.5.3 Все элементы трубных проводок на давление свыше 10 МПа (100 кгс/см) и сварочные материалы, поступающие на склад монтажной организации, подлежат проверке внешним осмотром. При этом проверяют также наличие и качество соответствующей документации и составляют акт на приемку труб, арматуры, деталей трубопроводов и т.д.
6.5.4 При изготовлении, монтаже трубных проводок следует применять аттестованную технологию сварки.
6.5.5 Сборку разъемных соединений должны производить обученные и аттестованные специалисты.
6.6 Испытания трубных проводок
6.6.1 Полностью смонтированные трубные проводки испытывают на прочность и плотность.
Вид (прочность, плотность), способ (гидравлический, пневматический) принимают в соответствии с рабочей документацией.
6.6.2 Величину пробного давления (гидравлического и пневматического) на прочность и плотность в трубных проводках (импульсных, дренажных, питающих, обогревающих, охлаждающих, вспомогательных и командных систем гидроавтоматики) при отсутствии указаний в рабочей документации следует определять по формуле
где – расчетное рабочее давление трубопровода, МПа;
– – допускаемое напряжение для материала трубопровода при 20°С;
– – допускаемое напряжение для материала трубопровода при максимальной положительной расчетной температуре.
Для всех элементов трубопровода, за исключением болтов (шпилек), принимают наименьшее для всех материалов отношение .
Вакуумные трубопроводы испытывают на прочность и плотность давлением 0,2 МПа. Приведенные в пункте 6.6.2 требования соответствуют разделу 13 ГОСТ 32569-2013.
6.6.3 Командные трубные проводки, заполняемые воздухом при рабочем давлении 0,14 МПа (1,4 кгс/см), следует испытывать на прочность и плотность пневматическим способом пробным давлением =0,3 МПа (3 кгс/см).
6.6.4 Для испытаний применяют манометры:
– с классом точности не более 1,5;
– с диаметром корпуса не менее 160 мм;
– с пределами измерения, равными 4/3 измеряемого давления.
6.6.5 Испытания пластмассовых трубных проводок и пневмокабелей производят при температуре испытательной среды, не превышающей 30°С.
6.6.6 Испытание пластмассовых трубных проводок разрешается производить не ранее чем через 2 ч после выполнения последней сварки труб.
6.6.7 Перед проведением испытаний на прочность и плотность все трубные проводки независимо от назначения должны быть подвергнуты:
а) внешнему осмотру с целью обнаружения дефектов монтажа, соответствия их рабочей документации и готовности к испытаниям;
б) продувке, а при указании в рабочей документации – промывке.
6.6.8 Продувку трубных проводок производят сжатым воздухом или инертным газом, осушенным и очищенным от масла и пыли.
Трубные проводки для пара и воды допускается промывать рабочей средой.
6.6.9 Продувку трубных проводок производят давлением, равным рабочему, но не более 4 МПа (40 кгс/см).
Продувку следует производить в течение 10 мин до появления чистого воздуха.
Продувку трубных проводок, работающих при избыточном давлении до 0,1 МПа (1 кгс/см) или абсолютном давлении от 0,001 до 0,095 МПа (от 0,01 до 0,95 кгс/см), следует производить воздухом давлением не более 0,1 МПа (1 кгс/см).
6.6.10 Промывку трубных проводок следует производить до устойчивого появления чистой воды из выходного патрубка или спускного устройства промываемых трубных проводок.
По окончании промывки трубные проводки должны быть полностью освобождены от воды и, при необходимости, продуты сжатым воздухом.
После продувки и промывки трубные проводки должны быть заглушены или подключены по постоянной схеме.
Конструкция заглушек должна исключать возможность их срыва при пробных давлениях.
На трубные проводки, предназначенные для работы при свыше 10 МПа (100 кгс/см), устанавливают заглушки или глухие линзы с хвостовиками.
6.6.11 Трубопроводы, подводящие испытательную жидкость, воздух или инертные газы от насосов, компрессоров, баллонов и т.п. к трубным проводкам, должны быть предварительно испытаны гидравлическим давлением в собранном виде с запорной арматурой и манометрами.
6.6.12 При гидравлических испытаниях в качестве испытательной жидкости применяют воду. Температуру воды при испытаниях выбирают не ниже 5°С.
6.6.13 При пневматических испытаниях в качестве испытательной среды применяют воздух или инертный газ. Воздух и инертные газы должны быть освобождены от влаги, масла и пыли.
6.6.14 При гидравлическом и пневматическом испытаниях рекомендуются следующие ступени подъема давления:
– 1-я ступень – 0,3 ;
– 2-я ступень – 0,6 ;
– 3-я ступень – до ;
– 4-я ступень – давление снижают до . Для трубных проводок с до 0,2 МПа (2 кгс/см) 1-ю ступень пропускают.
Давление на 1-й и 2-й ступенях выдерживают в течение 1-3 мин.
В течение этого времени по показаниям манометра устанавливают отсутствие падения давления в трубной проводке.
Пробное давление (3-я ступень) выдерживают в течение 15 мин.
На трубопроводах давлением 10 МПа пробное давление выдерживают 10-12 мин.
Подъем давления на 3-ю ступень является испытанием на прочность.
Рабочее давление (4-я ступень) выдерживают в течение времени, необходимого для окончательного осмотра и выявления дефектов. Давление 4-й ступени является испытанием на плотность.
6.6.15 Дефекты устраняют после снижения давления в трубной проводке до атмосферного.
После устранения дефектов испытание повторяют.
6.6.16 Трубные проводки считают годными к эксплуатации, если за время испытания на прочность не произошло падения давления по манометру и при последующем испытании на плотность в сварных швах и соединениях не обнаружено утечек.
По окончании испытаний составляют акт по форме, приведенной в приложении А.7.
6.6.17 Все трубопроводы групп А, Б (а), Б (б), а также вакуумные трубопроводы, помимо обычных испытаний на прочность и плотность, следует подвергать дополнительному пневматическому испытанию на герметичность с определением падения давления во время испытания.
Проведение дополнительных испытаний на герметичность других трубопроводов устанавливают рабочей документацией.
Трубные проводки СА, подключенные к технологическому оборудованию и к технологическим или инженерным трубопроводам, рекомендуется испытывать совместно с этим оборудованием или трубопроводами.
6.6.18 Дополнительное испытание на герметичность рекомендуется производить воздухом или инертным газом после проведения испытаний на прочность и плотность, промывки и продувки.
Дополнительное испытание на герметичность следует проводить давлением, равным рабочему, а для вакуумных трубопроводов давлением 0,1 МПа.
6.6.19 Для трубных проводок на давление 10-100 МПа (100-1000 кгс/см) перед испытаниями на герметичность с определением падения давления на трубных линиях должны быть установлены предохранительные клапаны, предварительно отрегулированные на открытие при давлении, превышающем рабочее на 8%. Предохранительные клапаны должны быть предусмотрены рабочей документацией.
6.6.20 Продолжительность дополнительного испытания на герметичность и время выдержки под пробным давлением устанавливают в рабочей документации, но не менее 24 ч.
6.6.21 Трубные проводки считают выдержавшими испытание, если падение давления в них не превышает значений, указанных в таблице 2.
Допускаемое падение давления, % за 1 ч, для рабочих сред
токсичные горючие газы
прочие горючие газы
воздух и инертные газы
На давление 10-100 МПа (100-1000 кгс/см)
Горючих, токсичных и сжиженных газов
Указанные нормы относят к трубным проводкам с номинальным диаметром 50 мм. При испытании трубных проводок с другими номинальными диаметрами норму падения давления в них определяют произведением приведенных выше значений падения давления на коэффициент, подсчитанный по формуле
где – номинальный диаметр испытуемой трубной проводки.
6.6.22 Падение давления в трубопроводе во время испытания его на герметичность следует определять по формуле
где – падение давления от испытательного давления , %;
, – сумма манометрического и барометрического давлений в начале и конце испытания, МПа;
, – температура в трубопроводе в начале и конце испытания, градусы К (кельвин).
Давление и температуру в трубопроводе определяют как среднее арифметическое показаний манометров и термометров, установленных на нем во время испытаний.
Испытание на герметичность с определением падения давления допускается проводить только после выравнивания температур в трубопроводе. Для наблюдения за температурой в трубопроводе в начале и в конце испытуемого участка в целях обеспечения безопасности следует устанавливать термометры.
6.6.23 По окончании испытаний трубных проводок на герметичность с определением падения давления за время испытания составляют акт по форме, приведенной в приложении А.8.
6.7 Электропроводки
6.7.1 Проходы небронированных кабелей, защищенных и незащищенных проводов через несгораемые стены (перегородки) и междуэтажные перекрытия выполняют в отрезках труб, в коробах или проемах, а через сгораемые – в отрезках стальных труб.
В проемах стен и перекрытий устанавливают обрамление, исключающее их разрушение в процессе эксплуатации. В местах прохода проводов и кабелей через стены, перекрытия или их выхода наружу следует заделывать зазоры между проводами, кабелями и трубой (коробом, проемом) легко удаляемой массой из несгораемого материала.
6.7.2 Конструкция и степень защиты лотков и коробов, а также способ прокладки проводов и кабелей на лотках и в коробах (россыпью, пучками, многослойно и т.п.) должны быть указаны в рабочей документации.
6.7.3 Способ установки коробов не должен допускать скопления в них влаги. Применяемые короба для открытых электропроводок должны иметь съемные или открывающиеся крышки.
6.7.4 При скрытых прокладках следует применять глухие короба.
6.7.5 Крепления незащищенных проводов и кабелей с металлической оболочкой металлическими скобами или бандажами выполняют с прокладками из эластичных изоляционных материалов.
6.7.6 Прокладка проводов и кабелей на стальном канате
6.7.6.1 Диаметр и марка каната, а также расстояние между анкерными и промежуточными креплениями каната устанавливают в рабочих чертежах. Стрела провеса каната после подвески кабелей должна быть в пределах 1/40-1/60 длины пролета.
Анкерные концевые конструкции закрепляют к колоннам или стенам здания. Крепление их к балкам и фермам не допускается.
Стальной канат и другие металлические части для прокладки кабелей на канате вне помещений, независимо от наличия гальванического покрытия, покрывают смазкой (например солидолом). Внутри помещений стальной канат, имеющий гальваническое покрытие, покрывают смазкой только в тех случаях, когда он может подвергаться коррозии под действием агрессивной окружающей среды.
6.7.6.2 Провода и кабели закрепляют к несущему стальному канату или к проволоке бандажами или клицами, устанавливаемыми для проводов на расстояниях не более 0,5 м друг от друга, для кабелей – не более 800-1000 мм.
Кабели и провода, проложенные на канатах, в местах перехода их с каната на конструкции зданий должны быть разгружены от механических усилий.
Вертикальные подвески проводки на стальном канате располагают, как правило, в местах установки ответвительных коробок, штепсельных разъемов, светильников и т.п. Стрелу провеса каната в пролетах между креплениями выдерживают в пределах 1/40-1/60 длины пролета. Сращивание канатов в пролете между концевыми креплениями не допускается.
6.7.6.3 Для предотвращения раскачивания электропроводок на стальном канате устанавливают растяжки. Число растяжек указывают в рабочих чертежах.
6.7.7 Прокладка проводов и кабелей в стальных трубах
6.7.7.1 Для электропроводок применяют стальные трубы с внутренней поверхностью, исключающей повреждение изоляции проводов при их затягивании в трубу. Трубы, прокладываемые открыто в помещениях с нормальной средой, должны иметь антикоррозионное покрытие наружных поверхностей. Для труб, замоноличиваемых в строительные конструкции, антикоррозионное покрытие наружных поверхностей не требуется. Трубы, прокладываемые в помещениях с химически активной средой, должны иметь антикоррозионное покрытие внутренних и внешних поверхностей, стойкое в условиях данной среды. В местах выхода проводов из стальных труб устанавливают изоляционные втулки.
6.7.7.2 Стальные трубы для электропроводки, укладываемые в фундаментах под технологическое оборудование, до бетонирования фундаментов закрепляют на опорных конструкциях или на арматуре. В местах выхода труб из фундамента в грунт осуществляют мероприятия, предусматриваемые в рабочих чертежах, предотвращающие срез труб при осадках грунта или фундамента.
6.7.7.3 В местах пересечения трубами температурных и осадочных швов зданий выполняют компенсирующие устройства в соответствии с указаниями в рабочих чертежах.
6.7.7.4 Расстояния между точками крепления открыто проложенных стальных труб не должны превышать величин, указанных в таблице 3. Крепление стальных труб электропроводки непосредственно к технологическим трубопроводам, а также их приварка непосредственно к различным конструкциям не допускаются.
Условный проход труб, мм
Наибольшее допустимое расстояние между точками крепления, м
Условный проход труб, мм
Наибольшее допустимое расстояние между точками крепления, м
6.7.7.5 При изгибании труб применяют нормализованные углы поворота 90°, 120° и 135° и нормализованные радиусы изгиба 400, 800 и 1000 мм.
Радиус изгиба 400 мм применяют при прокладке труб в перекрытиях и для вертикальных выходов; 800 и 1000 мм – при прокладке труб в монолитных фундаментах и при прокладке в них кабелей с однопроволочными жилами.
При заготовке пакетов и блоков труб следует также придерживаться указанных нормализованных углов и радиусов изгиба.
6.7.7.6 При прокладке проводов в вертикально проложенных трубах (стояках) предусматривают их закрепление, причем точки закрепления следует устанавливать на расстоянии друг от друга, не превышающем 30 м.
Закрепление проводов выполняют с помощью клиц или зажимов в протяжных или ответвительных коробках либо на концах труб.
6.7.7.7 Трубы при скрытой прокладке в полу заглубляют не менее чем на 20 мм и защищают слоем цементного раствора. В полу разрешается устанавливать ответвительные и протяжные коробки, например для модульных проводок.
6.7.7.8 Расстояние между протяжными коробками (ящиками) не должно превышать, м:
на прямых участках – 75,
при одном изгибе трубы – 50,
при двух изгибах трубы – 40,
при трех изгибах трубы – 20.
Провода и кабели в трубах прокладывают свободно, без натяжения. Диаметр труб принимают в соответствии с указаниями в рабочих чертежах.
6.7.8 Прокладка проводов и кабелей в неметаллических трубах
6.7.8.1 Прокладку неметаллических (пластмассовых) труб для затяжки в них проводов и кабелей производят в соответствии с рабочими чертежами при температуре воздуха не ниже минус 20°С и не выше плюс 60°С.
В фундаментах пластмассовые трубы укладывают только на горизонтально утрамбованный грунт или слой бетона.
В фундаментах глубиной до 2 м допускается прокладка поливинилхлоридных труб. При этом принимают меры против их механических повреждений при бетонировании и обратной засыпке грунта.
6.7.8.2 Крепление неметаллических труб, прокладываемых открыто, следует выполнять так, чтобы допускалось их свободное перемещение (подвижное крепление) при линейном расширении или сжатии от изменения температуры окружающей среды. Расстояния между точками установки подвижных креплений принимают в соответствии с таблицей 4.
Наружный диаметр трубы, мм
Расстояние между точками крепления при горизонтальной и вертикальной прокладке, м
Наружный диаметр трубы, мм
Расстояние между точками крепления при горизонтальной и вертикальной прокладке, м
6.7.8.3 Толщина бетонного раствора над трубами (одиночными и блоками) при их замоноличивании в подготовках полов должна быть не менее 20 мм. В местах пересечения трубных трасс защитный слой бетонного раствора между трубами не требуется. При этом глубина заложения верхнего ряда труб должна соответствовать приведенным выше требованиям. Если при пересечении труб невозможно обеспечить необходимую глубину заложения труб, следует предусмотреть их защиту от механических повреждений путем установки металлических гильз, кожухов или иных средств в соответствии с указаниями в рабочих чертежах.
6.7.8.4 Выполнение защиты от механических повреждений в местах пересечения проложенных в полу электропроводок в пластмассовых трубах с трассами внутрицехового транспорта при слое бетона 100 мм и более не требуется. Выход пластмассовых труб из фундаментов, подливок-полов и других строительных конструкций выполняют отрезками или коленами поливинилхлоридных труб, а при возможности механических повреждений – отрезками из тонкостенных стальных труб.
6.7.8.5 При выходе поливинилхлоридных труб на стены в местах возможного механического повреждения их защищают стальными конструкциями или отрезками тонкостенных стальных труб на высоту до 1,5 м от основания.
6.7.8.6 Соединение пластмассовых труб выполняют:
полиэтиленовых – плотной посадкой с помощью муфт, горячей обсадкой в раструб, муфтами из термоусаживаемых материалов, сваркой;
поливинилхлоридных – плотной посадкой в раструб или с помощью муфт. Допускается соединение склеиванием.
6.7.9 Усилия тяжения проводов и кабелей не должны превышать допускаемых по техническим условиям или стандартам.
Примечания
1 Тяжение кабеля с пластмассовой или свинцовой оболочкой выполняют только за жилы.
2 Кабели, бронированные круглой проволокой, следует тянуть за проволоки.
