В чем заключается химическое действие
Перейти к содержимому

В чем заключается химическое действие

  • автор:

SOS!! В чём проявляется химическое действие тока? Срочно.

Действие электрического тока проявляется в превращении электрической энергии в тепловую, световую, механическую и химическую энергии.

ТЕПЛОВОЕ ДЕЙСТВИЕ
Во всех проводниках поток электронов ограничивается сопротивлением проводника. При этом проводник нагревается. Тепловое действие электрического тока используется, например, в электрокипятильниках, кухонных плитах, электропаяльниках, плавких предохранителях и при дуговой электросварке

СВЕТОВОЕ ДЕЙСТВИЕ
В лампах накаливания электрический ток нагревает проволоку из вольфрама до белого каления, так что она излучает свет. Впрочем, при этом 95% электроэнергии превращается в тепловую и только 5% превращается в световую энергию. В люминесцентных лампах используются свойства определенных газов, например неона или паров ртути, светиться при прохождении через них электрического тока. Коэффициент полезного действия таких ламп составляет от 15 до 20%.

МЕХАНИЧЕСКОЕ ДЕЙСТВИЕ
Каждый проводник, по которому течет электрический ток, образует вокруг себя магнитное силовое поле. Эти магнитные действия превращаются в движение, например, в электромоторах, в магнитных подъемных устройствах, в магнитных вентилях и в реле

ХИМИЧЕСКОЕ ДЕЙСТВИЕ
Электропроводящие жидкости (электролиты) содержат ионы как носители напряжения. Если пропускать через электролит электрический ток, то к положительному полюсу будут притягиваться отрицательно заряженные ионы, а к отрицательному полюсу — положительно заряженные ионы. Это явление называют ЭЛЕКТРОЛИЗОМ. Его используют для разложения воды на составляющие ее части, при нанесении гальванических покрытий и при получении чистых металлов

Соня КрутикУченик (97) 8 лет назад
А примеры химической реакции можете привести?)

Маруся Мастер (2027) Существует несколько видов химических реакций. Самые распространенные: реакции соединения; реакции разложения; реакции одинарного замещения; реакции двойного замещения; реакции окисления; окислительно-восстановительные реакции. Желаю Вам получить 5!)

Химическое действие света

Отдельные молекулы поглощают световую энергию порциями — квантами hv. В случае видимого и ультрафиолетового излучений эта энергия достаточна для расщепления многих молекул. В этом проявляется химическое действие света. Любое превращение молекул есть химический процесс. После расщепления молекул светом в большинстве случаев начинается целый процесс химических превращений. Например, выцветание тканей на солнце и образование загарa (потемнение кожи, возникающее вследствие избыточного образования пигмента
и благоприятном воздействии на организм ультрафиолетовых лучей).
1. К фотохимическим реакциям относятся: фотосинтез углеводов в растениях, распад бромистого серебра на светочувствительном слое фотопластинки, взаимодействие хлора с водородом на свету с образованием HCl и многое другое. Убедиться в этом вы можете сами, оставив на один день на солнце или в освещенной комнате предмет на глянцевом листе фотобумаги. Если через день убрать этот предмет, то очертания его останутся. Так как часть листа, скрытая предметом, не получила достаточного воздействия солнечного света. Важнейшие химические реакции под действием света происходят в зеленых листьях деревьев и траве, в иглах хвои и во многих микроорганизмах. В зеленом листе под действием солнца происходят необходимые для всей жизни на Земле процессы. Они дают нам пишу, они же дают нам кислород для дыхания. Листья поглощают из воздуха углекислый газ и расщепляют его молекулы на составные части: углерод и кислород. Происходит это, как установил русский биолог Климент Аркадьевич Тимирязев, в молекулах хлорофилла под действием красных лучей солнечного спектра. Пристраивая к углеродной цепочке атомы других элементов, извлекаемых корнями из земли, растения строят молекулы белков, жиров и углеводов. Этот процесс, называемый фотосинтезом, происходит за счет энергии солнечных лучей и может протекать только под действием света определенного спектрального состава. Необходимым условием фотосинтеза является наличие хлорофилла, т.е. создание органического вещества из углекислоты и воды при участии солнечного света. Хлорофилл – зеленый пигмент, сосредоточенный в хлоропластах и находящийся в непрочном состоянии с белковыми веществами. Эти богатые энергией органические вещества служат пищей для всех других организмов и обеспечивают существование на Земле всего органического мира. В результате фотосинтетической деятельности растений в прошлые геологические эпохи в недрах и на поверхности Земли накопились громадные запасы восстановленного углерода и органических продуктов в виде каменного угля, нефти, горючих газов, сланцев, торфа, а атмосфера обогатилась кислородом. Процесс фотосинтеза еще не доказан и не описан до конца. Ученые считают, что в результате полного изучения процесса для человечества наступит новая эра. Многие сложные органические вещества можно будет получать на фабриках под голубым небосводом. Зеленые листья растений дают нам не только пищу, но и кислород для дыхания, поглощая из воздуха углекислый газ и расщепляя его молекулы на составные части: углерод и кислород. Но не стоит забывать, что фотосинтез происходит под воздействием солнечных лучей, а в ночное время растения поглощают кислород и выделяют углекислый газ. Поэтому не стоит помещать в одной комнате много цветов, думая, что воздух комнаты будет очень богат кислородом.

Остались вопросы по теме? Наши педагоги готовы помочь!

  • Подготовим к ЕГЭ, ОГЭ и другим экзаменам
  • Найдём слабые места по предмету и разберём ошибки
  • Повысим успеваемость по школьным предметам
  • Поможем подготовиться к поступлению в любой ВУЗ

Свет — электромагнитная волна. Химическое действие света.

