Короткое замыкание и перегрузки в электрической сети
Короткие замыкания (КЗ или «коротыш» как говорят электрики) в электрических сетях чаще всего случаются из-за разрушения изоляции токопроводящих частей в результате механических воздействий, естественного старения, воздействия агрессивных сред и влаги, а также ошибочных действий электротехнического персонала. Короткое замыкание сопровождается резким возрастанием тока в цепи, а также значительным увеличением выделяющегося тепла, пропорционального квадрату величины тока.
Воздействие теплового нагрева на проводку резко снижает механическую и диэлектрическую прочность изоляции. А в результате регулярной перегрузки электрических сетей токами, которые существенно превышают допустимую для данного вида и сечений проводников норму, происходит её тепловое старение. Воздействие влаги и агрессивных сред на изоляцию сопровождается, как правило, появлением поверхностных токов утечки. Тепловой нагрев приводит к испарению жидкости и образованию на ней солевых отложений. После испарения влаги токи утечки исчезают, но при последующем увлажнении процесс повторяется. Только сейчас из-за повышенной концентрации соли проводимость достигает таких значений, при которых ток утечки не исчезает и по окончании испарения. Действие тока утечки приводит к обугливанию изоляции и потери ей механической прочности. Возникает ситуация, способная привести к распространению поверхностного дугового разряда и загоранию изоляции. Коренное отличие режима короткого замыкания от режима перегрузки состоит в том, что в первом случае аварийная ситуация возникает вследствие разрушения изоляции, а во втором — является его причиной. В некоторых случаях перегрузка электропроводки во время аварийного режима может иметь большую пожарную опасность, чем короткое замыкание. При возникающих в сети перегрузках на воспламеняющую способность проводов существенное влияние оказывает материал жилы. Проведённые в режиме перегрузки испытания убедительно доказали, что вероятность загорания изоляции у кабелей с медными жилами выше, чем у проводов из алюминиевого материала. При испытаниях на короткое замыкание проявилась схожая закономерность.
Кроме того, оказалось, что провода и кабели в полиэтиленовой оболочке, а также используемые при их прокладке полиэтиленовые трубы имеют большую «склонность» к возгоранию, чем аналогичная электропроводка, выполненная в винипластовых трубах. Особо опасна перегрузка в частном жилом секторе, т.е. в домах, где обычно от общей электросети запитаны все потребители, а защитное оборудование рассчитано лишь на токи К.З. К тому же, ничто не препятствует жильцам многоквартирных жилых домов бесконтрольно увеличивать потребляемую ими мощность. Следует обратить особое внимание на тот факт, что электроустановочные изделия снабжаются, как правило, специальными надписями, указывающими на предельные значения токов, напряжений и допустимую рассеиваемую мощность данного устройства. Для того чтобы эксплуатация этих устройств не вызывала проблем — необходимо научиться расшифровывать эти надписи. Если на выключателе имеется надпись «6,3 А; 250 В», то это значит, что ток, проходящий через выключатель, не должен быть более 6,3 Ампер, а напряжение в сети, к которой он подключён – не более 250 вольт. Если на изделии указывается, кроме того, и мощность (например, «3 А; 250 В; 300 Вт»), то на предельную величину тока не нужно обращать внимания. В этом случае исходить следует из указанной предельной мощности. В данном случае допустимый предельный ток будет равен 300 Вт : 220 вольт = 1,3 Ампера. Для обесточивания сети при коротком замыкании, как правило применяют автоматический выключатель.
none
Опубликована: 2011 г.
0
0
Вознаградить Я собрал 0 0
Оценить статью
- Техническая грамотность
Оценить Сбросить
Средний балл статьи: 0 Проголосовало: 0 чел.
Комментарии (0)
| Я собрал ( 0 ) | Подписаться
Для добавления Вашей сборки необходима регистрация
Статью еще никто не комментировал. Вы можете стать первым.
Конструктор регулируемого преобразователя напряжения LM317
1999-2024 Сайт-ПАЯЛЬНИК ‘cxem.net’
При использовании материалов сайта, обязательна
ссылка на сайт ПАЯЛЬНИК и первоисточник
Короткие замыкания, перегрузки, переходные сопротивления. Меры противопожарной безопасности
Короткие замыкания в электропроводке чаще всего происходят из-за нарушения изоляции токопроводящих частей в результате механического повреждения, старения, воздействия влаги и агрессивных сред, а также неправильных действий людей. При возникновении короткого замыкания возрастает сила тока, а количество выделяющейся теплоты, как известно, пропорционально квадрату тока. Так, если при коротком замыкании ток увеличится в 20 раз, то выделяющееся при этом количество тепла возрастет примерно в 400 раз.
