Что такое электричество и кто его изобрел
Электричество повсюду: в светильниках и вентиляторах, компьютерах и мобильных телефонах, в бесчисленном множестве других устройств. Современный мир без него представить невозможно, да и природу тоже, ведь оно есть и в разряде молнии, и между нервными клетками человека. Изучением этого явления занимаются несколько тысячелетий.
Что такое электричество и откуда оно берется
О чем думают, когда слышат слово «электричество» или «электрический»? На ум приходят розетки, линии электропередач, трансформаторы или сварочные аппараты, молния, батарейки и зарядные устройства. Безусловно, электричества в современной цивилизации очень много. Кроме того, оно есть в природе. Но что мы о нем знаем?
Электричеством называют процесс движения заряженных частиц под воздействием электромагнитного поля:
- в одном направлении (постоянный ток);
- с периодическими сменами направления (переменный ток).
Термин имеет греческое происхождение, а «электрон» означает ‘янтарь’. Первым его использовал древнегреческий философ Фалес.
Когда вставляем вилку в розетку, включаем электрочайник или нажимаем выключатель, между источником и приемником электричества замыкается электрическая цепь, благодаря чему электрический заряд получает путь для движения, например, по спирали чайника. Описать процесс можно так:
- Источник электричества — розетка.
- Электрическим током называем электрический заряд, который двигается через проводник (например, спираль чайника).
- Проводник соединяет розетку с потребителем двумя проводами: по одному из них заряд движется к потребителю, а по второму — к розетке.
- В случае переменного тока провода по 50 раз в секунду меняются ролями.
Источник энергии для движения зарядов (то есть, источник электричества) в городах — это электростанции. На них происходит выработка электричества с помощью мощных генераторов, ротор которых приводит во вращение ядерная установка или силовая установка (например, гидротурбина).
Трансформаторы электростанций подают сверхвысокое переменное напряжение величиной 110, 220 или 500 киловольт на высоковольтные линии электропередач (ЛЭП). Достигнув понижающих подстанций, оно снижается до уровня бытовой сети — 220 вольт. Это напряжение в наших розетках, которое используем каждый день, не задумываясь о длине того пути, которое оно проходит.
Можно ли накопить электричество для бытовых целей? Да, и мы этим тоже пользуемся. В этом помогает преобразование в химическую энергию, а именно в аккумуляторы. Химические реакции между электродами (веществами и растворами, которые проводят ток) создают ток при замкнутой на потребителя внешней цепи. Чем больше площадь электродов, тем больше тока можно получить.
Используя разный материал электродов и количество соединенных в аккумуляторе ячеек, можно генерировать разное напряжение. Например, в литий-ионном аккумуляторе стандартное напряжение для одной ячейки составляет 3,7 вольта. Работает он так:
- Ионы лития с положительными зарядами во время разряда движутся в электролите от анода (положительного электрода) из меди и графита к катоду (отрицательному электроду) из алюминия.
- Во время заряда происходит обратное движение, и образуются соединения графита с литием, то есть накопление энергии в виде химического соединения.
Такой аккумулятор полноценно работает на протяжении около 1000 циклов заряда-разряда.
В современном мире все привыкли к тому, что электричество всегда есть в доме. Тысячи людей ежедневно трудятся для того, чтобы его источники работали бесперебойно.
История изобретения электричества
Было бы неправильно сказать, что кто-то один открыл электричество. Сама идея существовала тысячи лет, а затем началась эра научных и коммерческих исследований. Многие великие умы трудились над вопросом природы электричества.
Фалес Милетский
Около 600 года до н. э. греческий математик Фалес обнаружил, что во время трения меха о янтарь между ними возникает притяжение. Оказалось, что его вызывает дисбаланс электрических зарядов, так называемое статическое электричество.
Уильям Гилберт
Английский физик в 1600 году написал книгу «De Magnete». В ней ученый объяснил опыты, которые проводил Фалес Милетский. Явление статического электричества, которое античный исследователь производил с помощью янтаря (на греческом ‘электрум’), Гилберт назвал электрической силой.
Так появилось английское слово electricity. Кроме того, ученый изобрел электроскоп, который обнаруживал присутствие электрических зарядов на теле.
Шарль Франсуа Дюфе
В начале XVII века французский ученый открыл два типа электричества. Он назвал их стекловидным и смолистым (в современной терминологии — положительный и отрицательный заряды). Он обнаружил, что объекты с одинаковыми зарядами притягиваются, а с противоположными — отталкиваются.
Бенджамин Франклин
В середине XVIII века Бенджамин Франклин проводил многочисленные эксперименты, изучая природу электричества. В 1748 году ему удалось построить электрическую батарею из стеклянных листов, сжатых пластинами из свинца. Ученый открыл принцип сохранения заряда. Летом 1752 года Франклин провел знаменитый эксперимент, который доказал, что молния — это электричество.
Луиджи Гальвани
Этому итальянскому физику и биологу принадлежит первенство в открытии явления биоэлектромагнетизма. В 1780 году он проводил эксперименты на лягушках и выяснил, что электричество — та среда, с помощью которой нейроны передают сигналы мышцам.