Свет — это электромагнитная волна (λ = 4 . 10 -7 – 8 . 10 -7 м), которую излучает атом.

По второму постулату Бора возможные частоты излучения
водорода равны:

По второму постулату Бора

где R постоянная Ридберга, равная 3,2 . 10 15 с -1 ; п и k — номера орбит.

Таким образом, источниками света являются возбужденные
атомы и молекулы, свет генерируется при переходе атомов (молекул) из одного возбужденного состояния в другое, частота генерируемого света пропорциональна разности энергий уровней, свет излучается и поглощается в виде квантов.

Свет — электромагнитная волна

Виды излучений

Тепловое

При столкновении быстрых атомов (или молекул) друг с другом часть их кинетической энергии превращается в энергию возбуждения атомов, которые затем излучают свет (Солнце, лампа накаливания, пламя и др.).

Электролюминесценция

При разряде в газе электрическое поле увеличивает кинетическую энергию электронов. Быстрые электроны возбуждают атомы в результате неупругого соударения с ними. Возбужденные атомы отдают энергию в виде световых волн (трубки для рекламных надписей, северное сияние и др.).

Катодолюминесценция

Свечение твердых тел, вызванное бомбардировкой этих тел электронами (электронно-лучевые трубки телевизоров).

Хемилюминесценция

Электроны возбуждаются от химических реакций (светлячки и другие живые организмы, бактерии, насекомые, многие рыбы).

Фотолюминесценция

Падающий на вещество свет возбуждает атомы вещества, после чего они излучают свет (светящиеся краски).

Распределение энергии в спектре.

Все источники не дают свет строго определенной длины волны. Распределение излучения по частотам характеризуется спектральной плотностью интенсивности излучения Iν

Тогда интенсивность излучения с небольшого спектрального интервала Δν равна Iν . Δν.

Распределение энергии в видимой части спектра электрической дуги.

Распределение энергии в спектре.

Химическое действие света

Под действием света могут происходить следующие процессы: присоединение атомов к молекулам, диссоциация, фотохимическая реакция, реакция синтеза.

Фотосинтез — процесс образования углеводов под действием света с выделением кислорода растениями и некоторыми микроорганизмами. Обеспечивает круговорот кислорода в природе.

Фотохимическая реакция разложения бромистого серебра AgBr составляет основуфотографии.

Процесс получения фотографии

Процесс получения фотоснимка состоит из четырех операций: фотосъемки, проявления фотопленки, ее закрепления (фиксирования) и фотопечати.

Фотосъемка получение действительного изображения объекта в светочувствительном слое (эмульсия) фотопленки.

Фотоэмульсия: желатин, мелкие зерна AgBr. Квант энергии hν отрывает электроны от некоторых ионов брома, которые захватываются ионами серебра. В зернах AgBr образуются нейтральные атомы, количество которых пропорционально освещенности пленки. Эти атомы образуют скрытое изображение объекта съемки.

Проявление фотопленки: проявитель гидрохинон или метон восстанавливает бромистое серебро в свободное металлическое серебро.

В процессе закрепления в растворе тиосульфата натрия Na2S2O3 происходит удаление из фотослоя всех светочувствительных зерен солей серебра, не успевших разложиться . Закрепление завершается промывкой в воде.

Фотопечать -перенос изображения с фотопленки на светочувствительную фотобумагу. Негативное изображение с фотопленки проецируют на фотобумагу, где образуется скрытое позитивное изображение. Фотобумагу проявляют, фиксируют, промывают, сушат и получают фотографию.

Химическое действие света

Любое превращение молекул есть химический процесс. Химические процессы, протекающие под действием видимого света и ультрафиолетовых лучей, называются фотохимическими реакциями. Световой энергии достаточно для расщепления многих молекул. В этом проявляется химическое действие света.

К фотохимическимреакциям относятся: фотосинтез углеводов в растениях, распад бромистогосеребра на светочувствительном слое фотопластинки, взаимодействие хлора сводородом на свету с образованием HCl и многое другое. Выцветание тканей на солнце и образование загара (потемнение кожи человека под воздействием ультрафиолетовых лучей) – это тожепримеры химического действия света.

55.понятие о корпускулярно-волновой природе света

Корпускуля́рно-волново́й дуали́зм — принцип, согласно которому любой объект может проявлять как волновые, так и корпускулярные свойства. Был введён при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепция квантованных полей вквантовой теории поля.

Как классический пример, свет можно трактовать как поток корпускул (фотонов), которые во многих физических эффектах проявляют свойства электромагнитных волн. Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны. Например, даже одиночные фотоны, проходящие через двойную щель, создают на экране интерференционную картину, определяемую уравнениями Максвелла [1] .

Тем не менее, эксперимент показывает, что фотон не есть короткий импульс электромагнитного излучения, например, он не может быть разделён на несколько пучков оптическими делителями лучей, что наглядно показал эксперимент, проведённый французскими физиками Гранжье, Роже и Аспэ в 1986 году [2] . Корпускулярные свойства света проявляются при фотоэффекте и в эффекте Комптона. Фотон ведет себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами), или вообще могут считаться точечными (например, электрон).

В настоящий момент концепция корпускулярно-волнового дуализма представляет лишь исторический интерес, так как служила только интерпретацией, способом описать поведение квантовых объектов, подбирая ему аналогии из классической физики. На деле квантовые объекты не являются ни классическими волнами, ни классическими частицами, приобретая свойства первых или вторых лишь в некотором приближении. Методологически более корректной является формулировка квантовой теории через интегралы по траекториям (пропагаторная), свободная от использования классических понятий.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *