Какие нужно иметь приборы чтобы можно было измерить величины позволяющие определить мощность эл тока
Перейти к содержимому

Какие нужно иметь приборы чтобы можно было измерить величины позволяющие определить мощность эл тока

  • автор:

Какие нужно иметь приборы, чтобы можно было измерить ве­личины, позволяющие определить мощность электрического тока?

Пожалуйста, войдите или зарегистрируйтесь для публикации ответа на этот вопрос.

решение вопроса

Связанных вопросов не найдено

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

  • Все категории
  • экономические 43,679
  • гуманитарные 33,657
  • юридические 17,917
  • школьный раздел 612,713
  • разное 16,911

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

  • Обратная связь
  • Правила сайта

Пусконаладочные работы при монтаже электроустановок — Измерение силы тока, напряжения и мощности

Рис. 78. Электрическая цепь:
а —без измерительных приборов, б — с включенными приборами для измерения тока, напряжения и мощности
Рассмотрим простейшую электрическую цепь (рис. 78, а), в которой нагрузка (сопротивление rн) подключена к зажимам источника питания с напряжением U. Режим, работы этой цепи характеризуется силой тока /, протекающего по ней, напряжением U на нагрузке и мощностью Р. Для их измерения в проверяемую цепь включены соответствующие электроизмерительные приборы: амперметр А и токовая катушка ваттметра W последовательно с нагрузкой, а вольтметр V и катушка напряжения ваттметра W — параллельно нагрузке (рис. 78, б).
Следует иметь в виду, что только при правильном выборе электроизмерительных приборов и их включении в проверяемую цепь возможно с достаточной точностью измерить соответствующие величины.
При пусконаладочных работах используют обычно переносные приборы класса точности 0,5—1 и лишь в отдельных случаях, например при измерении параметров и характеристик электрических машин, электроизмерительные приборы повышенной точности. Для измерения в цепях постоянного тока следует применять магнитоэлектрические приборы., имеющие равномерную шкалу, обладающие высокой точностью и стабильностью показаний и не подверженные влиянию внешних магнитных полей. Для измерения силы тока и напряжения в цепях переменного тока, как правило, используют электромагнитные приборы, а для измерения мощности — электродинамические или ферродинамические ваттметры. Необходимо оценивать порядок измеряемой величины и подбирать прибор на такой предел измерения, чтобы показания его можно было снимать в конце шкалы или во второй ее половине.
Нужно помнить, что любой электроизмерительный прибор имеет определенное электрическое сопротивление и, будучи включенным в электрическую цепь, потребляет некоторую мощность. Следовательно, включение электроизмерительных приборов в проверяемую электрическую цепь в какой-то мере изменяет ее параметры и режимы, а сами измерительные приборы покажут не действительные величины, определяющие режим работы проверяемой цепи, а характеризующие режим работы уже другой электрической цепи, образованной после включения в нее электроизмерительных приборов.
Допустим, что общее сопротивление амперметра и токовой катушки ваттметра в электрической цепи (см. рис. 78) только на порядок (в 10 раз) меньше сопротивления нагрузки rн. Тогда сила тока в этой цепи уменьшится за счет включения в нее приборов в 1,1 раза (почти на 10%). Такого же результата следует ожидать в этом случае и от измерения силы тока в проверяемой цепи, т. е. ошибка измерения составит 10% независимо от того, какого класса точности будет взят амперметр. Особенно внимательно следует относиться к подбору электроизмерительных приборов при измерениях в высокоомных цепях, например, в различных электронных схемах, сопротивление отдельных цепей которых составляет сотни тысяч и даже миллионы Ом, в то время как сопротивление многих магнитоэлектрических вольтметров на пределе измерения 100—300 В составляет порядка 100 000 Ом, а электродинамических приборов— 10000 Ом.
Таким образом, во избежание больших ошибок при измерениях надо выбирать приборы с внутренним сопротивлением, по крайней мере на два порядка (в 100 раз) меньшим для токовых обмоток и большим для обмоток напряжения по сравнению с сопротивлением нагрузки проверяемой цепи.
При подборе приборов следует обращать внимание на условные обозначения на их шкалах, характеризующие как сами приборы, так и условия их эксплуатации.

§ 18. Характеристика переносных показывающих электроизмерительных приборов общего назначения для измерения напряжения, силы тока и мощности

Магнитоэлектрические приборы (табл. 4) применяют для измерений в цепях постоянного тока. Они надежны в работе, позволяют получать измерения с большой точностью, имеют равномерную шкалу, не подвержены влиянию магнитных полей и колебаниям температуры окружающего воздуха. На основе этих приборов изготовляют приборы, предназначенные для измерения в цепях переменного тока, снабжая их выпрямителями или термопреобразователями.
Магнитоэлектрические приборы широко используют при общеналадочных работах, не требующих высокой точности измерения, при специальных видах наладочных работ, связанных с определением параметров отдельных видов оборудования, а также при проверке других электроизмерительных приборов, при которых требуется повышенная точность измерения.
Для расширения пределов измерения силы постоянного тока применяют шунты. Последовательно с нагрузкой Н включают шунт, а уже к нему подключают амперметр (рис. 79). Очевидно, зная сопротивление шунта гш, сопротивление обмотки прибора гА, можно определить коэффициент К, показывающий,,

Рис. 79. Схема включения амперметра с шунтом
во сколько раз возможно расширить предел измерения по току из соотношения

Если же известны коэффициент К и сопротивление обмотки прибора, можно, пользуясь тем же соотношением, определить сопротивление шунта. Например, требуется с помощью миллиамперметра на 50 мА, сопротивление обмотки которого 10 Ом, измерить ток в 1 А. Коэффициент/С=— =20, тогда/С—1=20—1 = 19 и
Для расширения пределов измерения вольтметров на постоянном токе применяют добавочные резисторы (рис. 80). Если вольтметр без добавочного резистора рассчитан на измерение напряжения до U В и имеет сопротивление гв Ом, то для измерения напряжения в К раз большего необходимо, чтобы общее сопротивление обмотки вольтметра и добавочного резистора было также в К раз больше сопротивления обмотки вольтметра. Промышленностью выпускаются различные шунты (табл. 5) и добавочные резисторы (табл. 6) для расширения пределов измерения приборов постоянного тока.

Электромагнитные приборы используют преимущественно для измерения в цепях переменного тока. Они надежны в эксплуатации, просты по конструкции и недороги, а также позволяют производить измерения при выполнении большинства общеналадочных работ с достаточной точностью.