Тепловое воздействие на изоляцию проводов резко снижает ее механические и диэлектрические свойства. Например, если проводимость электрокартона (как изоляционного материала) при 20 °С принять за единицу, то при температурах 30, 40 и 50 °С она увеличится в 4, 13 и 37 раз соответственно. Тепловое старение изоляции наиболее часто возникает из-за перегрузки электросетей токами, превышающими длительно допустимые для данного вида и сечений проводников. Например, для кабелей с бумажной изоляцией срок их службы может быть определен по известному «восьмиградусному правилу»: превышение температуры на каждые 8 °С сокращает срок службы изоляции в 2 раза. Тепловому разрушению подвержены и полимерные изоляционные материалы.
Воздействие влаги и агрессивных сред на изоляцию проводов существенно ухудшает ее состояние из-за появления поверхностных токов утечки. От возникающего при этом тепла жидкость испаряется, а на изоляции остаются следы соли. При прекращении испарения ток утечки исчезает. При неоднократном воздействии влаги процесс повторяется, но из-за повышения концентрации соли проводимость увеличивается настолько, что ток утечки не прекращается даже после окончания испарения. Кроме того, появляются мельчайшие искры. В дальнейшем под действием тока утечки изоляция обугливается, теряет прочность, что может привести к возникновению местного дугового поверхностного разряда, способного воспламенить изоляцию.
Пожарная опасность коротких замыканий электропроводов характеризуется следующими возможными проявлениями электрического тока: воспламенением изоляции проводов и окружающих горючих предметов и веществ; способностью изоляции проводов распространять горение при поджигании ее от посторонних источников зажигания; образованием при коротком замыкании расплавленных частиц металла, поджигающих окружающие горючие материалы (скорость разлета расплавленных частиц металла может достигать 11 м/с, а их температура — 2050—2700 °С).
При перегрузке электропроводок также возникает аварийный режим. Из-за неправильного выбора, включения или повреждения потребителей суммарный ток, проходящий в проводах, превышает номинальное значение, т. е. происходит повышение плотности тока (перегрузка). Например, при прохождении тока в 40 А через последовательно соединенные три куска провода одинаковой длины, но различного сечения — 10; 4 и 1 мм2 плотность его будет различна: 4, 10 и 40 А/мм2. В последнем куске самая высокая плотность тока, и соответственно, самые высокие потери мощности. Провод сечением 10 мм2 слегка нагреется, температура провода сечением 4 мм2 достигнет допустимой, а изоляция провода сечением 1 мм2 просто сгорит.
Чем ток короткого замыкания отличается от тока перегрузки
Основное отличие короткого замыкания от перегрузки заключается в том, что при коротком замыкании нарушение изоляции является причиной аварийного режима, а при перегрузке — его следствием. При определенных обстоятельствах перегрузка проводов и кабелей в связи с большей длительностью аварийного режима более пожароопасна, чем короткое замыкание.
Материал жилы проводов оказывает существенное влияние на зажигающую способность при перегрузках. Сравнение показателей пожарной опасности проводов марок АПВ и ПВ, полученных при испытаниях в режиме перегрузки, показывает, что вероятность воспламенения изоляции в проводах с медными токопроводящими жилами выше, чем у алюминиевых.
При коротком замыкании наблюдается та же закономерность. Прожигающая способность дуговых разрядов в цепях с медными токопроводящими жилами более высокая, чем с жилами из алюминия. Например, стальная труба с толщиной стенки 2,8 мм прожигается (или воспламеняется горючий материал на ее поверхности) при сечении жилы из алюминия 16 мм2, а с медной жилой — при сечении 6 мм2.
Кратность тока определяется отношением тока короткого замыкания или перегрузки к длительно допустимому току для данного сечения проводника.