3 Контрольные кабели, бронированные и небронированные силовые кабели сечением до 3х16 мм можно прокладывать механизированно тяжением за броню или за оболочку с помощью проволочного чулка, усилия тяжения при этом не должны превышать 1 кН.
6.7.10 Кабели, прокладываемые горизонтально по конструкциям, стенам, перекрытиям, фермам и т.п., жестко закрепляют в конечных точках, непосредственно у концевых муфт, на поворотах трассы, с обеих сторон изгибов и у соединительных и стопорных муфт.
Кабели, прокладываемые горизонтально по конструкциям на открытых эстакадах (кабельных и технологических), закрепляют на прямых горизонтальных участках трассы во избежание смещения под действием ветровых нагрузок в соответствии с указаниями, приведенными в рабочих чертежах.
6.7.11 Кабели, прокладываемые вертикально по конструкциям и стенам, закрепляют на каждой кабельной конструкции.
6.7.12 Бронированные и небронированные кабели внутри помещений и снаружи в местах, где возможны механические повреждения (передвижение автотранспорта, грузов и механизмов, доступность для неквалифицированного персонала), защищают до безопасной высоты, но не менее 2 м от уровня земли или пола и на глубине 0,3 м в земле.
6.7.13 Концы всех кабелей, у которых в процессе прокладки нарушена герметизация, временно герметизируют до монтажа соединительных и концевых муфт.
6.7.14 Прокладка кабелей в траншеях
6.7.14.1 Траншею перед прокладкой кабеля осматривают для выявления мест на трассе, содержащих вещества, разрушительно действующие на металлический покров и оболочку кабеля (солончаки, известь, вода, насыпной грунт, содержащий шлак или строительный мусор, участки, расположенные ближе 2 м от выгребных и мусорных ям, и т.п.). При невозможности обхода этих мест кабель прокладывают по чистому нейтральному грунту, в безнапорных асбестоцементных трубах, покрытых снаружи и внутри битумным составом, и т.п. При засыпке кабеля нейтральным грунтом траншею дополнительно расширяют с обеих сторон на 0,5-0,6 м и углубляют на 0,3-0,4 м.
6.7.14.2 Вводы кабелей в здания, кабельные сооружения и другие помещения выполняют в асбестоцементных безнапорных трубах в отфактурованных отверстиях железобетонных конструкций. Концы труб выводят из стены здания в траншею, а при наличии отмостки – за линию последней не менее чем на 0,6 м с уклоном в сторону траншеи.
6.7.14.3 При прокладке нескольких кабелей в траншее концы кабелей, предназначенные для последующего монтажа соединительных и стопорных муфт, располагают со сдвигом мест соединения не менее чем на 2 м. При этом оставляют запас кабеля длиной, необходимой для проверки изоляции на влажность и монтажа муфты, а также укладки дуги компенсатора длиной на каждом конце не менее 350 мм.
6.7.14.4 В стесненных условиях при больших потоках кабелей, допускается располагать компенсаторы в вертикальной плоскости ниже уровня прокладки кабелей. Муфту при этом оставляют на уровне прокладки кабелей.
6.7.14.5 Проложенный в траншее кабель присыпают первым слоем земли, укладывают механическую защиту или сигнальную ленту, после чего представители электромонтажной и строительной организаций совместно с представителем заказчика производят осмотр трассы с составлением акта на скрытые работы.
6.7.14.6 Траншею окончательно засыпают и утрамбовывают после монтажа соединительных муфт и испытания линии.
6.7.14.7 Засыпка траншеи комьями мерзлой земли, грунтом, содержащим камни, куски металла и т.п., не допускается.
6.7.14.8 Бестраншейная прокладка с самоходного или передвигаемого тяговыми механизмами ножевого кабелеукладчика допускается для 1-2 бронированных кабелей напряжением до 10 кВ со свинцовой или алюминиевой оболочкой на кабельных трассах, удаленных от инженерных сооружений. В городских электросетях и на промышленных предприятиях бестраншейная прокладка допускается только на протяженных участках при отсутствии на трассе подземных коммуникаций, пересечений с инженерными сооружениями, естественных препятствий и твердых покрытий.
6.7.14.9 При прокладке трассы кабельной линии в незастроенной местности по всей трассе устанавливают опознавательные знаки на столбиках из бетона или на специальных табличках-указателях, которые размещают на поворотах трассы, в местах расположения соединительных муфт, с обеих сторон пересечений с дорогами и подземными сооружениями, у вводов в здания и через каждые 100 м на прямых участках.
На пахотных землях опознавательные знаки устанавливают не реже чем через 500 м.
6.7.15 В кабельных сооружениях, коллекторах и производственных помещениях применяют кабели без наружных защитных покровов из горючих материалов. Металлические оболочки и броня кабеля с несгораемым антикоррозионным (например гальваническим) покрытием не подлежат окраске после монтажа.
6.7.16 Кабели в кабельных сооружениях и коллекторах жилых кварталов прокладывают целыми строительными длинами, избегая, по возможности, применения в них соединительных муфт.
6.7.17 Кабели в алюминиевой оболочке без наружного покрова при прокладке их по оштукатуренным и бетонным стенам, фермам и колоннам удаляют от поверхности строительных конструкций не менее чем на 25 мм. По окрашенным поверхностям указанных конструкций допускается прокладка данных кабелей без зазора.
6.7.18 Прокладка кабелей в вечномерзлых грунтах
6.7.18.1 Глубину прокладки кабелей в вечномерзлых грунтах указывают в рабочих чертежах.
6.7.18.2 Местный грунт, используемый для обратной засыпки траншей, размельчают и уплотняют. Наличие в траншее льда и снега не допускается. Грунт для насыпи следует брать из мест, удаленных от оси трассы кабеля не менее чем на 5 м. Грунт в траншее после осадки должен быть покрыт мохоторфяным слоем.
В качестве дополнительных мер против возникновения морозобойных трещин применяют:
засыпку траншеи с кабелем песчаным или гравийно-галечниковым грунтом;
устройство водоотводных канав или прорезей глубиной до 0,6 м, располагаемых с обеих сторон трассы на расстоянии 2-3 м от ее оси;
обсев кабельной трассы травами и обсадку кустарником.
6.7.19 Прокладка кабелей при низких температурах
6.7.19.1 Прокладку кабелей в холодное время года без предварительного подогрева допускают только в тех случаях, когда температура воздуха в течение 24 ч до начала работ не снижалась, хотя бы временно, ниже:
0°С – для силовых бронированных и небронированных кабелей с бумажной изоляцией (вязкой, нестекающей и обедненно-пропитанной) в свинцовой или алюминиевой оболочке;
минус 5°С – для маслонаполненных кабелей низкого и высокого давления;
минус 7°С – для контрольных и силовых кабелей напряжением до 35 кВ с пластмассовой или резиновой изоляцией и оболочкой с волокнистыми материалами в защитном покрове, а также с броней из стальных лент или проволоки;
минус 15°С – для контрольных и силовых кабелей напряжением до 10 кВ с поливинилхлоридной или резиновой изоляцией и оболочкой без волокнистых материалов в защитном покрове, а также с броней из профилированной стальной оцинкованной ленты;
минус 20°С – для небронированных контрольных и силовых кабелей с полиэтиленовой изоляцией и оболочкой без волокнистых материалов в защитном покрове, а также с резиновой изоляцией в свинцовой оболочке.
6.7.19.2 Кратковременные в течение 2-3 ч понижения температуры (ночные заморозки) не принимают во внимание при условии положительной температуры в предыдущий период времени.
6.7.19.3 При температуре воздуха ниже указанной в 6.7.19.1 кабели предварительно подогревают и укладывают в следующие сроки:
от 0°С до минус 10°С
от минус 10°С до минус 20°С
от минус 20°С и ниже
6.7.19.4 Небронированные кабели с алюминиевой оболочкой в поливинилхлоридном шланге, даже предварительно подогретые, не прокладывают при температуре окружающего воздуха ниже минус 20°С.
6.7.19.5 При температуре окружающего воздуха ниже минус 40°С прокладка кабелей всех марок не допускается.
6.7.19.6 Подогретый кабель при прокладке не подвергают изгибу по радиусу меньше допустимого. Укладывают его в траншее змейкой. Немедленно после прокладки кабель засыпают первым слоем разрыхленного грунта. Окончательно засыпают траншею грунтом и уплотняют засыпку после охлаждения кабеля.
6.7.20 Маркировка кабельных линий
6.7.20.1 Каждую кабельную линию маркируют.
6.7.20.2 На открыто проложенных кабелях и на кабельных муфтах устанавливают бирки.
На кабелях, проложенных в кабельных сооружениях, бирки устанавливают на концах, в местах изменения направления трассы, с обеих сторон проходов через междуэтажные перекрытия, стены и перегородки, в местах ввода (вывода) кабеля в траншеи и кабельные сооружения. В середине трассы бирки устанавливают не реже чем через каждые 50-70 м.
На скрыто проложенных кабелях в трубах или блоках бирки устанавливают на конечных пунктах у концевых муфт, в колодцах и камерах блочной канализации, а также у каждой соединительной муфты.
На скрыто проложенных кабелях в траншеях бирки устанавливают на конечных пунктах и у каждой соединительной муфты.
6.7.20.3 Бирки применяют: в сухих помещениях – из пластмассы, стали или алюминия; в сырых помещениях, вне зданий и в земле – из пластмассы.
Обозначения на бирках для подземных кабелей и кабелей, проложенных в помещениях с химически активной средой, выполняют штамповкой, кернением или выжиганием. Для кабелей, проложенных в других условиях, обозначения можно наносить несмываемой краской.
6.7.20.4 Бирки закрепляют на кабелях капроновой нитью или оцинкованной стальной проволокой диаметром 1-2 мм, лентами и др.
Место крепления бирки на кабеле проволокой и саму проволоку в сырых помещениях, вне зданий и в земле покрывают битумом для защиты от действия влаги.
6.7.21 Особые требования, предъявляемые к монтажу электропроводок:
– во взрывоопасных зонах – по ГОСТ IEC 60079-14-2013, подраздел 9.6;
– искробезопасных цепей, включая цепи полевой шины FISCO и FNICO, – по ГОСТ IEC 60079-14-2013, раздел 16;
– телекоммуникационных кабелей для цифровой техники (локальных сетей) – по ГОСТ Р 53246-2008, раздел 8;
– нагревательных кабелей по трубопроводам и плоскостям – по инструкциям производителей кабелей.
Разрешенные способы монтажа электропроводок приведены в ГОСТ Р 50571.5.52-2011/ МЭК 60364-5-52:2009, приложение А.
6.7.21.1 Особые требования к монтажу электропроводок во взрывоопасных зонах (ГОСТ IEC 60079-14-2013, подраздел 9.6).
6.7.21.1.1 Кабели во взрывоопасных зонах прокладывают без сращиваний, если сращивание и его способ не указаны в рабочей документации.
6.7.21.1.2 Концы многопроволочных жил кабелей или проводов защищают от развивки, например с помощью кабельных наконечников, но не одной пайкой.
6.7.21.1.3 Концы каждой незадействованной жилы многожильного кабеля во взрывоопасной зоне заземляют или соответствующим образом изолируют с помощью концевой заделки. Не следует для изоляции использовать только одну ленту. Для концевой заделки кабеля применяют заделки с термоусаживаемыми материалами или другие способы заделки, обеспечивающие их механическую защиту.
6.7.21.2 Особые требования к монтажу электропроводок с искробезопасными цепями (ГОСТ IEC 60079-14-2013, раздел 16)
6.7.21.2.1 Искробезопасную электрическую цепь защищают от проникновения энергии из других электрических источников таким образом, чтобы не выходить за пределы безопасной энергии в цепи даже в случае возникновения в ней обрывов, короткого замыкания или замыкания на землю.
6.7.21.2.2 Прокладку искробезопасных кабелей и проводов выполняют в соответствии с требованиями ГОСТ IEC 60079-14-2013, подраздел 16.2.
Недопустимо применение марок проводов и кабелей, отличных от рабочей документации, а также изменение длины проводки без согласования с разработчиком рабочей документации.
Провода искробезопасных цепей высокой частоты следует прокладывать без образования петель. При этом следует обратить внимание на формирование жгутов у зажимов, около которых создают петлеобразные запасы длины для многократного подключения жилы при ее поломке, жгутов проводов у приборов, в особенности у приборов с выдвижными блоками, жгутов к дверям и поворотным рамам.
6.7.21.2.3 Проводящие экраны и оболочки следует соединять с заземлителем только в одной точке, обычно на конце цепи, расположенном вне взрывоопасной зоны. Это требование должно исключать возможность протекания через экран искроопасного уравнительного тока из-за разных местных потенциалов земли между одним и другим концами цепи.
Если заземленная искробезопасная цепь проложена в экранированном кабеле, экран для этой цели заземляют в той же точке, что и искробезопасную цепь, которую он экранирует.
Если искробезопасная цепь или часть искробезопасной цепи, изолированная от земли, проложена в экранированном кабеле, экран должен быть подсоединен к системе выравнивания потенциалов в одной точке.
Если имеется необходимость подсоединения экрана в нескольких точках по его длине (например, когда экран имеет высокое сопротивление или требуется дополнительное экранирование против индуктивной наводки), то следует применять изолированные защитные проводники и изолированные соединения.
Места заземления оболочек и экранов, а также сечение заземляющих защитных проводников должны быть указаны в рабочей документации.
6.7.21.2.4 Броню подсоединяют к системе уравнивания потенциалов через вводные устройства или эквивалентным способом на каждом конце кабеля. Если установлены промежуточные соединительные коробки или другое электрооборудование, броню также подсоединяют к системе уравнивания потенциалов в этих точках. В случаях, когда броня не должна быть подсоединена к системе уравнивания потенциалов ни в одной из промежуточных точек кабеля, следует принять меры предосторожности, гарантирующие поддержание электрической целостности брони по всей длине кабеля.
Места соединения брони с проводниками уравнивания потенциалов должны быть указаны в рабочей документации.
6.7.21.3 Особые требования к монтажу телекоммуникационных кабелей (ГОСТ Р 53246-2008, раздел 8) для цифровой техники (локальных сетей).
6.7.21.3.1 Для прокладки телекоммуникационных кабелей используют заземленные металлические конструкции.
6.7.21.3.2 Расстояние в свету от телекоммуникационных кабелей до силовых кабелей и шинопроводов при напряжении до 1000 В должно быть не менее:
– 0,7 м при их открытой прокладке на полках или лотках;
– 0,6 м при прокладке в заземленных коробах, обеспечивающих экранирование не менее 85% общей поверхности короба;
– 0,45 м при прокладке в заземленных коробах, а силовых кабелей – в металлических трубах (или наоборот);
– 0,3 м при прокладке как информационных, так и силовых кабелей в металлических трубах.
Расстояние в свету от телекоммуникационных кабелей до кабелей и шинопроводов при напряжении 6 и 10 кВ должно быть не менее 1,5 м.
6.7.21.3.3 При монтаже телекоммуникационных кабелей следует предотвращать различные механические напряжения в кабеле, вызываемые натяжением, резкими изгибами и чрезмерным стягиванием пучков кабелей.
6.7.21.3.4 Кабельные хомуты (стяжки, бандаж и т.п.), используемые для крепления и формирования кабельных пучков, выбирают и применяют таким образом, чтобы обеспечивалось свободное перемещение пучков на горизонтальных основаниях.
6.7.21.3.5 Не допускается затягивание хомутов и стяжек на вертикальных участках трассы, приводящее к деформации оболочки кабелей.
6.7.21.3.6 Не допускается крепление телекоммуникационных кабелей с помощью скоб.
6.7.21.3.7 Радиус изгиба кабеля
Необходимость сохранения минимального радиуса изгиба кабеля на основе витой пары проводников обусловлена тем, что при резких изгибах пары внутри кабеля деформируются и нарушается однородность симметричной среды передачи. Это ведет, в первую очередь, к серьезным изменениям такого параметра, как NEXT. Последующее распрямление изгиба может не только не восстановить форму пары, но и привести к еще худшим результатам.
Поэтому при прокладке кабеля необходимо следить, чтобы в разматываемом кабеле не появлялись петли, ведущие к резкому перегибу кабеля.
Не допускаются радиусы изгиба кабелей горизонтальной и магистральной подсистем менее:
– 8 внешних диаметров кабеля для 4-парных кабелей на основе неэкранированной витой пары проводников (UTP) в процессе монтажа;
– 10 внешних диаметров кабеля для 4-парных кабелей на основе экранированной витой пары проводников (FTP, ScTP, SFTP) в процессе монтажа;
– 15 внешних диаметров кабеля для многопарных кабелей на основе витой пары проводников в процессе монтажа.
Если требования производителя к минимальному радиусу изгиба конкретного кабеля более жесткие, чем приведенные выше, они должны быть выполнены.
6.7.21.3.8 Усилие натяжения кабеля
При монтаже кабеля с витой парой важно соблюдать предельно допустимую силу натяжения кабеля.
В тех случаях, когда предполагается сложный монтаж с приложением к кабелю повышенных усилий, например при протяжке кабеля через закрытую трассу длиной свыше 30 м или трассу, имеющую более двух поворотов с углами 90°, рекомендуется использовать динамометр или калиброванный вертлюг.
После монтажа не должно быть натяжения кабеля, за исключением вертикальных сегментов, когда остаточное натяжение может быть вызвано собственной массой кабеля.
Сила натяжения кабеля во время монтажа не должна превышать:
– 110 Н – для 4-парных кабелей на основе неэкранированной и экранированной витой пары проводников;
– значения, указанного в спецификации производителя – для многопарных кабелей на основе витой пары проводников.
6.7.21.3.9 Информационные кабели с витой парой проводников следует присоединять к рабочим защитным проводникам, присоединенным к специальной функциональной системе уравнивания потенциалов. Эта система должна обеспечивать разницу потенциалов на шинах заземления в смежных точках подключения кабелей (узлах локальных сетей) не более 1 В при всех режимах электроснабжения.
В отличие от систем уравнивания потенциалов, создаваемых по действующим нормам во взрывоопасных зонах, которые должны обеспечивать уравнивание потенциала в локальных зонах для взрывобезопасности, система специального функционального уравнивания потенциалов должна обеспечить уравнивание потенциалов между производственными и другими зонами, соединенными локальными сетями. К узлам сетей относят: центральные процессоры, маршрутизатоы, контроллеры и другие устройства, формирующие локальную сеть.
Если снизить разницу потенциалов до 1 В не представляется возможным, например, при прокладке кабеля между отдельно стоящими зданиями, следует применять вместо кабелей с витой парой проводников волоконно-оптическую линию связи.
6.7.21.4 Монтаж нагревательных кабелей
6.7.21.4.1 Нагревательные кабели следует прокладывать по поверхности обогреваемых трубопроводов таким образом, чтобы они не были прижаты к поверхности трубы деталями крепления трубопровода и не быть расположены между поверхностью трубопровода и его опоры. Прокладку нагревательного кабеля непосредственно по поверхности пластмассовой трубы не производят. Предварительно на трубу наклеивают, как правило, алюминиевую ленту.
Монтаж обогреваемых кабелей следует производить только после испытания трубопроводов.
6.7.21.4.2 При проходе кабелей около резьбовых или фланцевых соединений трубопровода, трубопроводной арматуры или встроенных в трубопровод приборов и устройств (счетчики, ротаметры и др.) на кабелях следует создавать петли, достаточные для подтяжки или демонтажа устройств без повреждения кабеля. Образованные петли закрепляют на обходимом устройстве, накручивая петлю на устройство.
Крепление кабеля к обогреваемой поверхности трубопровода производят по инструкции производителя кабеля и указаниям рабочей документации.
6.7.22 Присоединение однопроволочных и многопроволочных медных жил проводов и кабелей сечением 0,1, 0,35, 0,5 и 0,75 мм к приборам, аппаратам, сборкам зажимов выполняют пайкой, если конструкция их выводов позволяет это осуществить (неразборное контактное соединение).
При необходимости присоединения однопроволочных и многопроволочных медных жил указанных сечений к приборам, аппаратам и сборкам зажимов, имеющим выводы и зажимы для присоединения проводников под винт или болт (разборное контактное соединение), жилы этих проводов и кабелей оконцовывают наконечниками.
Однопроволочные медные жилы проводов и кабелей сечением 1; 1,5; 2,5; 4 мм присоединяют непосредственно под зажим, а многопроволочные жилы этих же сечений – с помощью наконечников или непосредственно под зажим. При этом жилы однопроволочных и многопроволочных проводов и кабелей, в зависимости от конструкции выводов и зажимов приборов, аппаратов и сборок зажимов, оконцовывают кольцом или штырем; концы многопроволочных жил (кольца, штыри) пропаивают, штыревые концы могут быть опрессованы штифтовыми наконечниками.
Если конструкция выводов и зажимов приборов, аппаратов, сборок зажимов требует или допускает иные способы присоединения однопроволочных и многопроволочных медных жил проводов и кабелей, применяют способы присоединения, указанные в соответствующих стандартах и технических условиях на эти изделия.
Присоединение алюминиевых жил проводов и кабелей сечением 2,0 мм и более к приборам, аппаратам, сборкам зажимов осуществляют только зажимами, позволяющими выполнить непосредственное присоединение к ним алюминиевых проводников соответствующих сечений.
Присоединение однопроволочных жил проводов и кабелей (под зажим или пайкой) допускается осуществлять только к неподвижным элементам приборов и аппаратов.
Присоединение жил проводов и кабелей к приборам, аппаратам и средствам автоматизации, имеющим выводные устройства в виде штепсельных разъемов, следует выполнять посредством многопроволочных (гибких) медных проводов или кабелей, прокладываемых от сборок зажимов или соединительных коробок до приборов и средств автоматизации.
Разборные и неразборные соединения медных, алюминиевых и алюмомедных жил проводов и кабелей с выводами и зажимами приборов, аппаратов, сборок зажимов выполняют в соответствии с указаниями производителя.
6.7.23 Соединение стальных защитных труб между собой, с протяжными коробками и т.д. в помещениях всех классов следует осуществлять стандартными резьбовыми соединениями.
В помещениях всех классов, кроме взрыво- и пожароопасных зон, допускается производить соединение стальных тонкостенных защитных труб гильзами из листовой стали или стальными трубами большего диаметра с последующей обваркой по всему периметру мест соединения, при этом не допускается прожог труб.
6.7.24 Уплотнение электропроводок в узлах пересечения ограждающих строительных конструкций электропроводками
527.2 Уплотнение проходов электропроводок
527.2.1 При проходе электропроводки через элементы строительных конструкций, таких как полы, стены, крыши, потолки, перегородки, остающиеся после прохода электропроводок отверстия должны быть заделаны со степенью огнестойкости соответствующего элемента строительной конструкции.
Примечания
1 В процессе монтажа электропроводок могут потребоваться временные заделки.
2 Измененная в процессе монтажа огнестойкость должна быть восстановлена как можно быстрее.
527.2.2 Электропроводки, которые проходят через элементы строительных конструкций, должны иметь внутреннее уплотнение, обеспечивающее ту же огнестойкость, что и наружное уплотнение в соответствии с 527.1
527.2.3 Электропроводки, выполненные кабелем в трубах, коробах или специальных коробах, классифицированные как не распространяющие горение согласно соответствующему стандарту и с максимальной внутренней площадью поперечного сечения 710 мм, не нуждаются во внутреннем уплотнении при условии, что:
электропроводка удовлетворяет испытаниям по МЭК 60529* для IP33;
________________
* Доступ к международным и зарубежным документам, упомянутым здесь и далее по тексту, можно получить, перейдя по ссылке на сайт http://shop.cntd.ru. – Примечание изготовителя базы данных.
и любое оконечное устройство системы в одном из отсеков, разделенных в строительном отношении, удовлетворяет испытаниям по МЭК 60529 для IP33.
527.2.4 Никакая электропроводка не должна проходить через элемент строительной конструкции, который предназначен для несения нагрузки, если целостность элемента, несущего нагрузку, нельзя гарантировать после такого проникновения.
527.2.5 Уплотнения, удовлетворяющие 527.2.1 или 527.2.2, должны быть устойчивы к внешним воздействиям в той же степени, что и сама электропроводка, с которой они используются, и, кроме того, они должны удовлетворять следующим требованиям:
– быть стойкими к продуктам сгорания в той же степени, что и элементы строительных конструкций, через которые они проходят;
– обеспечить ту же самую степень защиты от воды, как это требуется для элемента строительства, в котором они были установлены;
– уплотнение и электропроводка должны быть защищены от капающей воды, которая может переместиться вдоль электропроводки, или материалы, используемые для изоляции, должны быть стойкими к влажности.
Примечания
1 Уплотнения должны быть совместимыми с материалами электропроводки, с которой они находятся в контакте, должны допускать тепловое перемещение электропроводки без ухудшения качества изоляции и иметь соответствующую механическую прочность, чтобы противостоять усилиям, которые могут возникнуть из-за повреждения поддерживающих конструкций электропроводки в результате пожара.
2 Требования 527.2.5 могут быть удовлетворены, если:
крепежные или поддерживающие конструкции кабелей устанавливаются в пределах 750 мм от уплотнения и в состоянии выдержать механические нагрузки, ожидаемые в случае разрушения при пожаре, при этом никакая деформация не передается на уплотнение; или
уплотнение само обладает соответствующими характеристиками.
[ГОСТ Р 50571.5.52-2011/МЭК 60364-5-52:2009, подраздел 527.2].
6.7.24.2 В коробе дополнительно устанавливают внутреннее уплотнение проводок (огнезащитный пояс) на горизонтальных участках через 30 м, вертикальных участках – через 20 м.
6.7.24.4 При переходе труб электропроводки из помещения со взрывоопасной зоной класса B-I или В-Iа в помещение с нормальной средой, или во взрывоопасную зону другого класса, с другой категорией или группой взрывоопасной смеси, или наружу труба с проводами в местах прохода через стену должна иметь разделительное уплотнение в специально для этого предназначенной коробке.
Во взрывоопасных зонах классов B-Iб, В-II и В-IIа установка разделительных уплотнений не требуется.
Разделительные уплотнения устанавливают:
а) в непосредственной близости от места входа трубы во взрывоопасную зону;
б) при переходе трубы из взрывоопасной зоны одного класса во взрывоопасную зону другого класса – в помещении взрывоопасной зоны более высокого класса;
в) при переходе трубы из одной взрывоопасной зоны в другую такого же класса – в помещении взрывоопасной зоны с более высокими категорией и группой взрывоопасной смеси.
Допускается установка разделительных уплотнений со стороны невзрывоопасной зоны или снаружи, если во взрывоопасной зоне установка разделительных уплотнений невозможна.
Разделительное уплотнение не ставят, если:
а) труба с кабелем выходит наружу, а кабели далее прокладывают открыто;
б) труба служит для защиты кабеля в местах возможных механических воздействий и оба конца ее находятся в пределах одной взрывоопасной зоны [7].
6.7.24.5 Разделительные уплотнения, установленные в трубах электропроводки, испытывают избыточным давлением воздуха 250 кПа (около 2,5 ат) в течение 3 мин. При этом допускается падение давления не более чем до 200 кПа (около 2 ат) [7].
По результатам испытания защитного трубопровода оформляют протокол испытаний по форме, приведенной в приложении А.18.
6.7.25 Смонтированные электропроводки систем автоматизации подвергают внешнему осмотру, при котором устанавливают соответствие смонтированных проводок рабочей документации и требованиям настоящего свода правил. Электропроводки, удовлетворяющие указанным требованиям, подлежат проверке на сопротивление изоляции.
6.7.26 Измерение сопротивления изоляции электропроводок систем автоматизации (цепей измерения, управления, питания, сигнализации и т.п.) производят мегаомметром на напряжение 500-1000 В. Сопротивление изоляции не должно быть менее 0,5 МОм.
Во время измерения сопротивления изоляции провода и кабели должны быть подключены к сборкам зажимов щитов, стативов, пультов и соединительных коробок.
Приборы, аппараты и проводки, не допускающие испытания мегаомметром напряжением 500-1000 В, на время испытания должны быть отключены.
По результатам измерения сопротивления изоляции составляют протокол по форме, приведенной в приложении А.16.
6.8 Оптические кабели
6.8.1 Область применения и система обозначений оптических кабелей приведены в ГОСТ Р 52266.
6.8.2 Монтаж оптических кабелей следует производить по ГОСТ Р 52266-2004, раздел 9 и соответствующим разделам технических условий производителей оптических кабелей.
6.8.3 Перед монтажом оптического кабеля следует проверить его целостность и коэффициент затухания оптического сигнала.
6.8.4 Прокладку оптического кабеля выполняют в соответствии с рабочей документацией способами, аналогичными принятым при прокладке электрических и трубных проводок, а также кабелей связи.
6.8.5 Монтаж оптического кабеля в зданиях и сооружениях выполняют по указаниям ГОСТ Р 53246-2008, раздел 8.
6.8.6 Оптические кабели, прокладываемые открыто в местах возможных механических воздействий на высоте до 2,5 м от пола помещения или площадок обслуживания, должны быть защищены механическими кожухами, трубами или другими устройствами в соответствии с рабочей документацией.
6.8.7 При протяжке оптического кабеля крепление средств тяжения следует производить за силовой элемент, используя ограничители тяжения и устройства против закрутки. Следует не допускать, чтобы тяговые усилия превысили значения, указанные в технических условиях на кабель.
6.8.8 Прокладку оптического кабеля выполняют при климатических условиях, определенных в технических условиях на кабель. Прокладку оптического кабеля при температуре воздуха ниже минус 15°С выполнять не допускается.
6.8.9 Минимальные радиусы изгиба оптического кабеля
6.8.10 Сила натяжения оптического кабеля
6.8.11 В местах подключения оптического кабеля к приемопередающим устройствам, а также в местах установки соединительных муфт необходимо предусматривать запас кабеля. Запас должен быть не менее 3 м у каждого сращиваемого оптического кабеля или приемопередающего устройства.
6.8.12 Оптический кабель следует крепить на несущих конструкциях при вертикальной прокладке, а также при прокладке непосредственно по поверхности стен помещений – по всей длине через 1 м; при горизонтальной прокладке (кроме коробов) – в местах поворота. При этом радиус изгиба не должен быть меньше, чем указано в технических условиях на кабель.
6.8.13 Смонтированный оптический кабель подвергают контролю путем измерения затухания сигналов в отдельных волокнах оптического кабеля и проверке его на целостность. Результаты контроля оформляют протоколом измерений параметров смонтированного оптического кабеля по форме, приведенной в приложении А.19.
6.9 Щиты, стативы и пульты
6.9.1 Щиты, стативы, пульты, посты, стойки, мнемосхемы, столы, АРМ диспетчера, видеоэкраны, серверные стойки и другие аналогичные конструкции (далее – щиты) должны передаваться заказчиком в законченном для монтажа виде с аппаратурой, арматурой и установочными изделиями, с электрической и трубной внутренней проводками, подготовленными к подключению внешних электрических и трубных проводок и приборов, а также с крепежными изделиями для сборки и установки щитов, стативов и пультов на объекте.
6.9.2 Монтаж щитов производят в соответствии с требованиями рабочей документации СА, инструкции по монтажу изготовителя щита, ППР или заменяющего его документа, технологической карты.
6.9.3 Щиты должны быть выверены по отношению к основным осям помещений, в которых они устанавливаются. Панели при установке должны быть выверены по уровню и отвесу. Крепление к закладным деталям следует выполнять сваркой или разъемными соединениями. Допускается установка щитов без крепления к полу, если это предусмотрено рабочими чертежами. Панели должны быть скреплены между собой болтами.
Крепежные резьбовые соединения плотно и равномерно затягивают и предохраняют от самоотвинчивания.
6.9.4 Установку вспомогательных элементов (панелей декоративных, мнемосхем и т.п.) производят с сохранением осевых линий и вертикальности всей фронтальной плоскости щита. Заданный в рабочей документации угол наклона мнемосхемы должен быть выдержан в пределах указанных в ней допусков.
6.10 Технические средства автоматизации (за исключением щитов и пультов)
6.10.1 В монтаж принимают исправные технические средства автоматизации, соответствующие заказным спецификациям, в том числе поверенные измерительные приборы и измерительные преобразователи с непросроченной датой поверки.
6.10.2 В целях обеспечения сохранности технических средств от поломки, разукомплектования и хищения монтаж их следует выполнять после письменного разрешения генподрядчика (заказчика).
6.10.3 Поверка технических средств производится заказчиком или привлекаемыми им специализированными организациями, выполняющими работы по наладке приборов методами, принятыми в этих организациях, с учетом требований стандартов и инструкций предприятий-изготовителей.
6.10.4 При получении приборов от заказчика следует убедиться, что они приведены в состояние, пригодное для транспортирования согласно инструкции производителя (подвижные системы должны быть арретированы – приведены в неподвижное состояние, присоединительные устройства защищены от попадания в них влаги, грязи и пыли).
Вместе с приборами должны быть переданы монтажной организации специальные инструменты, принадлежности и крепежные детали, входящие в их комплект, необходимые при монтаже.
6.10.5 Размещение приборов и их взаимное расположение должны производиться по рабочей документации. Их монтаж должен обеспечить точность измерений, свободный доступ к приборам и к их запорным и настроечным устройствам (кранам, вентилям, переключателям, рукояткам настройки и т.п.).
6.10.6 В местах установки приборов, малодоступных для монтажа и эксплуатационного обслуживания, должно быть до начала монтажа закончено сооружение лестниц, колодцев и площадок в соответствии с рабочей документацией.
6.10.7 Приборы устанавливают при температуре окружающего воздуха и относительной влажности, оговоренных в монтажно-эксплуатационных инструкциях предприятий-изготовителей.
6.10.8 Крепление приборов к металлическим конструкциям (щитам, стативам, стендам и т.п.) следует осуществлять способами, предусмотренными конструкцией приборов и деталями, входящими в их комплект.
Если в комплект отдельных приборов крепежные детали не входят, то их следует закреплять нормализованными крепежными изделиями.
При наличии вибраций в местах установки приборов резьбовые крепежные детали оснащают приспособлениями, исключающими возможность самопроизвольного их отвинчивания (пружинные шайбы, контргайки, шплинты и т.п.).
6.10.9 Отверстия приборов, предназначенные для присоединения трубных и электрических проводок, оставляют заглушенными до момента подключения проводок.
6.10.10 Корпуса приборов заземляют в соответствии с требованиями инструкций предприятий-изготовителей и ГОСТ Р 50571.5.54.
6.10.11 Монтаж приборов следует выполнять по технической документации предприятий (фирм)-изготовителей. При монтаже приборов на взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производствах соблюдают дополнительные требования, установленные в [8].
6.10.12 Чувствительные элементы жидкостных термометров, термосигнализаторов, манометрических термометров, преобразователей термоэлектрических (термопар), термопреобразователей сопротивления устанавливают по рабочим чертежам. Чувствительные элементы устанавливают в измеряемую среду в зависимости от скорости движения и вязкости измеряемой среды на глубину погружения (от внутренней стенки трубопровода) не более указанной в инструкции производителя.
6.10.13 Рабочие части поверхностных преобразователей термоэлектрических (термопар) и термопреобразователей сопротивления устанавливают таким образом, чтобы они плотно прилегали к контролируемой поверхности.
Перед установкой этих приборов место соприкосновения их с трубопроводами и оборудованием должно быть очищено от окалины и зачищено до металлического блеска.
6.10.14 Преобразователи термоэлектрические (термопары) в фарфоровой арматуре допускается погружать в зону высоких температур на длину фарфоровой защитной трубки.
6.10.15 Термометры, у которых защитные чехлы изготовлены из разных металлов, погружают в измеряемую среду на глубину не более указанной в паспорте изготовителя.
6.10.16 Не допускается прокладка капилляров манометрических термометров по поверхностям, температура которых выше или ниже температуры окружающего воздуха.
При необходимости прокладки капилляров в местах с горячими или холодными поверхностями между последними и капилляром предусматривают воздушные зазоры, предохраняющие капилляр от нагревания или охлаждения, или устанавливают соответствующую теплоизоляцию.
По всей длине прокладки капилляры манометрических термометров защищают от механических повреждений.
При излишней длине капилляр свертывают в бухту диаметром не менее 300 мм; бухту перевязывают в трех местах неметаллическими перевязками и надежно закрепляют у прибора.
6.10.17 Жидкостные U-образные манометры устанавливают строго вертикально. При этом принимают меры, чтобы жидкость не была загрязнена и не содержала воздушных пузырьков.
6.10.18 Разделительные сосуды устанавливают согласно нормалям или рабочим чертежам проекта, как правило, вблизи мест отбора.
Разделительные сосуды устанавливают так, чтобы контрольные отверстия сосудов располагались на одном уровне и могли легко обслуживаться эксплуатационным персоналом.
6.10.19 При пьезометрическом измерении уровня открытый конец измерительной трубки должен быть установлен ниже минимального измеряемого уровня. Давление газа или воздуха в измерительной трубке должно быть таким, чтобы обеспечивался проход газа (воздуха) через трубку при максимальном уровне жидкости. Расход газа или воздуха в пьезометрических уровнемерах устанавливают таким, чтобы обеспечивались покрытие всех потерь, утечек и требуемое быстродействие системы измерения.
6.10.20 Монтаж приборов для физико-химического анализа и их отборных устройств производят в строгом соответствии с требованиями инструкций предприятий-изготовителей.
6.10.21 При установках показывающих и регистрирующих приборов на стене или на стойках, крепящихся к полу, шкалу, диаграмму, запорную арматуру, органы настройки и контроля пневматических и других датчиков устанавливают на высоте 1-1,7 м, а органы управления запорной арматурой – в одной плоскости со шкалой прибора.
6.10.22 Все приборы и технические средства автоматизации, устанавливаемые или встраиваемые в технологические аппараты и трубопроводы (сужающие и отборные устройства, счетчики, ротаметры, поплавки уровнемеров, регуляторы прямого действия и т.п.), устанавливают в соответствии с рабочей документацией и с требованиями, указанными в приложении В.
7 Завершение монтажных работ
7.1 К приемке рабочей комиссии предъявляют системы автоматизации в объеме, предусмотренном рабочей документацией, прошедшие проверку.
7.2 При проверке подтверждают:
– соответствие смонтированных систем автоматизации рабочей документации и требованиям настоящего свода правил;
– прочность и плотность трубных проводок в соответствии с подразделом 6.6;
– сопротивление изоляции электропроводок в соответствии с нормами (см. пункты 6.7.25 и 6.7.26);
– непревышение допустимого затухания сигналов в отдельных волокнах смонтированного оптического кабеля по специальной инструкции (см. пункт 6.8.13)
7.3 При проверке смонтированных систем на соответствие рабочей документации проверяют соответствие мест установки приборов и средств автоматизации, их типов и технических характеристик спецификации оборудования, соответствие требованиям настоящего свода правил и эксплуатационным инструкциям способов установки приборов, средств автоматизации, щитов и пультов, других средств локальных систем АСУТП, электрических и трубных проводок.
7.4 После окончания работ по проверке оформляют акт приемки смонтированных систем автоматизации по форме А.5, к которому прилагают документы по формам, приведенным в приложениях А.1, А.4, А.6-А.21, А.24.
7.5 Допускается передача монтажных работ под наладку отдельными системами или отдельными частями комплекса (например, диспетчерских и операторских и т.п.). Форма акта приведена в приложении А.5.
8 Производство пусконаладочных работ
8.1 Общие положения
8.1.1 Пусконаладочные работы по системам автоматизации – это комплекс работ по проверке, включению и настройке измерительных систем и систем управления процессами в технологическом оборудовании, установке (агрегате, цехе и т.п.), обеспечивающих получение конечного продукта, предусмотренного технологическим регламентом.
8.1.2 Пусконаладочные работы по системам автоматизации (далее – пусконаладочные работы) должны быть выполнены таким образом, чтобы была обеспечена реализация технических решений по автоматизации технологического процесса или оборудования инженерных систем, принятых в проектной и рабочей документации.
8.1.3 Пусконаладочные работы по системам автоматизации проводят в соответствии с решениями и нормами, предусмотренными проектной и рабочей документацией, технологическим регламентом (производственной инструкцией), эксплуатационной документацией на технические и программные средства систем автоматизации предприятий-изготовителей и разработчиков, требованиями федеральных норм и правил в области промышленной безопасности.
8.1.4 Пусконаладочные работы по системам автоматизации проводят в три стадии:
– I стадия – подготовительные работы;
– II стадия – автономная наладка систем автоматизации (вхолостую);
– III стадия – комплексная наладка систем автоматизации (под нагрузкой).
8.1.5 К началу производства пусконаладочных работ заказчик должен передать руководителю пусконаладочной организации (структурного подразделения) утвержденный и проштампованный “К производству работ” комплект проектной и рабочей документации на бумажном носителе, включая части проекта АСУТП – математическое обеспечение, информационное обеспечение, программное обеспечение и организационное обеспечение. Пусконаладочная организация должна рассмотреть документацию и при обнаружении недостатков направить замечания и предложения заказчику.
8.1.6 К производству пусконаладочных работ приступают при наличии у заказчика документов о приемке монтажных работ по системам автоматизации объекта.
8.1.7 При возникновении вынужденных перерывов между монтажными и пусконаладочными работами по причинам, не зависящим от подрядчика, к пусконаладочным работам приступают после проверки сохранности раннее смонтированных технических средств систем автоматизации и монтажа ранее демонтированных технических средств. В этом случае составляют новый акт окончания монтажных работ заново с датой начала пусконаладочных работ.
8.2 Подготовительные работы
8.2.1 Во время подготовительных работ изучают проектную и рабочую документацию систем автоматизации, основные характеристики технических средств, состав и функции поставляемого комплектно программного обеспечения. При отсутствии конкретных требований к показателям работы систем автоматизации в рабочей и проектной документации, определение таких требований осуществляет заказчик по согласованию с пусконаладочной организацией.
8.2.2 Заказчик передает пусконаладочной организации запасные части, специальное оборудование и инструменты, калибраторы, программаторы и (или) инструментальное программное обеспечение, поставляемое комплектно с техническими средствами.
Технические средства автоматизации разукомплектованные, без технической документации (паспортов, руководств, формуляров, инструкций и т.д.) не должны передаваться пусконаладочной организации.
Неисправные технические средства автоматизации передают заказчику для ремонта или замены.
8.2.3 По результатам рассмотрения и анализа проектных решений, исходя из назначения измеряемых параметров и количества средств измерений, по измеряемым параметрам необходимо сформировать парк рабочих эталонов (калибраторов) для проверки функционирования измерительных каналов и систем.
8.2.4 Руководители наладочных групп (бригад) до начала автономной наладки должны:
– знать технологическую установку в целом, расположение оборудования, назначение трубопроводов и направления движения рабочих сред в них, расположение регулирующих и запорных клапанов;
– знать расположение помещений для датчиков или стативов с датчика ми, помещений анализаторных;
– проверить по документации правильность врезок в трубопроводы и технологическое оборудование измерительных преобразователей температуры, датчиков расхода, давления;
– проверить правильность монтажа регулирующих и запорных клапанов относительно направления движения среды в трубопроводе, значений номинальных диаметров по сравнению с проектными, а также вид исполнения клапанов – НО (нормально открыт) или НЗ (нормально закрыт);
– проверить правильность монтажа уравнительных, конденсационных и разделительных сосудов относительно расположения трубопроводов и смонтированных измерительных преобразователей расхода, уровня и давления;
– проверить состояние регулирующих и запорных клапанов с установленными на них дополнительными устройствами (электропневмопреобразователями, позиционерами) относительно внешнего вида и наличия видимых повреждений.
8.2.5 Персонал пусконаладочной организации должен пройти инструктаж по охране труда и правилам работы на действующем предприятии. Инструктаж проводят службы заказчика в объеме, установленном отраслевыми министерствами, о проведении инструктажа должна быть сделана запись в журнале инструктажа.
8.2.6 Все переключения режимов работы технологического оборудования при определении реальных характеристик объекта автоматизации должен производить заказчик. Включение и выключение систем автоматизации должно фиксироваться в оперативном журнале.
8.3 Автономная наладка систем автоматизации
8.3.1 На стадии автономной наладки систем автоматизации проводят индивидуальные испытания отдельных машин, механизмов, агрегатов и технологического оборудования с целью подготовки их к приемке рабочей комиссией для комплексного опробования.
8.3.2 Перед включением систем автоматизации на стадии автономной наладки следует выполнить:
– проверку монтажа технических средств автоматизации на соответствие требованиям рабочей документации;
– проверку правильности маркировки, подключения и фазировки электрических проводок;
– проверку правильности отработки хода штоков (по перемещению указателей) регулирующих клапанов в соответствии со значениями сигналов, задаваемых от калибраторов, и настройки позиционеров;
– проверку правильности отработки полного хода штоков с указателями на запорных клапанах (отсекателях) при максимальных значениях сигналов, задаваемых от калибраторов.
8.3.3 Обнаруженные дефекты монтажа и подключения электрических проводок после официального сообщения заказчику (генеральному подрядчику) должна устранять монтажная организация систем автоматизации.
8.3.4 Перед включением систем автоматизации в работу необходимо убедиться в отсутствии нарушений требований к условиям эксплуатации технических средств автоматизации, каналов связи (по температуре, влажности и агрессивности окружающей среды и т.п.) и соблюдению требований охраны труда.
8.3.5 После введения эксплуатационного режима в электроустановках объекта (агрегата, блока) производят подачу электрического питания на оборудование систем автоматизации (шкафы, стойки, щиты и т.п.), от которых подают электрическое питание на элементы систем автоматизации.
8.3.6 После включения электропитания на измерительные приборы и преобразователи, функциональные преобразователи, в том числе установленные на технологическом оборудовании и смонтированные в технологических трубопроводах, необходимо выполнить:
– настройку логических и временных взаимосвязей систем сигнализации, защиты, блокировки и управления;
– предварительное определение характеристик объекта, расчёт и настройку параметров аппаратуры систем, конфигурирование и параметрический синтез интеллектуальных датчиков, преобразователей и программно-логических устройств;
– проверку правильности прохождения сигналов;
– проверку функционирования прикладного и системного программного обеспечения;
– включение систем автоматизации для обеспечения индивидуальных испытаний оборудования в соответствии с утверждённым графиком.
8.3.7 При наличии у заказчика шкафов управления с комплексом программно-технических средств (далее – КПТС) и распределенной автоматизированной системы управления техническим процессом, монтаж КПТС которой выполнен согласно рабочей документации и, при технической возможности проведения индивидуального испытания системы, после установки шкафов во временном помещении необходимо:
– выполнить кабельные соединения шкафов управления станций оператора и инженерных станций;
– подключить по временной схеме электропитание;
– подготовить имитаторы для задания входных и выходных сигналов;
– задавать входные сигналы с помощью имитаторов, подключенных к кроссовым клеммникам, барьерам или реле;
– провести анализ выходных сигналов на соответствие рабочей программе.
8.4 Комплексная наладка систем автоматизации
8.4.1 Комплексную наладку систем автоматизации выполняют на действующем оборудовании и при наличии устойчивого технологического процесса после полного окончания строительно-монтажных работ, приемки их рабочей комиссией согласно требованиям СП 48.13330 и настоящего свода правил.
8.4.2 При комплексной наладке следует выполнить:
– определение соответствия порядка отработки устройств и элементов систем сигнализации, защиты и управления алгоритмам рабочей документации с выявлением причин отказа или “ложного” срабатывания их, установку необходимых значений срабатывания позиционных устройств;
– определение соответствия пропускной способности запорно-регулирующей арматуры требованиям технологического процесса, правильности отработки выключателей;
– определение расходных характеристик регулирующих органов и приведение их к требуемой норме с помощью имеющихся в конструкции элементов настройки;
– подготовку к включению и включение в работу систем автоматизации для обеспечения комплексного опробования технологического оборудования;
– уточнение статических и динамических характеристик объекта, корректировку значений параметров настройки систем с учетом их взаимного влияния в процессе работы;
– испытание и определение пригодности систем автоматизации для обеспечения эксплуатации оборудования с производительностью, соответствующей нормам освоения проектных мощностей в начальный период;
– анализ работы систем автоматизации при эксплуатации;
– оформление производственной документации.
8.4.3 Снятие расходных характеристик и определение пропускной способности регулирующих органов следует производить при условии соответствия параметров среды в трубопроводе нормам, установленным стандартом, рабочей документацией или паспортом на регулирующую арматуру.
8.4.4 Корректировку установленных рабочей документацией или другой технологической документацией значений срабатывания элементов и устройств систем сигнализации и защиты следует производить только после утверждения заказчиком новых значений.
8.4.5 При отсутствии конкретных требований к показателям работы систем автоматизации в проектной и рабочей документации определение таких требований осуществляет заказчик по согласованию с пусконаладочной организаций*.
______________
* Вероятно ошибка оригинала. Следует читать “организацией”. – Примечание изготовителя базы данных.
8.4.6 Объем и условия выполнения пусконаладочных работ по отдельным системам или их частям определяют в программе, разработанной пусконаладочной организацией и утвержденной заказчиком. В программу включают виды автономных или комплексных испытаний в соответствии с программами и методиками, предусмотренными в составе проектной и рабочей документации по ГОСТ 34.201.
8.4.7 Результаты проведения пусконаладочных работ и испытаний оформляют протоколом, в который заносят оценку работы системы, выводы и рекомендации. Реализацию рекомендаций по улучшению работы систем автоматизации осуществляет заказчик.
8.5 Сдача систем автоматизации в эксплуатацию
8.5.1 Передачу систем автоматизации в эксплуатацию производят по согласованию с заказчиком как по отдельно налаженным системам, так и комплексно по автоматизированным установкам, узлам технологического оборудования с оформлением акта (см. приложение А.22).
8.5.2 При сдаче систем автоматизации в эксплуатацию в полном объеме оформляют акт приемки систем автоматизации в эксплуатацию (см. приложение А.23).
8.5.3 К акту приемки систем автоматизации в эксплуатацию прилагают следующую документацию:
– перечень уставок устройств, технических средств автоматизации и значений параметров настройки систем автоматического управления (регулирования);
– программы и протоколы испытаний систем автоматизации;
– принципиальные схемы из комплекта рабочей документации автоматизации со всеми изменениями, внесенными и согласованными с заказчиком в процессе производства пусконаладочных работ (один экземпляр);
– паспорта и инструкции предприятий – изготовителей технических средств автоматизации, дополнительная техническая документация, полученная от заказчика в процессе пусконаладочных работ;
– эксплуатационная документация – руководство пользователя, инструкция по эксплуатации и пр.
Приложение А (обязательное). Производственная документация, оформляемая при монтаже и наладке систем автоматизации
Приложение А
(обязательное)