Таблица 4
Характеристика магнитоэлектрических приборов

Ток потребления и падение напряжения на приборе

Амперметр Ml 104

0,75; 1,5; 3; 7,5; 15; 30; 75; 150 мА

27; 55; 68; 80; 80; 80; 80 мВ

0,3; 0,75; 1,5; 3; 7,5; 15; 30 А

85: 100; 100; 100; 140; 160; 230 мВ

Вольтметр Ml 106

45 и 75 мВ; 0,15; 0,3; 0,75; 1,5; 3; 7,5; 15; 30; 75; 150; 750 В

.Милливольтметр Ml 105

Вольтамперметр Ml 107

45; 75; 150; 300; 750 мВ

1,5; 3; 7,5; 15; 30; 75; 150; 300; 600 В

0,75; 1,5; 3; 7,5; 15; 30; 75; 150 мА

27; 55; 68; 80; 80; 80; 80; 80 мВ

0,3; 0,75; 1,5; 3; 7,5; 15; 30 А

85; 100; 100; 100; 140; 160; 230 мВ

Вольтамперметр Ml 108

1,5; 3; 7,5; 15; 30; 75; 150; 300 В

0,3; 0,75; 1,5; 3; 7,5; 15 и 30 А

85; 100; 100; 100; 140; 160; 230 мВ

Вольтамперметр Ml 109

0,15; 0,3; 0,6; 1,5; 6; 15: 60 мА

15; 45; 65; 65; 75; 75; 75 мВ

15; 30; 60; 150; 300;. 600; 1500; 3000 мВ

0,015; 0,03; 0,075; 0,15; 0,3; 0,75; 1,5; 3; 7,5; 15; 30 А

32—47 мВ 48—68 мВ 87—175 мВ

Продолжение табл. 4

И редел измерения

Ток потребления и падение напряжения на приборе

Милливольтметр Ml 05

45 мВ 75 мВ
150; 300; 750; 1500; 3000 мВ

4,5 мА
3,5 мА 3 мА

45 и 75 мВ
3; 7,5; 15; 30; 75; 150; 300; 600 В

4,5 и 3,5 мА соответственно 3 мА

45 и 75 мВ
3; 15; 75; 150; 300 В

4,5 и 4 мВ соответственно 3 мА

0,75; 1,5; 3; 7,5;
15; 30 А

50; 100; 500; 1000 мкА

10; 50; 200; 1000 мкА J 49,5—490 мВ

Миллиамперметр Ml 09

10; 50; 200; 1000 мВ

45; 75; 150; 3000 мВ

75; 150; 300; 600 В

Микроамперметр М95
То же, с универсальным шунтом Р4

0,1; 1; 10 мкА
(основные) 1; 10; 100 мкА (дополнительные) Пределы измерения могут быть увеличены в 5, 10, 50, 100 , 500 и 1000 раз

Таблица 5
Номинальные параметры шунтов

Номинальный ток, А

15—30—75 мА; 0,15—0,3—0,75; 1,5—3; 7,5—15; 30

Двухнедельные: 0,3—0,75; 1,5—7,5; 15—30; однопредельные: 75; 150

75; 100; 150; 200; 300 ; 500; 750; 1000;

1500; 2000; 3000; 4000; 5000; 6000; 7500

2000; 3000; 4000; 5000; 6000

Таблица 6
Номинальные параметры добавочных резисторов к вольтметрам

Номинальное напряжение сопротивления, В

Р82/2 Р82/3 Р 10З Р10З Р 10З

3 мА, 3 В 3 мА, 3 В 3 мА 5 мА 7,5 мА

7,5—15—30—75— 150—300—600
750—1500
1000; 1500
600; 1000; 1500; 3000 600; 1000; 1500

Однако для специальных наладочных работ, связанных с определением точных параметров отдельных видов оборудования, и для проверок других измерительных приборов, при которых требуется повышенная точность измерения, электромагнитные приборы не применяют.

Данные приборов Э59

Приборы Э59 электромагнитной системы класса точности 0,5, имеющие шкалу с зеркальным отсчетом. — многопредельные выпускаются для измерения напряжения (вольтметры Э59/1, Э59/2 и Э59/10) и силы тока (амперметры Э59/3, Э59/4, Э59/5, Э59/6 и миллиамперметры Э59/7, Э59/8, Э59/9). Нормальная область частот 45—55 Гц. Вольтметр Э59/10 снабжен калиброванными проводниками с общим сопротивлением 0,035 Ом. Пределы измерения в этом приборе изменяются подключением калиброванных проводников к соответствующим зажимам.

Рис. 81. Ампервольтваттметр Д552:
ТТ — встроенный трансформатор тока, PI — переключатель рода измеряемых величин, Р2 — переключатель пределов измерения по напряжению, И — обмотки прибора, Др — дроссель
Остальные приборы этой серии имеют поворотный переключатель пределов измерения. Основные данные приборов Э59 приведены в табл. 7.
Электродинамические приборы используют при наладочных работах реже, чем приборы магнитоэлектрической и электромагнитной систем, поскольку они, имея слабое внутреннее магнитное поле, при работе подвержены влиянию внешних магнитных полей и потребляют значительную мощность. Однако эти приборы пригодны для измерения силы тока, напряжения и, что особенно важно, мощности в цепях постоянного и переменного тока. Полезен для проведения пусконаладочных работ универсальный многопредельный электродинамический ампервольтваттметр Д552 класса точности 0,5 (рис. 81), имеющий встроенный трансформатор тока и следующие пределы измерения: по току 0,1—0,25—0,5—1—2,5—5—10—25—50 А, по напряжению 100— 150—300—450—600 В и соответственно 45 пределов измерения по мощности. Номинальная область частот 45—500 Гц.

Рис. 82. Схема измерительного комплекта К50:
ТТ 1, ТТ2 — блоки трансформаторов тока, ФУ — фазоуказатель, Кн — кнопка фазоуказателя, П 1 — 114 — переключатели

Сопротивление цепей напряжения на пределах 100, 150, 300, 450 и 600 В по напряжению соответственно 2356, 3536, 10 000, 15000 и 20 000 Ом при измерении напряжения и 3333, 5000, 10 000, 15000, 20 000 Ом при измерении мощности. Последовательная цепь прибора на пределах измерения 0,1—0,25—0,5—1—2,5—5—10—25 и 50 А имеет соответственно сопротивления 175—28—7—1,75—0,3—
0,08—0,025—0,007—0,003 Ом и индуктивность 80—13—3,4—0,9— 0,14—0,038—0,011—0,002 и 0,0008 мГ.
Для измерения мощности при наладочных работах применяют ферродинамические ваттметры Д539 (однофазные) и Д571 (трехфазные двухэлементные). Стальной магнитопровод в измерительном механизме позволяет создать более сильное внутреннее магнитное поле и, следовательно, уменьшить влияние внешних магнитных полей на результаты измерений.

Рис. 83. Схема измерительного комплекта К51:
TTl, ТТ2 — трансформаторы тока, /71 — штепсельный переключатель, П2 — переключатель фаз, ПЗ — переключатель пределов измерения по напряжению, П4 — переключатель для измерения активной или реактивной мощности, ФУ — фазоуказатель

Удобны при проведении пусконаладочных работ измерительные комплекты, позволяющие одновременно измерять силу тока, напряжение и мощность, например при измерении загрузки электродвигателей.
Измерительный комплект К50 (рис. 82), представляющий собой набор электроизмерительных приборов, смонтированных на общей панели и встроенных в металлический корпус со съемной крышкой, снабжен отдельным блоком трансформаторов тока ТТ1. Габариты блока трансформаторов тока 330x110x290 мм, масса 8,2 кг. На панели комплекта К50 установлены амперметр и вольтметр Э59, однофазный ваттметр Д539, встроенный трансформатор тока на первичные токи 1—50 А, фазоуказатель ФУ, переключатели (П4 — для переключения фаз, П1 — пределов измерения по току, ПЗ—пределов измерения по напряжению и П2 — для переключения полярности ваттметра) и выводные зажимы. Пределы измерения по току 1—2,5—5—10—25—50—100—• 250—500—600 А, по напряжению 150—300—450—600 В и соответственно 40 пределов измерения по мощности. Сопротивление и индуктивность последовательной цепи на пределах 1—2,5—5— 10—25 и 50 А соответственно 1—0,2—0,05—0,02—0,01—0,006 Ом и 0,35—0,07—0,02—0,006—0,002 и 0,001 мГ. Сопротивление параллельных цепей на пределах измерения по напряжению 150—300— 450 и 600 В соответственно для комплекта 14 286, 28 571, 42 857, 57 143 Ом и отдельно для ваттметра 50000, 100000, 150000, 200 000 Ом, а для вольтметра 20000, 40000, 60 000 и 80 000 Ом.
Измерительный комплект К.51 (рис. 83) предназначен для измерения силы тока, напряжения и мощности в трехфазных цепях переменного тока. В него входят три амперметра и вольтметр Э59, трехфазный двухэлементный ваттметр Д571, выносной блок трансформаторов тока ТТ1. Габариты комплекта 600x390x220 мм, масса 19 кг (без блока трансформаторов тока). Пределы измерения по току 1—2,5—5—10—25—50 А (без блока И520) и 100—250—500—600 А (с блоком И520), по* напряжению 125—250—375—500 В и соответственно 40 пределов измерения по мощности от 0,2 до 480 кВ-А. Сопротивление и индуктивность последовательной цепи на пределах 1—2,5—5—10—25—50 А соответственно 1,05—0,2—0,06—0,02—0,007—0,006 Ом и 1—0,13— 0,04—0,013—0,003—0,001 мГ. Сопротивление параллельных цепей на пределах измерения по напряжению 125—250—375—500 В при измерении активной мощности соответственно по фазам АВ и СБ — 25000—50000—75000—100000 Ом, между фазами АС 50000—100000—150000—200 000 Ом, а при измерении реактивной мощности сопротивление между любыми двумя фазами соответственно 28 868, 57736, 86 604, 115472 Ом (при подключенном вольтметре). Ток вольтметра при полном отклонении указателя 7,5 мА. Номинальный ток параллельных цепей ваттметра 5 мА.
Комбинированные малогабаритные приборы (ампервольтомметры и вольтомметры) являются универсальными многопредельными измерительными приборами детекторной системы. Они предназначены для измерения в цепях постоянного и переменного тока силы тока, напряжения и сопротивления (ампервольтомметры) или напряжения и сопротивления (вольтомметры). Промышленностью выпускаются такие приборы в большом ассортименте, но все они построены по одному принципу. Рассмотрим некоторые из указанных приборов, используемых при наладочных работах.

Рис. 84. Ампервольтомметр ТТ-3: а —схема, б — включение для измерения разных величин
Ампервольтомметр ТТ-3 (рис. 84) служит для измерения на постоянном токе напряжения и силы тока, а также сопротивлений. Поворотный переключатель позволяет быстро подготовить прибор для измерения нужной величины на необходимом пределе. Питание прибора осуществляется от гальванического элемента 1,3 ФМЦ-0,25 при измерении сопротивлений на пределах 2— 20 кОм и 0,2 МОм (положение переключателя Xl, Х10 или Х100). На пределе 2 МОм (положение переключателя Х 1000), питание прибора осуществляют от двух последовательно соединенных гальванических элементов указанного типа (оба элемента встроены в прибор). При измерении сопротивлений на пределе 20 МОм (положение переключателя X10 000) питание прибора осуществляют от внешнего источника постоянного напряжения 24—30 В. Внутреннее сопротивление прибора при измерении напряжения составляет 10 кОм на 1 В. Таким образом, при измерении напряжения на пределе 300 В сопротивление прибора будет равно 3000 кОм или 3 МОм. Внутреннее сопротивление прибора при измерении переменного напряжения составляет 3,3 кОм на 1 В.