Наибольшей пожарной опасностью обладают провода и кабели с полиэтиленовой оболочкой, а также полиэтиленовые трубы при прокладке в них проводов и кабелей. Электропроводки в полиэтиленовых трубах в пожарном отношении представляют большую опасность, чем электропроводки в винипластовых трубах, поэтому область применения полиэтиленовых труб значительно уже. Особенно опасна перегрузка в частных жилых домах, где, как правило, от одной сети питаются все потребители, а аппараты защиты нередко отсутствуют или рассчитаны только на ток короткого замыкания. В многоэтажных жилых домах также ничто не препятствует жильцам пользоваться более мощными лампами или включать бытовые электроприборы общей мощностью большей, чем та, на которую рассчитана сеть.
На электроустановочных устройствах (розетках, выключателях, патронах и т. д.) указаны предельные значения токов, напряжений, мощности, а на зажимах, разъемах и других изделиях, кроме того, наибольшие сечения присоединяемых проводников. Для безопасного пользования этими устройствами необходимо уметь расшифровывать эти надписи.
Например, на выключателе нанесено «6,3 А; 250 В», на патроне — «4 А; 250 В; 300 Вт», а на удлинителе-разветвителе — «250 В; 6,3 А», «220 В. 1300 Вт», «127 В, 700 Вт». «6,3 А» предупреждает о том, что ток, проходящий через выключатель, не должен превышать 6,3 А, иначе выключатель перегреется. Для любого меньшего тока выключатель годится, так как чем меньше ток, тем меньше нагревается контакт. Надпись «250 В» указывает, что выключатель может применяться в сетях напряжением не выше 250 В.
Если умножить 4 А на 250 В, то получится 1000, а не 300 Вт. Как связать вычисленное значение с надписью? Надо исходить из мощности. При напряжении в сети 220 В допустимый ток: 1,3 А (300:220); при напряжении 127 В — 2,3 А (300—127). Току 4 А соответствует напряжение 75 В (300:4). Надпись «250 В; 6,3 А» указывает, что устройство предназначено для сетей напряжением не более 250 В и для тока не более 6,3 А. Умножая 6,3 А на 220 В, получаем 1386 Вт (округленно 1300 Вт). Умножая 6,3 А на 127 В, получаем 799 Вт (округленно 700 Вт). Возникает вопрос: не опасно ли так округлять? Не опасно, так как после округления получились меньшие значения мощности. Если мощность меньше, то меньше нагреваются контакты.
При протекании через контактное соединение электрического тока из-за переходного сопротивления на контактном соединении падает напряжение, мощность и выделяется энергия, которая вызывает нагрев контактов. Чрезмерное увеличение тока в цепи или возрастание сопротивления ведет к дальнейшему повышению температуры контакта и подводящих проводов, что может вызвать пожар.
В электроустановках применяются неразъемные контактные соединения (пайка, сварка) и разъемные (на винтах, втычные, пружинящие и т. п.), а также контакты коммутационных устройств — магнитных пускателей, реле, выключателей и других аппаратов, специально предназначенных для замыкания и размыкания электрических цепей, т. е. для их коммутации. В сетях внутридомового электроснабжения от ввода до приемника электроэнергии электрический ток нагрузки протекает через большое количество контактных соединений.
Контактные соединения никогда, ни при каких обстоятельствах не должны нарушаться . Однако исследования проведенные некоторое время назад над оборудованием внутридомовых сетей, показали, что из всех обследованных контактов только 50 % удовлетворяют требованиям ГОСТа. При протекании тока нагрузки в некачественном контактном соединении за единицу времени выделяется значительное количество тепла, пропорциональное квадрату тока (плотности тока) и сопротивлению точек действительного соприкосновения контакта.
Если разогретые контакты будут соприкасаться с горючими материалами, то возможно их воспламенение или обугливание и загорание изоляции проводов.
В еличина переходного сопротивления контактов зависит от плотности тока, силы сжатия контактов (величины площади сопротивления), от материала, из которого они изготовлены, степени окисления контактных поверхностей и т. д.
Для уменьшения плотности тока в контакте (а значит, и температуры) необходимо увеличить площадь действительного соприкосновения контактов. Если контактные плоскости прижать друг к другу с некоторой силой, мелкие бугорки в местах касания будут незначительно смяты. Из-за этого увеличатся размеры соприкасающихся элементарных площадок и появятся дополнительные площадки касания, а плотность тока, переходное сопротивление и нагрев контакта снизятся. Экспериментальные исследования показали, что между сопротивлением контакта и величиной крутящего момента (силой сжатия) существует обратно пропорциональная зависимость. С уменьшением крутящего момента в 2 раза сопротивление контактного соединения провода АПВ сечением 4 мм2 или двух проводов сечением 2,5 мм2 увеличивается в 4—5 раз.
Для отвода тепла от контактов и рассеивания его в окружающую среду изготавливают контакты определенной массы и поверхности охлаждения. Особое внимание уделяют местам соединения проводов и подключения их к контактам вводных устройств электроприемников. На съемных концах проводов применяют наконечники различной формы и специальные зажимы. Надежность контакта обеспечивается обычными шайбами, пружинящими и с бортиками. Через 3—3,5 года сопротивление контакта увеличивается примерно в 2 раза. Значительно увеличивается сопротивление контактов и при коротком замыкании в результате краткого периодического воздействия тока на контакт. Испытания показали, что наибольшую стабильность при воздействии неблагоприятных факторов имеют контактные соединения с упругими пружинящими шайбами.
К сожалению, «экономия на шайбах» — явление довольно распространенное. Шайба должна быть из цветного металла, например, из латуни. Стальную шайбу защищают антикоррозийным покрытием.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Раздел 3. Защита и автоматика
Глава 3.1. Защита электрических сетей напряжением до 1 кВ
3.1.1. Настоящая глава Правил распространяется на защиту электрических сетей до 1 кВ, сооружаемых как внутри, так и вне зданий. Дополнительные требования к защите сетей указанного напряжения, вызванные особенностями различных электроустановок, приведены в других главах Правил.
3.1.2. Аппаратом защиты называется аппарат, автоматически отключающий защищаемую электрическую цепь при ненормальных режимах.
Требования к аппаратам защиты
3.1.3. Аппараты защиты по своей отключающей способности должны соответствовать максимальному значению тока КЗ в начале защищаемого участка электрической сети (см. также гл. 1.4).
Допускается установка аппаратов защиты, нестойких к максимальным значениям тока КЗ, а также выбранных по значению одноразовой предельной коммутационной способности, если защищающий их групповой аппарат или ближайший аппарат, расположенный по направлению к источнику питания, обеспечивает мгновенное отключение тока КЗ, для чего необходимо, чтобы ток уставки мгновенно действующего расцепителя (отсечки) указанных аппаратов был меньше тока одноразовой коммутационной способности каждого из группы нестойких аппаратов, и если такое неселективное отключение всей группы аппаратов не грозит аварией, порчей дорогостоящего оборудования и материалов или расстройством сложного технологического процесса.
3.1.4. Номинальные токи плавких вставок предохранителей и токи уставок автоматических выключателей, служащих для защиты отдельных участков сети, во всех случаях следует выбирать по возможности наименьшими по расчетным токам этих участков или по номинальным токам электроприемников, но таким образом, чтобы аппараты защиты не отключали электроустановки при кратковременных перегрузках (пусковые токи, пики технологических нагрузок, токи при самозапуске и т. п.).
3.1.5. В качестве аппаратов защиты должны применяться автоматические выключатели или предохранители. Для обеспечения требований быстродействия, чувствительности или селективности допускается при необходимости применение устройств защиты с использованием выносных реле (реле косвенного действия).
3.1.6. Автоматические выключатели и предохранители пробочного типа должны присоединяться к сети так, чтобы при вывинченной пробке предохранителя (автоматического выключателя) винтовая гильза предохранителя (автоматического выключателя) оставалась без напряжения. При одностороннем питании присоединение питающего проводника (кабеля или провода) к аппарату защиты должно выполняться, как правило, к неподвижным контактам.
3.1.7. Каждый аппарат защиты должен иметь надпись, указывающую значения номинального тока аппарата, уставки расцепителя и номинального тока плавкой вставки, требующиеся для защищаемой им сети. Надписи рекомендуется наносить на аппарате или схеме, расположенной вблизи места установки аппаратов защиты.
Выбор защиты
3.1.8. Электрические сети должны иметь защиту от токов короткого замыкания, обеспечивающую по возможности наименьшее время отключения и требования селективности.
Защита должна обеспечивать отключение поврежденного участка при КЗ в конце защищаемой линии: одно-, двух- и трехфазных — в сетях с глухозаземленной нейтралью; двух- и трехфазных — в сетях с изолированной нейтралью.
Надежное отключение поврежденного участка сети обеспечивается, если отношение наименьшего расчетного тока КЗ к номинальному току плавкой вставки предохранителя или расцепителя автоматического выключателя будет не менее значений, приведенных в 1.7.79 и 7.3.139.
3.1.9. В сетях, защищаемых только от токов КЗ (не требующих защиты от перегрузки согласно 3.1.10), за исключением протяженных сетей, например сельских, коммунальных, допускается не выполнять расчетной проверки приведенной в 1.7.79 и 7.3.139 кратности тока КЗ, если обеспечено условие, чтобы по отношению к длительно допустимым токовым нагрузкам проводников, приведенным в таблицах гл. 1.3, аппараты защиты имели кратность не более:
300% для номинального тока плавкой вставки предохранителя;
450% для тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку);
100% для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависящей от тока характеристикой (независимо от наличия или отсутствия отсечки);
125% для тока трогания расцепителя автоматического выключателя с регулируемой обратной зависящей от тока характеристикой; если на этом автоматическом выключателе имеется еще отсечка, то ее кратность тока срабатывания не ограничивается.
Наличие аппаратов защиты с завышенными уставками тока не является обоснованием для увеличения сечения проводников сверх указанных в гл. 1.3.
3.1.10. Сети внутри помещений, выполненные открыто проложенными проводниками с горючей наружной оболочкой или изоляцией, должны быть защищены от перегрузки.
Кроме того, должны быть защищены от перегрузки сети внутри помещений:
осветительные сети в жилых и общественных зданиях, в торговых помещениях, служебно-бытовых помещениях промышленных предприятий, включая сети для бытовых и переносных электроприемников (утюгов, чайников, плиток, комнатных холодильников, пылесосов, стиральных и швейных машин и т. п.), а также в пожароопасных зонах;
силовые сети на промышленных предприятиях, в жилых и общественных зданиях, торговых помещениях — только в случаях, когда по условиям технологического процесса или по режиму работы сети может возникать длительная перегрузка проводников;
сети всех видов во взрывоопасных зонах — согласно требованиям 7.3.94.
3.1.11. В сетях, защищаемых от перегрузок (см. 3.1.10), проводники следует выбирать по расчетному току, при этом должно быть обеспечено условие, чтобы по отношению к длительно допустимым токовым нагрузкам, приведенным в таблицах гл. 1.3, аппараты защиты имели кратность не более:
80% для номинального тока плавкой вставки или тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку), — для проводников с поливинилхлоридной, резиновой и аналогичной по тепловым характеристикам изоляцией; для проводников, прокладываемых в невзрывоопасных производственных помещениях промышленных предприятий, допускается 100%;
100% для номинального тока плавкой вставки или тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку), — для кабелей с бумажной изоляцией;
100% для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависящей от тока характеристикой (независимо от наличия или отсутствия отсечки) — для проводников всех марок;
100% для тока трогания расцепителя автоматического выключателя с регулируемой обратно зависящей от тока характеристикой — для проводников с поливинилхлоридной, резиновой и аналогичной по тепловым характеристикам изоляцией;
125% для тока трогания расцепителя автоматического выключателя с регулируемой обратно зависящей от тока характеристикой — для кабелей с бумажной изоляцией и изоляцией из вулканизированного полиэтилена.
3.1.12. Длительно допустимая токовая нагрузка проводников ответвлений к короткозамкнутым электродвигателям должна быть не менее:
100% номинального тока электродвигателя в невзрывоопасных зонах;
125% номинального тока электродвигателя во взрывоопасных зонах.
Соотношения между длительно допустимой нагрузкой проводников к короткозамкнутым электродвигателям и уставками аппаратов защиты в любом случае не должны превышать указанных в 3.1.9 (см. также 7.3.97).
3.1.13. В случаях, когда требуемая допустимая длительная токовая нагрузка проводника, определенная по 3.1.9 и 3.1.11, не совпадает с данными таблиц допустимых нагрузок, приведенных в гл. 1.3, допускается применение проводника ближайшего меньшего сечения, но не менее, чем это требуется по расчетному току.
Места установки аппаратов защиты
3.1.14. Аппараты защиты следует располагать по возможности в доступных для обслуживания местах таким образом, чтобы была исключена возможность их механических повреждений. Установка их должна быть выполнена так, чтобы при оперировании с ними или при их действии были исключены опасность для обслуживающего персонала и возможность повреждения окружающих предметов.
Аппараты защиты с открытыми токоведущими частями должны быть доступны для обслуживания только квалифицированному персоналу.
3.1.15. Аппараты защиты следует устанавливать, как правило, в местах сети, где сечение проводника уменьшается (по направлению к месту потребления электроэнергии) или где это необходимо для обеспечения чувствительности и селективности защиты (см. также 3.1.16 и 3.1.19).
3.1.16. Аппараты защиты должны устанавливаться непосредственно в местах присоединения защищаемых проводников к питающей линии. Допускается в случаях необходимости принимать длину участка между питающей линией и аппаратом защиты ответвления до 6 м. Проводники на этом участке могут иметь сечение меньше, чем сечение проводников питающей линии, но не менее сечения проводников после аппарата защиты.
Для ответвлений, выполняемых в труднодоступных местах (например, на большой высоте), аппараты защиты допускается устанавливать на расстоянии до 30 м от точки ответвления в удобном для обслуживания месте (например, на вводе в распределительный пункт, в пусковом устройстве электроприемника и др.). При этом сечение проводников ответвления должно быть не менее сечения, определяемого расчетным током, но должно обеспечивать не менее 10% пропускной способности защищенного участка питающей линии. Прокладка проводников ответвлений в указанных случаях (при длинах ответвлений до 6 и до 30 м) должна производиться при горючих наружных оболочке или изоляции проводников — в трубах, металлорукавах, или коробах, в остальных случаях, кроме кабельных сооружений, пожароопасных и взрывоопасных зон, — открыто на конструкциях при условии их защиты от возможных механических повреждений.
3.1.17. При защите сетей предохранителями последние должны устанавливаться на всех нормально незаземленных полюсах или фазах. Установка предохранителей в нулевых рабочих проводниках запрещается.
3.1.18. При защите сетей с глухозаземленной нейтралью автоматическими выключателями расцепители их должны устанавливаться во всех нормально незаземленных проводниках (см. также 7.3.99).
При защите сетей с изолированной нейтралью в трехпроводных сетях трехфазного тока и двухпроводных сетях однофазного или постоянного тока допускается устанавливать расцепители автоматических выключателей в двух фазах при трехпроводных сетях и в одной фазе (полюсе) при двухпроводных. При этом в пределах одной и той же электроустановки защиту следует осуществлять в одних и тех же фазах (полюсах).
Расцепители в нулевых проводниках допускается устанавливать лишь при условии, что при их срабатывании отключаются от сети одновременно все проводники, находящиеся под напряжением.
3.1.19. Аппараты защиты допускается не устанавливать, если это целесообразно по условиям эксплуатации, в местах:
1) ответвления проводников от шин щита к аппаратам, установленным на том же щите; при этом проводники должны выбираться по расчетному току ответвления;
2) снижения сечения питающей линии по ее длине и на ответвлениях от нее, если защита предыдущего участка линии защищает участок со сниженным сечением проводников или если незащищенные участки линии или ответвления от нее выполнены проводниками, выбранными с сечением не менее половины сечения проводников защищенного участка линии;
3) ответвления от питающей линии к электроприемникам малой мощности, если питающая их линия защищена аппаратом с уставкой не более 25 А для силовых электроприемников и бытовых электроприборов, а для светильников — согласно 6.2.2;
4) ответвления от питающей линии проводников цепей измерений, управления и сигнализации, если эти проводники не выходят за пределы соответствующих машин или щита или если эти проводники выходят за их пределы, но электропроводка выполнена в трубах или имеет негорючую оболочку.
Не допускается устанавливать аппараты защиты в местах присоединения к питающей линии таких цепей управления, сигнализации и измерения, отключение которых может повлечь за собой опасные последствия (отключение пожарных насосов, вентиляторов, предотвращающих образование взрывоопасных смесей, некоторых механизмов собственных нужд электростанций и т. п.). Во всех случаях такие цепи должны выполняться проводниками в трубах или иметь негорючую оболочку. Сечение этих цепей должно быть не менее приведенных в 3.4.4.
Эффективная защита электропроводки от короткого замыкания и перегрузки
Электропроводка на объектах любого назначения должна быть безопасной и долговечной. Это первостепенная задача электрика, на которого возложена данная миссия.
При неграмотно проведенной электросистеме не избежать сбоев в ее работе. Такое положение чревато возгоранием в цепи, в том числе поражением током людей.
Аварийные ситуации на объектах или в жилых помещениях происходят по причине повышенного электрического тока и коротких замыканий. Проводники пропускают через себя токи больших величин, в результате чего кабели нагреваются, их изоляция начинает плавиться.
В итоге появляется искрение либо дуга. Чтобы избежать серьезных ситуаций в результате возникновения больших токов в проводниках и короткого замыкания, необходимо изначально правильно проводить электромонтаж всей системы.
Опасность перегрузки и короткого замыкания
На основе двух законов физики Ома и Джоуля-Ленца, можно подтвердить теорию опасности прохождения повышенного тока через проводники.
Согласно закону Ома, если в сети присутствует небольшое сопротивление, то электрический ток окажется большим. Если же сопротивление высокое, то соответственно, ток будет маленьким. С повышением напряжения величина тока растет.
Нередко люди задаются вопросом: почему замыкание бывает именно коротким, а не длинным? Существует формула, показывающая сопротивление замкнутой электроцепи при коротком замыкании:
Rк3 = Rлинии + r + Rконтакт
Rлинии — сопротивление кабелей и ее величина зависит от длины, сечения самих проводников.
r — внутреннее сопротивление источника энергопитания. Величина напрямую связана с конструкцией (если речь идет о гальваническом элементе) либо от профиля кабеля в трансформаторной обмотке.
Rконтакт — контактное либо переходное сопротивление, значение которого зависит от площади соприкосновения пары замкнутых кабелей.
Не менее важно обращать внимание на реактивные емкостные, индуктивные сопротивления. Однако в бытовой электропроводке такой момент можно не учитывать.
В итоге в замкнутой электроцепи ток ограничивается лишь сопротивлениями, о которых было сказано выше. А такие величины совсем малы.
Внимание! На практике электрический ток короткого замыкания достигает сотен и тысяч ампер. Поэтому это опасно для жизни человека.
Согласно второму закону Джоуля-Ленца, чем выше значение тока либо сопротивление проводника, тем большее количества тепла выделяется на последнем. Значит, при прохождении тока через кабели происходит их нагрев. Причем у каждого электропроводника имеется определенное значение сопротивления.
Избежать перегрева кабеля можно, если подобрать подходящее сечение под данный ток. Жила не будет греться в случае рассеивания тепла в окружающую атмосферу.
Оперативность теплового рассеивания зависит от площади, с которой оно отходит. Насколько больше окажется эта площадь, настолько быстрее пойдет процесс рассеивания тепла.
Поэтому более тонкие провода под высоким напряжением сильно греются, становятся горячими, а утолщенные — успевают отвести тепло от себя в окружающую среду, в результате чего их температура остается почти без изменений.
Внимание! При чрезмерно повышенной температуре кабеля жила покраснеет, нагреется и начнет плавиться изоляция.
Правильный выбор сечения — первоначальная задача по защите от перегрузок
Провода подбираются в зависимости от конкретной нагрузки. При этом учитывается поперечное сечение кабелей. Чтобы оценить правильность подбора сечения жил проводника марки ВВГ-НГ-Is, применяют таблицу 1.3.4, указанную в ПУЭ. Здесь представлены все требования для электропроводов с изоляцией из ПВХ либо резины.
В таблице также указывается метод прокладки кабелей, в том числе их количество. Обычно электропровода подбираются с запасом.
Электрики знают об этом правиле и для розеток используют провод сечением 2,5 мм2, в случае освещения применяют модель размером 1,5 мм2. Во многих ситуациях такие значения вполне подходят для правильного электромонтажа.
На основе готовой таблицы можно проверить расчетные показатели сечения и понять, выдержат ли жилы подобную величину тока без перегрева или иных неприятных ситуаций.
Внимание! Для защиты проводки от перегрузок, первостепенно нужно сделать грамотный выбор кабелей. Это должны быть модели ВВГ-НГ-Is либо NYM.
Если покупать кабельные изделия не в специализированных магазинах, то велика вероятность того, что продукция не будет соответствовать нормам ГОСТ. Это говорит о том, что настоящее сечение может не совпадать с указанным.
В итоге получится так, что кабель куплен нужного типа, однако жилы быстро нагреваются, а изоляция начинает плавиться.
Значимость защитного устройства для проводки
Автоматический выключатель является базовым устройством, предназначенным для защиты электропроводки от короткого замыкания, перегрузок. Прибор защищает от возгорания сам провод, кабель либо шнур, но никак не человека либо электрооборудование.
Защитное автоматическое устройство содержит электромагнитный и тепловой расцепители. При подключении одновременно большого числа электрических приборов произойдет нагрев теплового расцепителя.
По сути, это биметаллическая пластина, изгибающаяся во время нагрева. При изгибании пластина задействует систему отключения автоматического аппарата. В результате этого произойдет обесточивание электроцепи.
Электромагнитный расцепитель представляет собой соленоид с сердечником. Во время прохождения большого тока соленоид начинает выталкивать сердечник, в результате этого срабатывает система отключения.
Внимание! Безопасность применения защитного автоматического выключателя напрямую зависит от грамотного выбора номинала, а также типа время-токовой характеристики.
Номинальный электрический ток подбирают с учетом пропускной способности наиболее слабой точки в электропроводке. Вне зависимости от выбора кабеля для розеток, необходимо обратить внимание на надпись, которая присутствует на розетке.
Во многих изделиях такого вида отмечено 16 ампер, в некоторых случаях встречается 10 ампер. Исходя из надписей на розетках, выбирается автоматический выключатель. Значит, его номинал должен соответствовать 16 амперам.
Если принято решение поставить защитный прибор с номинальным электрическим током 32 ампер (с учетом нескольких розеток и правильности выбора кабеля по сечению), то при подключении в одну розетку с помощью удлинителя фена и обогревателя — через эту розетку тока пройдет более 16А и ее контакты постепенно начнут нагреваться, а корпус — плавиться.
Если длительное время держать включенными электроприборы, тогда от сильного нагрева на контактах розетки образуется нагар, а корпус местами оплавится. При этом стальные шинки, которые поддерживают вилку, начнут набухать и вскоре произойдет ослабление контакта.
В результате контактное сопротивление сильно увеличится и процесс нагрева ускорится. Так произойдет искрение и задымление розетки. Не исключается возгорание облицовки стены, в которой розетка установлена.
Время-токовая характеристика показывает скорость отключения защитного автомата во время перегрузок. В электрических щитах, которые устанавливаются в квартирах или домах, применяют модели класса В и С.
Не менее важное правило при защите электропроводки — монтаж автоматических выключателей с номинальным электрическим током, значение которого не превышает наиболее слабое звено в проводке.
Внимание! Если необходимо обеспечить работу одновременно нескольких энергопотребителей, тогда розетки следует делить на группы в каждом помещении и подводить к ним отдельный провод.
Обеспечение дифференциальной защиты от утечки тока
Устанавливая УЗО, люди считают, что такое устройство защищает от перегрузки либо короткого замыкания. На самом деле, это ошибочное мнение. УЗО произведено с целью защиты электропроводки при утечке электрического тока.
Устройство необходимо для защиты людей при их случайном контакте с токопроводящими участками под напряжением (это касается оголенных кабелей, корпуса поврежденного электроприбора). УЗО также защищает во время утечки тока на заземленную поверхность корпуса, трубопроводы, части конструкций и т. д.
Благодаря устройству защитного отключения отслеживается количество тока, прошедшего по фазному и нулевому проводнику. В случае обнаружения разницы в проводниках считается, что происходит утечка электрического тока и наблюдается размыкание контактов.
Внимание! С установкой УЗО можно быть уверенными в безопасности людей. При этом снижаются риски последующего распространения утечки до короткого замыкания (если изоляция нарушена).
Не менее эффективным устройством для защиты проводки считается дифавтомат. Он выполняет функцию УЗО и одновременно выступает в качестве автоматического выключателя.
Дифференциальные автоматы и УЗО производятся в двухполюсном либо четырехполюсном виде. В соответствии с правилами ПУЭ, такие приборы должны применяться, если имеется заземление.
Защита проводки с помощью ограничителя мощности
Данное устройство отключает нагрузку при завышенном показателе мощности. По сути, такой прибор не является защитным и применяется в основном сетевыми и энергосбытовыми организациями с целью контроля, поддержания определенного уровня электроэнергии. Ограничитель мощности следит за используемой мощностью. При завышенных ее значениях происходит отключение потребителя.
Для обеспечения надежной защиты электропроводки требуется правильно выбрать кабель по сечению, установить автоматические выключатели и иные защитные устройства, а также грамотно использовать электрооборудование.