Алессандро Вольта
Этот итальянский физик выяснил, что некоторые химические реакции — источники постоянного электрического тока. Он построил электрическую батарею из меди и цинка для производства непрерывного потока электрических зарядов.
Вольта ввел понятия электрического потенциала (V) и заряда (Q), выразил закон емкости, позже названный его именем. За эту работу единицу измерения электрического потенциала назвали в его честь.
Ханс Кристиан Эрстед и Андре-Мари Ампер
В начале XIX века датский физик Ханс Кристиан Эрстед обнаружил прямую связь между электричеством и магнетизмом. Он описал, как стрелка компаса отклоняется под воздействием электрического тока.
Вдохновленный этой работой французский физик Андре-Мари Ампер составил формулу для описания магнитных сил, которые возникают между объектами, несущими ток. В его честь назвали единицу измерения электрического тока.
Майкл Фарадей
- заложил основу концепции электромагнитного поля;
- обнаружил, что магнетизм влияет на световые лучи;
- изобрел электромагнитные вращательные устройства.
В 1831 году Фарадей сконструировал электрическую динамомашину, в которой вращательная механическая энергия непрерывно превращалась в электрическую. Это позволило производить электричество.
Томас Эдисон
В 1879 году ученый изобрел практичную лампочку. Далее он занялся разработкой системы, которая обеспечивала бы людей источником энергии для питания таких ламп. В 1882-м в Лондоне построена первая электростанция, которая вырабатывала электричество и поставляла его в дома людей.
Через несколько месяцев появилась первая электростанция в Нью-Йорке, которая поставляла электричество для освещения нижней части острова Манхэттен (85 потребителей смогли зажечь 5000 ламп). Это был постоянный ток.
Никола Тесла
Тесла известен разработкой нового типа двигателя переменного тока и технологии передачи электроэнергии. Он запатентовал систему с переменным током, чтобы обеспечивать людей электроэнергией высочайшего качества. Энергетические системы Теслы распространилась в США и Европе, так как обеспечивали дальнюю высоковольтную передачу.
Генрих Рудольф Герц и Альберт Эйнштейн
Генрих Герц занимался экспериментами по изучению электромагнитных волн. В 1887 году он описал фотоэлектрический эффект, когда электроны испускаются (отрываются от атома) при попадании на материал электромагнитного излучения (например, света).
В 1905 году Альберт Эйнштейн опубликовал закон фотоэлектрических эффектов и выдвинул гипотезу о квантах световой энергии. Так началось развитие квантовой механики и создание солнечных батарей.
Так как электричество необходимо человечеству, исследования в этой сфере продолжаются и сейчас. Без электрического тока мы не представляем быт, а ученые находятся в поисках его новых источников.
- Никола Тесла
- Альберт Эйнштейн
Что такое электричество и как оно возникает
Электроника – это замечательная прикладная и теоретическая наука, которая с каждым днем набирает обороты, распространяется и внедряется во все отрасли. Изучение ее следует начинать с самых общих понятий и физических процессов. Знание которых, в дальнейшем упростит понимание принципов работы различных электронных приборов и устройств. И первое понятие, которое нам нужно усвоить – это, что такое электричество?
Открытие электричества
Впервые свойства электричества были обнаружены более 2,5 тысяч лет назад древним философом Фалесом Милетским, когда он протирал шерстью янтарь.
Внимательный философ заметил, что к уже натертому драгоценному камню притягиваются мелкие предметы. Хотя по логике, сформированной на уровне знаний того времени, все предметы должны были притягиваться к земле, т.е. падать на землю под действием сил притяжения. Однако натертый шерстью янтарь приобретал некоторое загадочное свойство, впоследствии названое зарядом, который создавал силу по величине превосходящую силу земного притяжения. И эта сила получила название «электричество». Так как слово «электрон» с греческого переводится «янтарь», то электричество дословно можно перевести янтаричество.
В те давние времена считалось, что только янтарь обладает неким загадочным свойством, способным после натирания шерстью притягивать легкие предметы, преодолевая силу земного притяжения. Однако сейчас подобный опыт довольно просто повторить, если вместо этого камня взять пластмассовую палочку и потереть ее об одежду, содержащую в своем составе шерсть. Затем, при поднесении натертой палочки к мелким кусочкам бумаги под действием электрических сил кусочки бумаги притянутся к палочке.
Из выше сказанного давайте выделим два важнейших момента:
- Только после натирания о шерсть пластмассовая палочка приобретает некие свойства.
- Приобретенные свойства порождают некую силу, под действие которой к палочке притягиваются кусочки бумаги.
Теперь мы четко знаем, на какие вопросы на нужно найти ответ, чтобы понять, что такое электричество.
Давайте рассмотрим физику происходящего процесса. И первым делом, чтобы анализировать, что происходит с веществом (в данном случае с пластмассой и шерстью) нам понадобятся знания о строении любого вещества. Заранее скажем, что в дальнейшем рассказе будем принимать обобщения и упрощения, однако они не исказят суть данной темы.
Строение атома
И так, начнем. Любое вещество, будь то дерево, камень, стекло или вода, состоит из более мелких элементов, которые называются молекулами. Например, капля воды состоит из множества отдельных молекул, имеющих знакомую нам химическую формулу H2O. Далее молекулу вещества можно разделить еще на более мелкие частицы – атомы.
Одно время считалось, что атом является наименьшей частичкой, существующей в природе и на более мелкие элементы разделить его уже невозможно. Поэтому слово «атом» переводится з древнегреческого «неделимый».
Сейчас известны всего лишь более ста различных атомов, однако они могут образовать миллионы разных молекул и соответственно столько же разных веществ. Например, молекулу воды H2O образуют два атома водорода H и один кислорода O.
Со временем, проделав множество кропотливых опытов, ученые пришли к выводу о существовании еще гораздо меньших частичек.
Планетарная модель атома
Центральный и наиболее тяжелым элементом атома считается ядро. Вокруг него на некотором расстоянии по разным орбитам перемещаются электроны. Ядро не является цельным элементом, его составляют протоны и нейтроны.
Электроны обладает отрицательным зарядом, а протоны – положительным. Нейтрон не проявляет свойств ни тех, ни других зарядов, т.е. он нейтрален, отсюда и получил свое название.
Для упрощения некоторых процессов применяется планетарная модель атома. По аналогии с Солнцем, вокруг которого по орбитам движутся планеты, в атоме вокруг ядра движутся электроны. Но электрон – это не какая-то плотная частичка, а размазанный в пространстве сгусток энергии, наподобие расплюснутой шаровой молнии.
Масса протона приблизительно в 2000 раз превышает массу электрона. Но суммарный положительный электрический заряд всех протонов равен суммарному отрицательному заряду всех электронов. Поэтому при нормальных условиях (по умолчанию) атом электрически нейтрален и за его пределами не ощущаются никакие силы. Положительные и отрицательные заряды как бы нейтрализуют друг друга.
В периодической системе химических элементов, известной нам, как таблица Менделеева, все атомы расположены в строгой последовательности: от наиболее легкого до наиболее тяжелого – по величине относительной атомной массе, основную долю которой составляют протоны. Нейтроны также имею массу, но о них мы говорить не будем, поскольку они не обладают выраженным электрическим зарядом.
Наиболее легким химическим элементом является водород, поэтому он первый размещен в таблице Менделеева. Атом водород имеет один протон и один электрон. Другие химические элементы содержат несколько протонов в ядре. А вокруг ядра по нескольким орбитам перемещаются электроны. Чем ближе электрон находится к ядру, тем сильнее, с большей силой он притянут к протону. Электроны, расположенные на наиболее отдаленных орбитах, имеют самую слабую электрическую связь с протонами. И если атому придать некоторой энергии из вне, например нагреть его, то под действием избыточной энергии электрон может покинуть свою орбиту, и соответственно свой атом.
Однако он может не только покинуть совой атом, но и занять место на орбите другого атома. Именно те электроны, которые расположены на самых удаленных от ядра орбитах, в электронике имеют практическое применение, поскольку при наличии дополнительной энергии они легко покидают свои орбиты и становятся свободными. А свободный электрон при перемещении уже может выполнять некоторую полезную работу.
Положительный и отрицательный ионы
Как мы уже ранее заметили, по умолчанию атом электрически нейтрален: положительный и отрицательный заряды равны и компенсируют другу друга. Но как только хотя-бы один электрон покинет сове место в атоме, то суммарный положительный электрический заряд протонов преобладает отрицательный заряд всех оставшихся электронов, поэтому такой атом вцелом имеет свойства положительного заряда и называется положительный ион.
Если атом получил дополнительный электрон, то в нем будет преобладать отрицательный заряд. В этом случае атом называется отрицательный ион.
Следует заметить, что не только атом будет иметь положительный или отрицательный заряд, но и молекула, а соответственно и вещество, которое содержит данный атом.
Электризация
Процесс получения дополнительного электрона или, наоборот потеря электрона, называется электризация. Если какое-либо тело имеет избыток или нехватку электронов, т.е. явно выраженный заряд какого либо знака, то говорят, что тело наэлектризовано.
Опытным путем установлено, что заряды одного знака отталкиваются, а разных знаков притягиваются. Подобный опыт можно повторить следующим очень известным образом: подвесить на нити два металлических шарика, которые изначально имеют нейтральный заряд. Далее придать одному шарику положительный заряд, а второму отрицательный. В результате шарики притянутся друг к другу. Если двум шарикам сообщить заряд одного знака, то они будут отталкиваться.
Теперь настало время вернуться к нашему опыту с натиранием шерстью пластмассовой палочки. При натирании пластмассы за счет сил трения, электронам, находящимся в атомах шерсти сообщается некоторая энергия, под действие которой они покидают свои атомы и занимают место на орбитах атомов пластмассы. В результате этого пластмассовая палочка приобретает отрицательный заряд за счет избытка электронов, поступивших из шерсти.
При натирании стеклянной палочки шелком, все происходит наоборот. Электроны поверхностного слоя стекла покидают палочку. В этом случае стеклянная палочка приобретает положительный заряд за счет перевеса суммарного заряда протонов.
Таким образом, изменение количества электронов в верхних слоях рассматриваемых материалов во время их трения, называют электризация трением.