Прибор имеет пять шкал: нижнюю — для измерения переменного напряжения до 1 В, следующую за ней — для измерения сопротивлений, еще одну —для измерения переменного напряжения до 3 В и две верхние — для измерения силы тока и напряжения в цепях переменного тока (предпоследняя) и в цепях постоянного тока (последняя). На рис. 84, б показано, как должен включаться прибор при измерении силы тока, напряжения и сопротивлений, а также, по каким шкалам ведется отсчет показаний прибора.
Ампервольтомметр Ц57 предназначен для измерения силы тока и напряжения в цепях постоянного тока и в цепях переменного тока с частотой 45—5000 Гц, сопротивлений постоянному току и емкости до 0,3 мкФ на частоте 50 Гц. Прибором можно измерять также уровень передачи, усиления и затухания от —10 до — 12 дБ. На первых трех пределах измерения сопротивлений 3,30 и 300 кОм достаточно встроенного в прибор гальванического элемента 1,3 ФМЦ-0,25. Для измерения сопротивлений на последнем пределе (3 МОм) требуется дополнительный внешний источник постоянного напряжения.
При измерении сопротивлений стрелку прибора устанавливают регулировочным реостатом, ручка которого выведена на боковую стенку прибора. При измерении емкости тем же реостатом прибор регулируют так, чтобы при подведении к входным зажимам * и U переменного напряжения 220 В стрелка прибора отклонялась на всю шкалу. Ток, потребляемый прибором при измерении постоянного напряжения на пределе 75 мВ, составляет 105 мкА, а на остальных пределах — 50 мкА. При измерении переменного напряжения потребляемый прибором ток составляет 0,75 мА на пределе измерения 7,5 В и 0,5 мА на других пределах. Падение напряжения на приборе при измерении силы постоянного тока составляет 0,3 В, а при измерении силы переменного тока — 1 В.
Ампервольтомметр Ц435 предназначен для измерения силы тока и напряжения в цепях постоянного тока и цепях переменного тока с частотой 45—20 000 Гц, сопротивления постоянному току и емкостей. Внутреннее сопротивление прибора при измерении постоянного напряжения составляет 20 кОм на 1 В, а при измерении переменного напряжения — 2 кОм на 1 В.
Вольтом метры Ц430 и Ц430/1 (рис. 85) предназначены для измерения напряжения постоянного и переменного тока, а также сопротивления постоянному току.

Рис. 85. Вольтомметр Ц430/1:

а — схема, б, в, г — включения прибора для измерения напряжений, сопротивлений м емкостей, д—номограмма для определения измеряемой емкости по показанию прибора

Таблица 8
Комбинированные малогабаритные детекторные приборы

Какими приборами можно измерять мощность тока в быту и в профессиональной сфере?

Какими приборами можно измерять мощность тока в быту и в профессиональной сфере?

Оценить состояние электрической сети можно по нескольким характеристикам, и одна из них – мощность. Это свойство сети отображает, какую величину работы выполняет ток за определенное время. Чтобы определять этот показатель, необходимы специальные приборы для измерения мощности электрического тока.

Данная характеристика важна, так как в ее пределах должна находиться мощность любой техники, подключаемой к питанию. Если не соблюдать это правило, могут случиться поломки и сбои, замыкания и даже возгорание.

Вычислить мощность возможно несколькими методами – косвенным и прямым. Первый применим для цепей постоянного тока. Здесь понадобятся такие приборы для измерения электрического тока – амперметр и вольтметр или осциллограф, мультиметр. Ими замеряются напряжение и сила тока, а мощность вычисляется умножением этих показателей. Для работы с переменным током нужен один прибор, измеряющий мощность электрического тока, – ваттметр. Такой измеритель быстро вычисляет необходимое значение.

Ваттметр для измерения мощности

Приборы для измерения электрического тока: сфера использования

Радиолюбители, мастера-ремонтники, электрики в своем арсенале имеют разные виды оборудования: прибор для измерения электрического напряжения, амперметр или мультиметр, токовые клещи, USB-осциллограф и многое другое. Но и ваттметр очень востребован, так как в конкретном случае замера мощности не всегда удобно носить по несколько инструментов. Такой прибор для измерения электрического тока, как ваттметр, быстро справляется с задачами.

Приборы для измерения мощности электрического тока нашли свое применение в энергопромышленных отраслях, машино- и приборостроении, в ремонтных мастерских, в строительстве. Ими пользуются домашние мастера в домашних условиях для контроля над энергопотреблением и т.д. Остановимся на ваттметрах. Их применяют для:

  • расчета мощности техники, оборудования;
  • диагностики электросетей и их отрезков;
  • тестирования электроустановок, в качестве показывающей измерительной техники;
  • наблюдения за работой оборудования;
  • контроля за расходом энергии.

Какие бывают ваттметры

Как и многая другая техника такого класса и предназначения, этот прибор, измеряющий мощность электрического тока, исходя из способа замера, преобразования цифр и демонстрации итоговых показателей может быть таких видов:

  • Аналоговые. Подразделяются на самопишущие и показывающие, демонстрируют мощность отрезка цепи. Индикатор измерителя имеет движущуюся стрелку и шкалу в виде полусферы с нанесенными на ней делениями (соответствуют измеряемым величинам).
  • Цифровые. Способны измерять «паразитарную» (реактивную) и «полезную» (активную) мощности, вывести значения и других характеристик электросети, расхода энергии. Замеренные значения возможно отправить на удаленный ПК.

Приборы для измерения электрического тока из первой группы функционируют на взаимодействии подвижной и статичной катушек. Первая связана с напряжением, включается параллельно, возможны смещения в сторону. Вторая имеет малое количество витков, переключается последовательно и связана с током. Сопротивление первой катушки больше второй. При замерах ток движется по статичной катушке. Чем выше его значение, тем больше подвижная катушка отклоняется и передает отклонение на стрелку. Так мастер видит изменение показаний, в которых автоматом учтены ампераж и напряжение (от этих характеристик зависит мощность).

Цифровой ваттметр

Цифровой прибор для измерения электрического тока вычисляет мощность методом вычисления с начала силы тока и напряжения. Для выполнения замеров на входе установлены:

  • последовательно нагрузке – преобразователь тока;
  • параллельно – преобразователь напряжения.

Измеренные значения благодаря современному аналого-цифровому преобразователю мгновенно поступают на внутренний вмонтированный микро-чипсет. Микропроцессор выполняет необходимые расчеты, на экран и внешние подсоединенные устройства выдает как итог замеряемые значения.

По области, в которой применяются приборы для измерения мощности электрического тока, их можно условно объединить в группы.

Чаще всего ответственные потребители в домах и квартирах пользуются самым простым цифровым прибором, измеряющим мощность электрического тока, – ваттметром в форме сетевого переходника (адаптера). Предназначение устройства – наблюдение и диагностика мощности потребления, подсчет стоимости использованной конкретным потребителем электроэнергии в быту.

Обычно ваттметр подключается в ту розетку, от которой запитан прибор, чье потребление нужно рассчитать. В сам измеритель подключается техника, на адаптере включается кнопка активации, и он начинает отсчитывать время и фиксировать объем потребляемой энергии с момента включения. Фиксируется тот объем, который «отдает» через свою розетку прибор для измерения электрического тока. Если на приборе установить цену на киловатт/час, то можно увидеть и стоимость потребленной энергии. Такие ваттметры-адаптеры могут измерять мощность до 3600 Вт.

Профессиональные

Такие измерители отличаются от простых бытовых расширенным набором функций и возможностей, а также повышенной точностью. Профессиональный прибор, измеряющий мощность электрического тока, может проверять более простые измерители, диапазон измерений намного шире.

Ваттметр профессиональный

Профессиональные измерители отличаются также более высокой стоимостью, как и другое стационарное измерительное оборудование этого класса, из-за высоких требований к скорости измерений, отсутствия погрешностей. Для большинства моделей ваттметров для профессионалов неважна форма тока, устройства замеряют не только распространенные виды тока – постоянный и переменный, но и другие его разновидности (импульсный и т.д.), способны определить мощность с фиксацией ее коэффициента и типа нагрузки. Ваттметры такого класса производятся для работы и с цепями на одну фазу, а также на три фазы. Для оценки мощности постоянного тока также годятся мультиметры.

Где купить

Наш интернет-магазин Radio-Shop работает уже 10 лет, поэтому мы знаем все о качественном измерительном оборудовании, радиотехнике и инструментах. В каталоге магазина представлены не только приборы для измерения электрического тока, но и осциллографы (в том числе и портативный осциллограф), токоизмерительные клещи, радиодетали, инструменты, оптика, техника для сада и дома: насосы, газонокосилки, садовые инструменты, опрыскиватели и многое другое.

В Radio-Shop можно купить все не выходя из дома, а специалисты компании всегда готовы помочь с выбором и предоставить всю актуальную информацию о любом товаре. Получить товар можно в Киеве, Львове или другом городе с помощью доставки почтовыми компаниями. В нашем блоге каждый сможет найти полезную информацию и практические советы.

Измерение силы тока, напряжения и мощности в электрических цепях

В простейшей электрической цепи (рис. 1, а) нагрузка (сопротивление rн) подключена к зажимам источника питания с напряжением U. Режим работы этой цепи характеризуется силой тока I, протекающего по ней, напряжением U на нагрузке и мощностью Р. Для их измерения в проверяемую цепь включены соответствующие электроизмерительные приборы: амперметр А и токовая катушка ваттметра W последовательно с нагрузкой, а вольтметр V и катушка напряжения ваттметра W — параллельно нагрузке (рис. 1, б).

Рис. 1. Электрическая цепь: а — без измерительных приборов; б — с включенными приборами для измерения тока, напряжения и мощности

Только при правильном выборе электроизмерительных приборов и их включении в проверяемую цепь возможно с достаточной точностью измерить соответствующие величины.

При пусконаладочных работах обычно используют переносные приборы класса точности 0,5–1 и только в отдельных случаях, например при измерении параметров и характеристик электрических машин, электроизмерительные приборы повышенной точности. Для измерения в цепях постоянного тока следует применять магнитоэлектрические приборы, имеющие равномерную шкалу, обладающие высокой точностью и стабильностью показаний и не подверженные влиянию внешних магнитных полей. Для измерения силы тока и напряжения в цепях переменного тока, как правило, используют электромагнитные приборы, а для измерения мощности — электродинамические или ферродинамические ваттметры. Необходимо оценивать порядок измеряемой величины и подбирать прибор на такой предел измерения, чтобы показания его можно было снимать в конце шкалы или во второй ее половине.

Следует помнить, что любой электроизмерительный прибор имеет определенное электрическое сопротивление и, будучи включенным в электрическую цепь, потребляет некоторую мощность. Следовательно, включение электроизмерительных приборов в проверяемую электрическую цепь в какой-то мере изменяет ее параметры и режимы, а сами измерительные приборы покажут не действительные величины, определяющие режим работы проверяемой цепи, а характеризующие режим работы уже другой электрической цепи, образованной после включения в нее электроизмерительных приборов.

Магнитоэлектрические приборы (табл. 1) применяют для измерений в цепях постоянного тока. Они надежны в работе, позволяют получать измерения с большой точностью, имеют равномерную шкалу, не подвержены влиянию магнитных полей и колебаниям температуры окружающего воздуха. На основе этих приборов изготавливают приборы, предназначенные для измерения в цепях переменного тока, снабжая их выпрямителями или термопреобразователями.

Магнитоэлектрические приборы широко используют при общеналадочных работах, не требующих высокой точности измерения, при специальных видах наладочных работ, связанных с определением параметров отдельных видов оборудования, а также для проверки других электроизмерительных приборов, при которых требуется повышенная точность измерения.

Таблица 1. Характеристика магнитоэлектрических приборов

Наименование и тип прибора

Класс точности

Предел измерения

Ток потребления и падение напряжения на приборе

Амперметр MI 104

0,75; 1,5; 3; 7,5; 15; 30; 75; 150 мА

27; 55; 68; 80; 80; 80; 80 мВ

Вольтметр MI 106

45 и 75 мВ; 0,15; 0,3; 0,75; 1,5; 3; 7,5; 15; 30; 75; 150; 750 В

Милливольтметр MI 105

Милливольтметр MI 105

Вольтамперметр MI 107

45; 75; 150; 300; 750 мВ

1,5; 3; 7,5; 15; 30; 75; 150; 300; 600 В

Вольтамперметр MI 108

1,5; 3; 7,5; 15; 30; 75; 150; 300 В

Вольтамперметр MI 109

1,5; 3; 7,5; 15; 30; 75; 150; 300 В

Вольтамперметр MI 109

0,15; 0,3; 0,6; 1,5; 6; 15; 60 мА

15; 45; 65; 65; 75; 75; 75 мВ

15; 30; 60; 150; 300;. 600; 1500; 3000 мВ

0,015; 0,03; 0,075; 0,15; 0,3; 0,75; 1,5; 3; 7,5; 15; 30 А

32–47 мВ; 48–68 мВ; 87–175 мВ

150; 300; 750; 1500; 3000 мВ

3; 7,5; 15; 30; 75; 150; 300; 600 В

45 и 75 мВ 3; 15; 75; 150; 300 В

4,5 и 4 мВ соответственно 3 мА

0,75; 1,5; 3; 7,5; 15; 30 А

50; 100; 500; 1000 мкА

10; 50; 200; 1000 мкА, 49,5–490 мВ

10; 50; 200; 1000 мВ

45; 75; 150; 3000 мВ

75; 150; 300; 600 В

То же, с универсальным шунтом Р4

Для расширения пределов измерения постоянного тока применяют шунты. Последовательно с нагрузкой Н включают шунт, а уже к нему подсоединяют амперметр (рис. 2). Очевидно, зная сопротивление шунта rш, сопротивление обмотки прибора rА, можно определить коэффициент К, показывающий, во сколько раз возможно расширить предел измерения по току из соотношения:

rш= 10/19 = 0,526 Ом.

Рис. 2. Схема включения амперметра с шунтом

Если же известны коэффициент К и сопротивление обмотки прибора, можно, пользуясь тем же соотношением, определить сопротивление шунта.

