(Обновлен)Задание ЕГЭ 6 Параграф 7 ГДЗ Мякишев 11 класс (Физика)
*Цитирирование задания со ссылкой на учебник производится исключительно в учебных целях для лучшего понимания разбора решения задания.
*размещая тексты в комментариях ниже, вы автоматически соглашаетесь с пользовательским соглашением
Похожие решебники
Мякишев, Буховцев
Рымкевич 10-11 класс
Популярные решебники 11 класс Все решебники
Баранова, Афанасьева, Михеева
Мордкович, Семенов, Александрова
Михеева, Афанасьева
Погорелов 10-11 класс
Босова, Босова
§7 Электромагнитная и.
§8 Правило Ленца. Зак.
©Reshak.ru — сборник решебников для учеников старших и средних классов. Здесь можно найти решебники, ГДЗ, переводы текстов по школьной программе. Практически весь материал, собранный на сайте — авторский с подробными пояснениями профильными специалистами. Вы сможете скачать гдз, решебники, улучшить школьные оценки, повысить знания, получить намного больше свободного времени.
Главная задача сайта: помогать школьникам и родителям в решении домашнего задания. Кроме того, весь материал совершенствуется, добавляются новые сборники решений.
Поток вектора магнитной индукции через поверхность, ограниченную рамкой, площадь которой равна 0,002 м 2,
правильный ответ: 1) 0,87 мВб
решение: Ф=BScosa
но угол 60 градусов — это двугранный угол между плоскостью и замкнутым контуром, а по формуле нужна функция угла между вектором B и n(нормалью — перпендикуляр к плоскости, в данной формуле плоскости замкнутого контура), поэтому если схематично изобразить контур и магнитный поток, то получится, что нужный угол = 30
Ф= 0,05*0,02*((корень из 3)/2)=0,87 мВб
Наталья НовиковаЗнаток (429) 8 лет назад
А как ты умножала 0.05*0.02 и корень 3/2 можешь написать??
Наталья НовиковаЗнаток (429) 8 лет назад
там ответ 2 будет ведь
Остальные ответы
Поток вектора магнитной индукции (магнитный поток)
Потоком вектора магнитной индукции (магнитным потоком) (Ф) через площадку S называют скалярную величину равную:
где $\alpha $ угол между $\overrightarrow$ и $\overrightarrow$, $\overrightarrow$ — нормаль к площадке S.
Ф равен количеству линий магнитной индукции, которые пересекают площадку S (рис.1). Поток магнитной индукции может быть положительным и отрицательным. Знак потока зависит от выбора положительного направлении нормали к площадке S. Обычно, положительное направление нормали связывают с направлением обхода контура током. За положительное направление нормали принимают поступательное перемещение правого винта, при вращении его по току.
В том случае, если магнитное поле неоднородно, S не является плоской, то поверхность можно разбить на элементарные площадки dS, которые рассматриваются как плоские, а поле на этой площадке можно считать однородным. В таком случае магнитный поток (dФ) можно через такую поверхность определить как:
Тогда полный поток через поверхность S находится как:
Основная единица измерения магнитного потока в системе СИ — вебер (Вб). $1\ Вб=\frac$.
Связь магнитного потока и работы сил магнитного поля
Элементарную работу ($\delta A$), которую совершают силы магнитного поля можно выразить через элементарное изменение потока вектора магнитной индукции (dФ):
\[\delta A=IdФ\ \left(4\right).\]
В том случае, когда проводник с током совершил конечное перемещение, а сила тока постоянна, то работа сил поля равна:
где $Ф_1$ — поток через контур в начале перемещения, $Ф_2$ — поток через контур в конце перемещения.
Теорема Гаусса для магнитного поля
Суммарный магнитный поток через замкнутую поверхность S равен нулю:
Уравнение (6) справедливо для любых магнитных полей. Это уравнение аналог теоремы Остроградского — Гаусса в электростатике (в вакууме):
Уравнение (6) означает, что источником магнитного поля являются не магнитные заряды (их в природе не существует), а электрические токи. Данную теорему мы подробно рассматривали в разделе «Отсутствие в природе магнитных зарядов».
Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты
Задание: Недалеко от бесконечно длинного прямого проводника с током I находится квадратная рамка, по которой течет ток с силой $I’$. Сторона рамки равна $а$. Рамка лежит в плоскости с проводом (рис.2). Расстояние от ближайшей стороны рамки до проводника равно b. Найдите работу магнитной силы при удалении рамки из поля. Считать токи постоянными.
Индукция магнитного поля длинного проводника с током в части, где расположена квадратная рамка, направлена на нас.
При решении этой задачи необходимо помнить, что рамка с током находится в неоднородном поле, магнитная индукция убывает при удалении от провода.
В качестве основы для решения задачи используем формулу связи потока и работы:
$I’$- сила тока в рамке, $Ф_1$- поток через квадратную рамку, когда расстояние от ее стороны, ближайшей к проводу равна $b$. $Ф_2=0$, так как в конечном положении рамка вне магнитного поля по условию. Следовательно, формула (1.1) запишется как:
Выберем направление нормали ($\overrightarrow$) к квадратному контуру от нас (по правилу правого винта). Тогда для всех элементов поверхности, которая ограничена контуром квадратной рамки угол между нормалью $\overrightarrow$ и вектором $\overrightarrow$ равен $\pi $. Тогда формула для потока через поверхность рамки на расстоянии x от провода имеет вид:
где индукция магнитного поля бесконечно длинного проводника с током силы I равна:
Следовательно, весь поток из (1.3) найдем как:
Подставим формулу (1.5) в выражение (1.2) найдем искомую работу:
Поток вектора магнитной индукции
Пример 2
Найти силу, действующую на рамку, из предыдущего примера.
Решение
Для нахождения искомой силы, действующей на квадратную рамку с током в поле длинного провода, предположим, что под воздействием магнитной силы рамка смещается на незначительное расстояние d x . Это говорит о совершении силой работы, равной:
δ A = F d x ( 2 . 1 ) .
Элементарная работа δ A может быть выражена как:
δ A = I ‘ d Φ ( 2 . 2 ) .
Произведем то же с силой, применяя формулы ( 2 . 1 ) , ( 2 . 2 ) . Получаем:
F d x = I ‘ d Φ → F = I ‘ d Φ d x ( 2 . 3 ) .
Используем выражение, которое было получено в примере 1 :
d Φ = — μ 0 2 π I l d x x → d Φ d x = — μ 0 2 π I l x ( 2 . 4 ) .
Произведем подстановку d Φ d x в ( 2 . 3 ) . Имеем:
F = I ‘ μ 0 2 π I l x ( 2 . 5 ) .
Каждый элемент контура квадратной рамки находится под воздействием сил (силы Ампера). Отсюда следует, что на рамку действует 4 силы, причем на стороны A B и D C равные по модулю и противоположные по направлению. Выражение принимает вид:
F A B → + F D C → = 0 ( 2 . 6 ) , то есть их сумма равняется нулю. Тогда значение результирующей силы, приложенной к контуру, запишется:
F → = F A D → + F B C → ( 2 . 6 ) .
Используя правило левой руки, получаем направление этих сил вдоль одной прямой в противоположные стороны:
F = F A D — F B C ( 2 . 7 ) .
Произведем поиск силы F A D , действующей на сторону A D , применив формулу ( 2 . 5 ) , где x = b :
F A D = I ‘ м 0 2 π I l b ( 2 . 8 ) .
Значение F B C будет:
F B C = I ‘ μ 0 2 π I l b + a ( 2 . 9 ) .
Для нахождения искомой силы:
F = I ‘ μ 0 2 π I l b — I ‘ μ 0 2 π I l b + a = I I ‘ μ 0 l 2 π 1 b — 1 b + a .
Ответ: F = I I ‘ μ 0 l 2 π 1 b — 1 b + a . Магнитные силы выталкивают рамку с током до тех пор, пока она находится в первоначальной ориентации относительно поля провода.