Здесь следует заметить, что вследствие трения лишь очень мизерная часть атомов отдает свои электроны. Даже если сказать, что одна миллиардная часть атомов остается без электронов на внешней орбите, то это все еще будет слишком большим преувеличением, поэтому массы наэлектризованных тел остаются практически неизменными.
Также нужно заметить, что в результате электризации электроны ни откуда не возникают и никуда не деваются, а лишь переходят с атомов одного тела к атомам другого тела.
В нашем опыте мы использовали стекло, пластмассу, шерсть, шелк. По этим материалам очень плохо перемещаются электроны, поэтому они относятся к хорошим диэлектрикам – материалам, которые в отличие от проводников, имеют очень плохую проводимость.
В диэлектриках заряд остается на месте его возникновения и не может перейти по поверхности через все тело на другие, соприкасающиеся с ним предметы. Поэтому, когда мы натираем шерстью пластмассовую палочку, то образовавшиеся свободные заряды остаются на своих местах: электроны, покинув шерсть находят новые места на поверхности пластмассовой палочки.
Электризация металла
Если мы возьмем хорошо проводящий материал, например кусок металла, то при натирании его о диэлектрик, образовавшийся на поверхности металла заряд, мгновенно уйдет в землю через наше тело и другие предметы. Поскольку в отличии от рассматриваемых диэлектриков наше тело обладает относительно хорошей проводимостью и по нему сравнительно легко перемещаются заряды.
Опыт электризации трением не получится оценить и в том случае, когда мы возьмём два металлических предмета даже с хорошо изолированными рукоятками. При взаимном трении металл об металл, как и в предыдущих опытах возникнут свободные электроны. Однако вследствие наличия неизбежной шероховатости поверхностей не получится одновременно по всей поверхности отделить оба металлические предмета, и в последней точке соприкосновения двух поверхностей электроны перетекут через так называемый «мостик» пока их количество снова не станет таким же, как и до натирания.
Статическое электричество
И так, с первым пунктом мы разобрались и теперь знаем, что при натирании рассмотренных предметов, некоторые электроны получают избыточную энергию и покидают атомы одного тело, которое становится положительно заряженным и занимают места на орбитах атомов другого вещества, которое приобретает свойства отрицательного заряда. При этом заряды одного знака отталкиваются друг от друга, а разных знаков – притягиваются. Силы, порождаемые зарядами, называются электрическими. А сам факт наличия электрических зарядов и их взаимодействие называют электричество.
В рассмотренных примерах получают так называемое статическое электричество.
Электрическая сила
Теперь рассмотрим второй пункт нашего опыта. Что же происходит с кусочком бумаги? Почему она притягивается к заряженной пластмассовой палочке?
Сущность физического процесса здесь заключается в следующем. При поднесении заряженного тела к незаряженному телу под действием электрических сил происходит перемещение электронов к одному из краев тела. И этот край тела ввиду избытка электронов становится отрицательно заряженным, а противоположный край соответственно положительно заряженным. Средняя часть тела будет нейтрально заряженной. Таким образом, заряды смещаются по краям данного тела.
Ближе к поднесенному заряженному телу будут стремиться заряды противоположного знака. Например, если палочка заряжена положительно, то к ней притянется бумага, той поверхностью, на которой скопились отрицательные заряды. И наоборот.
Такое воздействие заряженным телом на другие тела, находящиеся на расстоянии, называют индуцированным воздействием.
Перемещение зарядов в проводниках при воздействии на него заряженным телом, происходит под воздействием силы электрического поля, свойства которого мы рассмотрим отдельно.
Здесь же мы еще заметим, что сила, с которой притягиваются либо отталкиваются тела, определяется величиной заряда, расстоянием между телами и средой, в которой находятся заряженные тела. Эта зависимость была установлена известным ученым Кулоном, и получила название закон Кулона.
Подытожим выше сказанное. Что такое электричество? Электричество – это наличие и взаимодействие зарядов разного знака. В дальнейшем вы увидим, что заряды образуются не только путем электризации трением, но и другими способами, например под действием протекания химических реакций. Именно так появляются электричество в батарейке, которую правильно называть гальванический элемент.
ЧТО ТАКОЕ ЭЛЕКТРИЧЕСТВО
Определение электричества достаточно простое и непонятное одновременно – это совокупность явлений, вызванных взаимодействием и перемещением электрических зарядов.
Оно требует пояснения что такое электрический заряд.
Электрический заряд – это физическая величина, которая определяет способность тел участвовать в электромагнитных взаимодействиях и самим являться источником электромагнитных полей.
Если продолжить по цепочке определять что такое поле, то мы постепенно уйдем от вопроса что такое электричество и начнем блуждать в системах дифференциальных уравнений, которые простыми словами описать невозможно.
Потому давайте вернемся к рассмотрению вопроса, вынесенного в заголовок данной статьи и постараемся объяснить про электричество на уровне для «чайников» или начинающих – последнее слово мне нравится больше.
Конечно, придется пожертвовать точностью и строгостью формулировок, но это неизбежный результат упрощения.
Начнем с энергии, то есть способности тела (или поля) совершать работу. Простой пример из механики – перемещение какого либо объекта – это результат совершения над ним работы.
Для того чтобы вскипятить воду ее надо нагреть. В этом случае мы имеем дело уже с тепловой энергией.
То есть видов энергий много, в том числе существует и энергия электрическая. А если вспомнить, что энергия может преобразовываться из одного вида в другой, то становится очевидным, что при использовании определенных устройств, оборудования и процессов можно получить электричество множеством различных способов.
Не будем вдаваться в суть физических процессов, примем источник электроэнергии за «черный ящик» и, не заглядывая внутрь, посмотрим что мы имеем на выходе.
На выходе мы имеем электродвижущую силу, то есть нечто способное создавать электрические поля и перемещать заряды (рис.1).
- механической в случае с электрогенератором;
- химической при использовании батарейки и пр.,
мы совершили работу по переносу электрического заряда, то есть получили определенное количество электричества и можем с ним что то сделать.
Следует заметить, что электричество в «чистом» виде для практических целей бесполезно, но мы можем полученную энергию передать по проводам в нужное место и там преобразовать ее в нужный нам вид: механическую, тепловую, световую и пр.
То есть имеем такую цепочку (рис.2):
- источник электропитания;
- электрическая сеть;
- потребитель электроэнергии.
- светильники;
- обогреватели;
- электродвигатели и т.д.
Таким образом, электричество является посредником в передаче и (или) преобразовании энергии.
Следует заметить, что в данной статье электричество рассмотрено в ключе практического его получения и применения.
С точки зрения «чистой» физики акценты смещаются в сторону таких понятий как поведение заряда в электрическом поле, возникновении потенциалов, градиентов потенциалов и множества других умных и трудно представляемых явлений.
Писать про это нет смысла, поскольку существуют учебники, курсы, монографии и мне их авторов не переплюнуть:).
* * *
© 2014-2024 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.
Электрический ток: что это Где он возникает, каким бывает и как рассчитывается?
Электрический ток – это направленное движение частиц — носителей электрического заряда. Каждый помнит это еще со школьных уроков. Но вот куда они движутся, зачем, почему? Разумеется, большинство наших читателей прекрасно это знает.
О днако в наше время у каждого неизбежно возникает необходимость объяснять, казалось бы, простые вещи другим – и в особенности детям. Про тот же электрический ток им расскажут только в восьмом классе. Но гораздо раньше в жизни малышей появляются фонарики, машинки на батарейках, неизбежные гаджеты, и это не говоря уж о розетках, в которые нежелательно засовывать металлические предметы и маленькие пальцы. Эйнштейн говорил: «Того, что вы не можете объяснить шестилетнему ребенку, вы сами не понимаете». Давайте же вместе докажем детям и самим себе, что мы не зря ходили в школу!
Что означает слово «электрический»
На это вопрос есть точнейший ответ. Оно значит «янтарный». Красавицы античной Греции далеко не первыми заметили, что если расчесаться янтарным гребнем, начнется потрескивание, волосы будут отталкиваться друг от друга и выглядеть более объемными. Секрет в том, что волосы забирают с поверхности янтаря множество мельчайших отрицательно заряженных частиц и сами становятся носителями отрицательного заряда. Они начинают отталкиваться друг от друга, а янтарный гребень – оставшись без отрицательных частиц – начинает их отовсюду притягивать: поэтому к нему липнут нитки, пылинки, бумажки.
В древней Греции слово ἤλεκτρον – то есть «электрон», и означало «янтарь». Для древнего грека большой ценностью был «электрон» с мухой внутри. А для нас электрон, без кавычек – это нечто гораздо более ценное.
Что заставляет частицы двигаться
Если каждый из нас потрет янтарную или пластмассовую палочку, она приобретет электрический заряд. И если мы все вместе понесем эти палочки в одном направлении, то… их движение не станет электрическим током. Почему? Потому что для настоящего тока частицы должны двигаться сами, под воздействием электрического поля. Отрицательные побегут к положительному полюсу, положительные – наоборот. В физике притягиваются противоположности. Впрочем, не только в физике.
Формула электрического тока, его характеристики и единицы его измерения
Может ли электроток сразу весь вытечь? Может. Вы это видели неоднократно, во время грозы. Влажный воздух плохой проводник – но все же проводник. Ба-бах! – и весь ток взял, да и вытек. Яркая вспышка, шума много, но лампочку так не зажжешь, и моторчик крутиться не заставишь. Чтобы полезное движение электронов не прекращалось, нужно удерживать разницу между полюсами. Нужно сохранять разность электрических потенциалов.
По-другому разность потенциалов еще называют… – уже забыли? – электрическим напряжением. Поле напрягается, заставляет двигаться частицы. Когда бегут частицы быстрее и в большем количестве? Когда поле сильнее, а напряжение – выше. Это просто, прямая пропорция (прямая пропорция – это когда помогают, а значит – можно умножать). Но на пути у частиц всегда что-нибудь есть и мешает движению. Чем больше перед ними помех – тем меньше становится скорость частиц, с которой они бегут и меньшее их количество преодолевает выбранный нами для измерения участок электрической цепи. Тут уже пропорция будет обратной (это когда мешают – и приходится делить). Что мы только что сказали простыми словами? «Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению». То есть: I=U/R, где I – сила тока, U – напряжение, R –сопротивление. Прошу любить и жаловать, это Закон Ома для участка цепи! Силу тока I измеряют в Амперах (A) в честь физика Андре-Мари Ампера, напряжение U в Вольтах, в честь итальянского физика Алессандро Джузеппе Анастазио Вольты, а сопротивление – в честь Георга Симона Ома. Да озарит сияние электрического света эти прекрасные имена!
А нам нужно создать электрическое напряжение и проложить для электрического тока стабильную регулируемую дорогу. То есть — нужен проводник!
Проводники – плохие и хорошие
По легенде, в Массачусетском технологическом институте родился анекдот про ужасного злодея, который устроился на железную дорогу проводником (по-английски «проводник» – conductor) и ограбил целый поезд. Его усадили на электрический стул, но сразу после казни он встал, отряхнулся и со злобной улыбкой прорычал: «Не выйдет! Я самый ужасный проводник!»
Увы, человеческое тело – тоже проводник, хотя и с большим сопротивлением. Поэтому электроток наносит ему такой тяжкий вред. Нам, с нашими гуманными и мирными целями, понадобится проводник хороший, то есть нечто, где есть много заряженных частиц, чтобы привести их в движение. Так что идем за металлом. В каждом металле содержится «электронный газ». Не волнуйтесь, он не пахнет и не взрывается, и это вообще не газ. Так называют банды электронов, которых много и им лишь бы куда-нибудь нестись.
Вспомним планетарную модель атома по Нильсу Бору, там в середине – положительно заряженное ядро, а вокруг летают электроны, с отрицательным зарядом, как планеты вокруг Солнца. Часть из них летает совсем близко к ядру, и ведет себя послушно, никуда не убегая. Но в структуре металла те электроны, что подальше от ядра, не слушаются его. Они могут убежать на соседний атом, или на следующий, причем без всякого порядка, хаотически. Атомы с этим смирились – в конце концов, один убежит, прибежит другой. Такой же отрицательный тип – но без них ведь тоже нельзя.
Вольница эта заканчивается, если вдруг наш металл оказывается в замкнутой электрической цепи. Электрическое поле отдает электронам жесткую команду – всем бежать строго в положительном направлении! А с электрическим полем не забалуешь.
Могут ли теперь все электроны убежать? Нет. Они бегут только тогда, когда цепь замкнута – а это значит, по кругу. Один убежал, другой прибежал на его место. Разомкнут цепь – и все они остановятся, и снова будут шастать только по соседним атомам. Никакой положительный потенциал не исправит их отрицательную сущность.
Почему ток течет от плюса к минусу
Тут вы можете вспомнить, как учитель физики сказал вам, что направление электрического тока всегда считается от плюса к минусу, но электроны-то отрицательно заряжены и бежать могут только к плюсу! Неувязочка?
Точно. Опыты с электричеством проводил в 1747 году Бенджамин Франклин, который изобрел громоотвод и нарисован (хотя и за другие заслуги) на купюре в сто долларов. Именно он придумал аналогию электрического тока с течением воды, и, наблюдая за «потоками жидкого электричества», решил, что оно должно течь от плюса к минусу. А понятие «электрон» британский физик и нобелевский лауреат Джозеф Джон Томпсон ввел только полтора века спустя, в 1897 году. Это тогда стало ясно, что во время грозы у облаков заряд положительный, а у Земли – отрицательный. Однако, из уважения к Франклину (не к ста долларам, а к громоотводу!) решили оставить все так, как он и говорил. «К тому же если электроны бегут от минуса к плюсу, то, – решили ученые мужи, – будем считать, что некая позитивная абстракция бежит и от плюса к минусу. Уважим старика!»
И «неувязочка» действительно не мешает электронам нестись хоть по воздуху, хоть по металлическому проводу навстречу плюсу, как им и положено.
Что такое постоянный ток
Постоянный ток — электрический ток, который с течением времени не изменяется по величине и направлению. Часто для того, чтобы объяснить, что такое электрический ток, приводят, следом за Франклином, в пример водопроводную трубу: только течет по ней не вода, а некое «электричество». Аналогия, однако, неважная: в трубе вода течет строго в одном направлении. А в проводах — далеко не всегда!
Иногда в сети электроны упорядоченно двигаются в одну сторону, как будто едут в поезде солидные господа, помахивая прохожим из окон с улыбками. Это называется постоянный ток.
Что такое переменный ток
Переменный ток — электрический ток, который с течением времени изменяется по направлению в электрической цепи. Электроны ведут себя, как взбесившаяся банда отрицательных персонажей, они носятся взад и вперед, меняя направление, то ускоряясь, то и вовсе останавливаясь – и тут же летят обратно. Если частота тока 10 Герц – они это вытворяют десять раз в секунду. Те, что в проводах, ведущих к нашим розеткам, где частота 50 Гц, меняют направление 50 раз в секунду. Такого буйства никакая труба не выдержит. А провода – ничего, справляются.
Возникает вопрос: зачем и кому понадобился такой беспорядок, и почему бы не заставить электроны всегда двигаться упорядоченно и плавно? Сперва так и было. Но пришлось от этого отказаться.
Почему ток сначала переменный
Если рамку из металлической проволоки поместить между полюсами магнита – то есть в электрическое поле, и начать вращать, электроны сначала побегут к плюсу. Но ведь рамка вращается, и плюс вдруг оказывается с другой стороны! Электроны притормаживают, разворачиваются и бегут в другую сторону. Но рамка провернулась снова – приходится бежать обратно. Да-да, это ток переменный.
Если рамка будет достаточно большой, а магнит очень сильным, то можно получить куда больше электрической энергии. А если магнит – не скрюченный металлический брусок, а электромагнит, и скорость вращения «рамки» очень высока – вот тут-то и начинается серьезное электричество. Когда нужен электрический ток в индустриальных масштабах – сначала придется генерировать ток переменный.
Почему электроэнергия не бесплатная
Вот только если подключить в электрическую цепь что-то, что энергию потребляет, лампочку, например – то вращать рамку становится гораздо труднее, словно кто-то ее тормозит и сдерживает! Природу не обманешь, помните закон Ломоносова-Лавуазье? «…тело, движущее своею силою другое, столько же оные у себя теряет, сколько сообщает другому, которое от него движение получает». Так что для того, чтобы зажечь миллионы лампочек, сотни тысяч кофеварок и микроволновок, запустить десятки тысяч станков, сотни поездов и т.д. – требуется преобразовать в удобную электрическую энергию какую-то энергию другого рода, и ее нужно где-то взять. Например, перегородить огромную реку, скажем, Енисей. Саяно-Шушенской ГЭС для генерации электроэнергии требуется 13090 м³/с – то есть тринадцать с мелочью тысяч тонн воды в секунду. В секунду! А уж какими силами оперирует реактор атомной электростанции, стоит почитать отдельно.
Почему в розетке переменный ток
В 1882 году в Нью-Йорке впервые в мире начали продавать электричество: появилась коммерческая электросеть, учредил которую хорошо знакомый нашим читателям Томас Альва Эдисон. Первым покупателем (и первым получателем счета за электроснабжение) стал некий Джеймс Богарт, осветивший свой дом лампочками от Эдисона. Реклама не потребовалась – дом светился сам по себе. Сегодняшний читатель уже и не знает, что неоновые вывески на домах «Универмаг», «Парикмахерская», «Кинотеатр» еще в 70-е годы прошлого века в нашей стране называли… «рекламами».
А вот конкуренция появилась сразу, между Edison Electric Light и Westinghouse Electric Corporation. Основателем первой был Эдисон, второй – Джордж Вестингауз, и на нее работал Никола Тесла.
Эдисон в юности был телеграфистом, всю жизнь имел дело с постоянным током – и переменные токи не любил. Так что и продавал он ток постоянный. Ему очень не хватало полноценного высшего образования и знания математики. Но он был воистину велик! До Эдисона желающие пользоваться электричеством должны были сами заботиться о генераторах электрической энергии для своих нужд. Это Эдисон предложил строить электростанции, вырабатывающие электроэнергию для многих потребителей сразу. Преклоним ненадолго головы в память о великом труженике и преобразователе мира!
Вот только постоянный ток невозможно передать на большое расстояние без больших потерь. 2-3 километра – а дальше и смысл теряется. Так что победила – и вполне закономерно — компания Вестингауза, вооруженная идеями Теслы, который стоял за ток переменный. И Тесла был велик, хоть и при всей гениальности, в отличие от Эдисона – не разбогател. Преклоним же головы и в его честь!
При работе с переменным током гораздо легче с помощью трансформаторов менять напряжение (и КПД трансформаторов – 98 %). Ток высокого напряжения передается с меньшими потерями. При постоянном токе так просто напряжением не поиграешь. А кроме того, возрастает риск электролитической коррозии, подземные кабели электропередачи быстрее выходят из строя, требуются провода с более широким сечением – то есть больше металла, больше ремонтов, конструкции тяжелее и дороже, а значит и цифры в счетах потребителей растут. Переменный ток удобнее для транспортировки. Электрические двигатели переменного тока тоже дешевле, проще в эксплуатации, да и надежнее – а сколько таких двигателей использует каждый в быту, от вентилятора и фена до кухонного комбайна и даже машинки для стрижки волос!
С тех пор и появились обозначения: переменный ток – Alternating Current помечали AC, а постоянный ток, Direct Current – значком DC. Да-да, великая рок-группа AC/DC названа в честь двух видов электрического тока.
Какой ток лучше
Оба лучше! И тот, и другой очень полезны – каждый на своем месте. Вам нравится ездить в метро? В сети метрополитена контактный рельс несет постоянный ток. А вот в розетке, куда мы втыкаем вилки наших электроприборов – ток переменный.
Но почему же в метро используется постоянный ток? А потому, что силу и напряжение постоянного тока можно менять более плавно. Расстояние между станциями невелико, а скорости требуются все большие, и современное движение без резких рывков достигается сочетанием постоянного тока с компьютерными технологиями. В 1935 году средняя скорость поездов Московского метрополитена составляла 30 км/ч при максимальной 40-45 км/ч. Сейчас на Филевской, Большой Кольцевой и Калининско-Солнцевской ветках скорость может достигать и 100 км/ч, московское метро официально признано самым быстрым в мире. Еще постоянный ток используют троллейбусы и трамваи. Но локомотив на обычной железной дороге, где требуется огромная мощность, работает уже на токе переменном.