Для расширения пределов измерения вольтметров на постоянном токе применяют добавочные резисторы. Если вольтметр без добавочного резистора рассчитан на измерение напряжения до U В и имеет сопротивление rвОм, то для измерения напряжения, в К раз большего, необходимо, чтобы общее сопротивление обмотки вольтметра и добавочного резистора было также в К раз больше сопротивления обмотки вольтметра. Промышленностью выпускаются различные шунты (табл. 2) и добавочные резисторы (табл. 3) для расширения пределов измерения приборов постоянного тока.

Электромагнитные приборы используют преимущественно для измерения в цепях переменного тока. Они надежны в эксплуатации, просты по конструкции и недороги, а также позволяют производить измерения при выполнении большинства общеналадочных работ с достаточной точностью.

Таблица 2. Номинальные параметры шунтов

Класс точности

Номинальное падение напряжения, В

Номинальный ток, А

0,15–0,3–0,75; 1,5–3; 7,5–15; 30

Двухнедельные: 0,3–0,75; 1,5–7,5; 15–30; однопредельные: 75; 150

75; 100; 150; 200; 300; 500; 750; 1000; 1500; 2000; 3000; 4000; 5000; 6000; 7500

2000; 3000; 4000; 5000; 6000

Таблица 3. Номинальные параметры добавочных резисторов к вольтметрам

Тип сопротив­ ления

Класс точности

Параметры вольтметра

Номинальное напряжение сопротивления, В

Однако для специальных наладочных работ, связанных с определением точных параметров отдельных видов оборудования, и проверок других измерительных приборов, при которых требуется повышенная точность измерения, электромагнитные приборы не используют.

Приборы Э59 электромагнитной системы класса точности 0,5, имеющие шкалу с зеркальным отсчетом — многопредельные, — выпускаются для измерения напряжения (вольтметры Э59/1, Э59/2 и Э59/10) и силы тока (амперметры Э59/3, Э59/4, Э59/5, Э59/6 и миллиамперметры Э59/7, Э59/8, Э59/9). Нормальная область частот — 45–55 Гц. Вольтметр Э59/10 снабжен калиброванными проводниками с общим сопротивлением 0,035 Ом. Пределы измерения в этом приборе изменяются подключением калиброванных проводников к соответствующим зажимам.

Остальные приборы этой серии имеют поворотный переключатель пределов измерения. Основные данные приборов Э59 приведены в табл. 4.

Таблица 4. Основные данные приборов Э59

Наименование

Предел измерения

Активное сопротивление

Индуктивность, мГ

Электродинамические приборы используют при наладочных работах реже приборов магнитоэлектрической и электромагнитной систем, поскольку они, имея слабое внутреннее магнитное поле, при работе подвержены влиянию внешних магнитных полей и потребляют значительную мощность. Однако эти приборы пригодны для измерения силы тока, напряжения и, что особенно важно, мощности в цепях постоянного и переменного тока.

Комбинированные малогабаритные приборы (ампервольтомметры и вольтомметры) — универсальные многопредельные измерительные приборы детекторной системы. Они предназначены для измерения в цепях постоянного и переменного тока силы тока, напряжения и сопротивления (ампервольтомметры) или напряжения и сопротивления (вольтомметры).

Для удобства выбора прибора при проведении наладочных работ ниже приведена сводная таблица электрических характеристик комбинированных малогабаритных детекторных приборов (табл. 5).

Таблица 5. Комбинированные малогабаритные детекторные приборы

Характеристика

Ц430 и Ц430/1

Класс точности при:

0,1–1–3– 10–30–100– 300–1000

0,075–3– 7,5–15–30– 150–300– 600

0,1–2,5– 10–25–100– 250

3–12–30– 300–600– 1200–6000

1–3–10–30– 100–300– 1000

3–7,5–15– 30–150– 300–600

2,5–10–25– 100–250– 500–

3–12–30– 300–600– 1200–6000

3–6–15– 60–150– 300–600

Ток, мА, постоянный

0,1–0,3– 3–30–300– 3000

0,15–3–15– 60–300– 1500

0,1–1–5– 25–100– 500–2500

0,06–0,3– 3–30– 120–1200– 12 000

Ток, мА, переменный

Измеряемое сопротивление, кОм

Внутреннее сопротивление при постоянном токе, кОм/В

Непосредственное измерение напряжения. Электромеханическими приборами, например авометрами, можно измерять напряжения в цепях с сопротивлением до нескольких сотен ом на 1 В рабочего напряжения. В рассматриваемом примере сопротивление всей проверяемой цепи равно 90 000 Ом, а напряжение источника питания этой цепи — 450 В. Таким образом, сопротивление проверяемой цепи, отнесенное к 1 В рабочего напряжения, составляет 90000 : 450 = 200 Ом. При пользовании прибором ТТ-3, у которого внутреннее сопротивление равно 10 000 Ом на 1 В, то есть в 50 раз больше, чем в проверяемой электрической цепи; погрешность, вносимая прибором, составила меньше одного процента. Если бы эта цепь питалась от источника с напряжением 4,5 В, то на 1 В рабочего напряжения приходилось бы уже 20 000 Ом и тот же прибор ТТ-3 на пределе измерения 3 В имел бы внутреннее сопротивление 30 кОм (те же 10 000 Ом на 1 В), но погрешность, вносимая прибором в результат измерения, была бы недопустимо большой.

В определенных случаях, в частности при наладке электронной аппаратуры, приходится измерять напряжение в контролируемых цепях, имеющих сопротивления десятки тысяч ом на 1 В рабочего напряжения (сеточные и анодные цепи электронных ламп, цепи коллекторов полупроводниковых триодов и др.). Для этого используют приборы с очень большим внутренним сопротивлением, обычно не изменяющимся при работе на разных пределах измерения. К таким приборам относятся электростатические вольтметры и электронные вольтметры на электронных лампах и полупроводниковых приборах.

Электростатический вольтметр С50, однопредельный прибор класса точности 1, предназначен для измерения напряжения в цепях постоянного тока и переменного тока с частотой от 20 Гц до 10 МГц. Приборы выпускают на 30, 75, 150, 300, 450, 600, 1000, 1500 и 3000 В. Входная емкость вольтметров на 30, 75–450 и 600–3000 В соответственно составляет 10,7 и 4 пФ. Активное сопротивление вольтметра не менее 10 000 МОм. Прибор имеет шкалу со световым указателем. Осветительное устройство питается от сети 127 и 220 В переменного тока или источника постоянного тока напряжением 6 В. Резистор, встроенный в корпус прибора, служит для ограничения тока при случайном замыкании его электродов. Аналогично прибору С50 устроены и другие электростатические приборы (С70, С71, С95 и С100), имеющие другие пределы измерения и обладающие очень большим внутренним сопротивлением (не менее 10 000 МОм). Однако относительно большая входная емкость препятствует их использованию при измерениях напряжений высокой частоты (например, в анодных цепях широкополосных усилителей).

Электронные вольтметры, имеющие достаточно высокое сопротивление и малую входную емкость, получили широкое распространение при измерениях в высокоомных и маломощных цепях, преимущественно при испытаниях электронных приборов и устройств.

Электронный вольтметр обычно включает входной делитель напряжения, усилитель мощности и показывающий магнитоэлектрический прибор. Выпускаются различные электронные вольтметры для измерения постоянного и переменного напряжения.

Прибор Ф505 служит для измерения напряжения в цепях переменного тока частотой 45–10 000 Гц, имеет класс точности 1,5 и шкалу со световым отсчетом. Пределы измерения — 0,75–1,5–3–7,5–15–30–60–150–300 В. Входное сопротивление на всех пределах — 1 МОм. Питание осуществляется от сети переменного тока 127 или 220 В промышленной частоты. Потребляемая мощность 35 В-А, масса 10 кг.

Транзисторный прибор Ф431 служит для измерения малых напряжений в цепях переменного тока частотой до 1 МГц. Имеет классы точности 2,5 на частотах 20–20 000 Гц, 4 на частотах 20–100 кГц и 10 на частотах 100 кГц — 1 МГц. Пределы измерения — 5–30–100–300–1000 мВ. Входное сопротивление — 100 кОм на 1 В. Входная емкость — 30–100 пФ. Прибор имеет дополнительный предел, обозначенный «Индикатор», на котором полное отклонение стрелки соответствует потреблению тока 1 мкА при входном сопротивлении 1,5 кОм. Питание осуществляется от встроенной батареи КБС-4 напряжением 4 В.

Транзисторный прибор Ф432 позволяет измерять силу тока и напряжение как постоянного, так и переменного тока частотой 45 Гц — 50 кГц, сопротивление постоянному току и коэффициент передачи.

Прибор ВК7-Б универсальный, предназначен для измерения напряжения переменного тока низкой (от 40 Гц до 2 кГц) и высокой частот (от 3 кГц до 400 МГц), напряжения и силы постоянного тока, а также сопротивления постоянному току. Пределы измерения: напряжения постоянного тока 100 мВ–1–3–10–30–100– 300–1000 В; напряжения переменного тока 1–3–10–30–100–300–1000 В, силы постоянного тока 1–10–100 мкА–1–10–100 мА–1 А, сопротивления постоянному току 1–10–100–1000–10 000–100 000 Ом (при использовании внешнего источника постоянного тока напряжением 10–15 В пределы измерения могут быть расширены до 50 МОм). Погрешности при измерении напряжения составляют до 10 % на пределе 100 мВ, 4 % на остальных пределах для постоянного тока и 6 % для переменного. Входное сопротивление при измерении напряжения постоянного тока 1 МОм на 1 В для пределов измерения 100 мВ — 1–3–30 В и 30 МОм на 1 В для пределов 100–300 и 1000 В.

Метод двух вольтметров. Сущность этого метода заключается в том, что напряжение на участке электрической цепи измеряют два раза, используя вольтметры V1и V2 (рис. 3) с разными внутренними сопротивлениями r1и r2, величина которых известна.

Сначала подключают параллельно контролируемому участку (между точками а и б) один вольтметр, например V1, и записывают его показания U1, затем — параллельно контролируемому участку второй вольтметр V2, переведя переключатель П в нижнее положение, и записывают показания U2 второго вольтметра. После этого истинное напряжение на контролируемом участке Uаб определяют по формуле:

Рис. 3. Измерение напряжения в высокоомной цепи двумя вольтметрами

Измерение можно производить не только двумя вольтметрами, но и многопредельным вольтметром на разных пределах измерения и одним однопредельным вольтметром, выполняя им второе измерение с включенным последовательно известным резистором, сопротивление которого соизмеримо с внутренним сопротивлением вольтметра. Методом двух вольтметров можно с допустимой точностью определять напряжение на контролируемом участке а — б, даже при небольших внутренних сопротивлениях используемых вольтметров, если оба измерения проводятся при одном и том же напряжении U, подводимом к проверяемой электрической цепи.

Компенсационный метод. Сущность этого метода измерения заключается в том, что напряжение на контролируемом участке а — б электрической цепи (рис. 4) сравнивают с известным напряжением вспомогательного источника постоянного тока. Установив движок реостата Р в такое положение, чтобы индикатор тока Г (гальванометр) показывал отсутствие уравнительного тока между контролируемым участком а — б электрической цепи и вспомогательным источником Б постоянного тока, снимают показания вольтметра V. Напряжение,

показываемое вольтметром V, очевидно, равно в этом случае измеряемому напряжению U контролируемого участка а — б.

Рис. 4. Компенсационный метод измерения напряжения

Измерение мощности переменного тока. Электрическая мощность — один из важнейших режимных параметров, характеризующий расход электроэнергии за единицу времени. В цепях постоянного тока мощность зависит от силы тока, протекающего по нагрузке, и напряжения, приложенного к последней, и связана с ними простым соотношением PU1. Поскольку имеется определенная зависимость между силой тока и напряжением (закон Ома), мощность, рассеиваемую на активном сопротивлении r, можно определить по формулам РРг, или Р = I·U, где Р — электрическая мощность, I — сила тока, U — напряжение.

В цепях переменного тока такие соотношения применяют только для нагрузок с чисто активным сопротивлением (лампы накаливания, печи сопротивления, электронагревательные бытовые приборы), а при наличии в электрических цепях индуктивных и емкостных сопротивлений приходится учитывать и фазовый сдвиг между током и напряжением, выражаемый через коэффициент мощности (cosφ). При этом различают мощности: активную Р, за счет которой совершается работа, связанная с преобразованием электрической энергии в другие виды энергии (механическую, тепловую, химическую и др.), реактивную (безваттную) Q, идущую на создание магнитного поля в цепях с индуктивностью (в электродвигателях, трансформаторах, воздушных линиях электропередачи, реакторах и др.), или электрического поля в цепях, обладающих электрической емкостью (кабельных и воздушных линиях электропередачи, конденсаторах и др.), полную (кажущуюся):

В цепях однофазного переменного тока, зная напряжение U, приложенное к нагрузке, силу тока I, протекающую по ней, и сдвиг фаз между напряжением U и силой тока I, активную, реактивную и полную мощности можно определить по формулам:

причем активную мощность, как и в цепях постоянного тока, измеряют в ваттах, киловаттах и мегаваттах; полную мощность — в вольт-амперах (В·А), киловольтамперах (кВ·А) и мегавольт-амперах (MB·А); реактивную мощность — в варах, киловарах и мегаварах.