Компьютеру для работы требуется постоянный ток разного напряжения для разных узлов. Всю работу по преобразованию токов выполняет блок питания, который подает в нужные места постоянный ток нужного напряжения. Так что оба тока прекрасны и надежно служат человечеству.
Какой ток опаснее: постоянный или переменный
Сначала ответим в краткой форме:
А теперь чуть-чуть подлиннее.
Постоянный ток опасен при высоком напряжении. Если случится упасть с платформы в метро – не лезьте под край платформы! Там контактный провод, и напряжение может доходить до 1500 В. А вам и ста хватит.
Переменный ток при высоком напряжении не лучше. Никола Тесла, впрочем, показывал, как переменный ток напряжением в 100 000 В бежит по его телу, и ничего ему не делает. Но он не говорил публике, что частота этого тока была 20 КГц, то есть электроны меняли направление своей беготни 20 тысяч раз в секунду, и не успевали забежать внутрь гениального тела.
Постоянный ток безопаснее при низком напряжении. Вы получали на свое тело 60 В напряжения, когда вам делали в поликлинике электрофорез. Переменный хорошо вас шарахнул бы, и всасывание лекарства сопровождалось бы очень неприятными эффектами.
Но вывод таков: если вы не физик, не электрик, не медсестра, не специалист — не лучше ли просто соблюдать правила техники безопасности? Если током (никому и такого не пожелаю) даже просто несильно дернет и напугает вашего ребенка – вам не все равно, переменным или постоянным?
Как отличить постоянный ток от переменного?
В сетях постоянного тока очень важно соблюдение полярности. А в бытовой электросети, в современном доме мы можем вставить вилку в розетку любой стороной – там ток переменный и ему все равно. Постоянный ток дает батарейка или аккумулятор: их мы устанавливаем в приборы строго в соответствии с обозначениями “+” и “-“. В обратном направлении постоянный ток просто не пойдет. С международными обозначениями AC и DC вы уже знакомы. А если в устройстве или внутри кабеля вы видите изолированные провода коричневого, зелено-желтого и синего цвета – не ошибетесь, там нужен ток переменный.
Кстати, полезно знать, что коричневый провод – это «фаза», то есть провод по которому переменный ток доставляется в дом, синий – «ноль», по которому электроны убегают, замыкая цепь, а желто-зеленый – «земля», в случае аварии он отсылает образовавшийся излишек электроэнергии в нашу планету, чтобы не устроить пожара и не спалить все оборудование в доме. Ну и, понятное дело, браться без изолирующих резиновых перчаток одной рукой за фазу, а другой за ноль или «землю» очень опасно для жизни. Напряжение в сети приблизительно 220 вольт (V), сила тока 10 ампер (А). Но это напряжение может подскочить и до 300 V, сила тока находится в дельте 10-16 А. Самому молодому и здоровому человеку не поздоровится. А старику с больным сердцем может хватить для самого печального исхода и 12 вольт.
Электрический ток при неправильной эксплуатации приборов грозит коротким замыканием и пожаром. А посему вывод:
Все работы, связанные с монтажом, заменой и ремонтом электрических сетей, проводов, розеток и прочего доверяйте только квалифицированному электрику. Если провода нагреваются, розетка искрит, часто выключается автомат квартирной сети – зовите квалифицированного электрика. Электрический ток требует знаний и уважения!
Мощность тока – или за что мы платим?
И напоследок – самая интересная глава.
В счетах за электричество мы платим не за вольты, не за амперы – там проставлены загадочные киловатты и часы. Что это?
Вольты и амперы – это характеристики наших сетей, что-то вроде документа, подтверждающего, что у них есть электроэнергия на продажу. Ну да электрик с удостоверением получает от нас деньги не за бумажку с печатью, а за то, что он выполнил какую-то работу. Так и с электрическим током. Мы платим деньги за израсходованную мощность.
Кстати, часто можно встретить в тех же счетах, в журналистских текстах и даже в официальных бумагах формулу кВт/ч. Это совершенно неправильно, киловатты на часы нам делить не нужно. Сколько электроэнергии мы потратим из сети – за такое количество мы и должны заплатить. Киловатты на часы в этом случае не делят, а умножают: кВт⋅ч. И тогда мы узнаем, что включив на полчаса прибор мощностью 4 кВт мы затратим за 30 минут 4 кВт × 0,5 ч = 2 кВт⋅ч – за которые нам нужно заплатить 2 кВт⋅ч умножить на стоимость 1 кВт⋅ч.
И если у нас постоянно работает прибор, который нам в принципе не нужен, если мы вовремя не выключаем обогреватель или плиту, а телевизор понапрасну надрывается в пустой комнате – по этой простой формуле можно вычислить цену нашей рассеянности в рублях, и узнать, сколько электроэнергии она съедает впустую!
876 Комментировать —>
Использованные источники: Marek Piwnicki / Unsplash, Bridger Bowcutt / Unsplash, Tiouraren (Y.-C. Tsai) / Wikimedia Commons (cc by-sa), CALITORE / Unsplash, Garth Manthe / Unsplash, Muhammad Nasir / Unsplash, Blake Wheeler / Unsplash,Miguel / Unsplash Ivan Radic (cc by)