Активное сопротивление в цепях переменного тока соответствует сопротивлению в цепях постоянного, но по величине может оказаться больше или меньше сопротивления постоянному току, определяемому для проводников электрического тока.

Это объясняется поверхностным эффектом, заключающимся в вытеснении переменного тока от центра проводника к его поверхности, в связи с чем как бы уменьшается эффективное сечение проводника, и дополнительными потерями в диэлектрике (диэлектрический гистерезис), стальных и магнитопроводах и магнитопроводящих материалах, окружающих проводники с током (магнитный гистерезис) и, наконец, с вихревыми токами, возникающими в массивных электропроводящих конструкциях, окружающих проводник с током.

При пусконаладочных работах применяют как непосредственный, так и косвенный методы измерения мощности. При непосредственном измерении мощности пользуются ваттметрами, а при косвенном сначала измеряют другие величины, а затем, используя известные зависимости между этими величинами и мощностью, определяют мощность.

Для непосредственного измерения мощности обычно применяют переносные однофазные и реже трехфазные ваттметры активной мощности. При подборе ваттметра и сборке измерительной схемы необходимо учитывать соотношение между сопротивлением нагрузки и внутренним сопротивлением обмоток ваттметра (токовой и напряжения). Если сопротивление нагрузки rн соизмеримо с сопротивлением токовой цепи ваттметра или меньше ее, ваттметр следует >включать по следующей схеме (рис. 5, а). Когда сопротивление нагрузки соизмеримо с сопротивлением цепи напряжения ваттметра или больше него, ваттметр нужно включать по следующей схеме (рис. 5, б).

Более точные результаты можно получить, учитывая мощность, потребляемую самим ваттметром. Для этого при включении ваттметра по схеме, изображенной на рис. 5, а, зная сопротивление rн цепи напряжения ваттметра и измерив напряжение U, приложенное к нагрузке, из показаний ваттметра надо вычесть мощность, потребляемую его цепью напряжения rн, определив ее по формуле или замерив тем же прибором при отключенной нагрузке.

При включении ваттметра по схеме, приведенной на рис. 5, б, зная сопротивление его токовой цепи r1 и измерив силу тока Iи, протекающего по нагрузке, из показаний ваттметра следует вычесть мощность PiPrj, потребляемую его токовой цепью.

Рис. 5. Схемы включения ваттметра: а, б — принципиальные; в — монтажная

При включении ваттметра в контролируемую цепь необходимо учитывать полярность его выводов (начала токовой обмотки и обмотки напряжения). Они обычно обозначаются звездочками. На рис. 5 показано правильное включение ваттметра при непосредственном включении его в проверяемую цепь, а ниже (рис. 6) — правильное включение ваттметра через измерительные трансформаторы. При правильном включении ваттметра, если мощность положительна, то есть направлена от источника питания к нагрузке, стрелка прибора отклонится вправо; если мощность отрицательна, то есть направлена в сторону источника питания, стрелка прибора сместится влево.

Рис. 6. Включение ваттметров через измерительные трансформаторы: а — через трансформаторы тока; б — через трансформаторы тока и напряжения

По этой причине, чтобы произвести отсчет показаний ваттметра, приходится менять местами провода, подходящие к его обмотке напряжения, а если ваттметр снабжен переключателем полярности, достаточно переключить последний в другое фиксированное положение. Обычно эти положения отмечены знаками «+» и «–». После этого стрелка ваттметра отклонится вправо, можно будет снять его показания, но записывать их следует уже со знаком «–».

Переносные ваттметры активной мощности обычно градуируют при коэффициенте мощности, равном единице. Предел измерения по мощности при этом равен произведению номинальных значений тока и напряжения.

Например, если номинальный ток ваттметра 5 А, а номинальное напряжение 300 В, предел измерения его по мощности будет 300 × 5 = 1500 Вт. Если шкала прибора разбита на 100 делений, каждое деление ваттметра (цена деления) будет соответствовать 15 Вт. Если, например, стрелка прибора остановилась против 40-го деления, то мощность, показываемая ваттметром, будет равна 15 × 40 = 600 Вт. Малокосинусные ваттметры градуируют при коэффициенте мощности, отличном от единицы. Цена деления и коэффициент мощности, при котором производилась градуировка, указываются заводом-изготовителем на шкале прибора и в его паспорте.

Косвенными методами измерения пользуются для определения полной (кажущейся) мощности S, измеряя силу тока и напряжение, реактивной мощности, измеряя активную мощность, силу тока и напряжение после подсчета полной мощности или подсчитывая непосредственно но формуле Q = y·U2P – Р2. Измерив силу тока I, напряжение U и коэффициент мощности cosφ, можно определить косвенным методом и активную мощность Р. Однако к косвенному измерению активной мощности прибегают очень редко.

Косвенный метод измерения мощности применяют также, когда требуется определить среднее значение мощности за длительный период времени, пользуясь счетчиками (активным для определения активной мощности и реактивным для определения реактивной мощности). Для этого разность показаний счетчика на начало и конец периода, для которого требуется определить среднюю мощность, следует разделить на длительность этого периода.

В трехпроводной сети трехфазного тока мощность измеряют обычно двумя однофазными ваттметрами или одним двухэлементным ваттметром трехфазного тока. При измерении активной мощности ваттметры включают по следующей схеме (рис. 7). При этом если Р1— показание первого ваттметра W1, а Р2— второго ваттметра W2, то мощность Р трехфазного тока определяется как алгебраическая сумма показаний обоих ваттметров:

Показания ваттметров записывают со знаком «+», если включение их точно соответствует приведенной схеме с учетом полярности выводов и при определенном положении переключателя полярности. При равномерной нагрузке фаз можно установить зависимость показаний ваттметров от коэффициента мощности. Если cosφ = l, оба ваттметра всегда показывают значения, одинаковые по знаку и величине (Рх= Р2). При cosφ = 0,5 показание одного ваттметра равно нулю (при индуктивной нагрузке Р1 = 0, при емкостной нагрузке Рr = 0).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *