Деформационные швы в зданиях нормы
Перейти к содержимому

Деформационные швы в зданиях нормы

  • автор:

Деформационные швы

В статически неопределимых системах железобетонных зданий и сооружений кроме усилий от внешних нагрузок возникают дополнительные усилия вследствие изменений температуры и усадки бетона. С целью ограничения величины этих усилий устраивают температурно-усадочные швы, расстояния между которыми определяют расчётом.

Расчёт допускается не производить для конструкций 3-й категории трещиностойкости при расчётных зимних температурах наружного воздуха выше минус 40° С, если расстояния между швами не превышают величин, приведенных в табл. 3 Пособия к СНиП

В любом случае расстояния между швами должны быть не более:

150 м для отапливаемых зданий из сборных конструкций
90 м — для отапливаемых зданий из сборно-монолитных и монолитных конструкций

Для неотапливаемых зданий и сооружений указанные значения следует уменьшать на 20 %.

Для предотвращения возникновения дополнительных усилий при неравномерных осадках основания (разновысокие секции, сложные грунтовые условия и т.п.) предусматривается устройство осадочных швов.

Схемы деформационных швов изображены на рис. Следует обратить внимание на то, что осадочные швы прорезают сооружение до основания, а температурно-усадочные — только до верха фундаментов. Осадочные швы одновременно выполняют роль и температурно-усадочных швов.

Схемы деформационных швов

Ширина температурно-усадочного шва обычно 2…3 см, она уточняется расчётом в зависимости от длины температурного блока и температурного перепада.

Изменение длины ж/б элемента при температурном воздействии

Актуальные вопросы расчёта

Сообщение пользователя Ал-й на форуме dwg.ru:

Основные моменты в проблеме температурного расчета на мой взгляд:

Неопределенность с жесткостными характеристиками основания в горизонтальном направлении — к примеру, учитывая скорость приложения температурной нагрузки, может иметь место изрядная реология. Трение о грунт будет разным на разных участках фундаментной плиты в зависимости от давления на грунт на этих участках. Локальные повреждения гидроизоляции — могут ли быть и стоит ли их учитывать? А локальные зоны пластики в грунтах? Ну и плюс, упомянутая мною обратная засыпка. Варьирование жесткостных характеристик основания в горизонтальном направлении может многократно изменять усилия от температурных нагрузок. Со сваями все еще сложнее.

Нелинейность железобетона, его «длительные» жесткостные характеристики — каково будет изменение диаграммы деформирования железобетона при скорости нагружения, характерной для температурных нагрузок? Я уже молчу про все остальные тонкости моделирования нелинейных свойств железобетона — как минимум нужно солидами моделировать, чтобы учесть снижение в том числе сдвиговой жесткости всех элементов, особенно массивных, которые являются концентраторами.

Неопределенность с самими температурными нагрузками. В железобетоне и без этих нагрузок будут раскрыты многочисленные трещины, а уж с учетом температуры — тем более. И снижаться будет не только жесткость каркаса, но и сами нагрузки, т.к. уменьшается сама площадь элементов (в связи с образованием трещин), что известными мне методиками никак не учитывается.

Таким образом, считаю, что полноценный температурный расчет ЖБ каркасов в настоящее время — это гадание, и единственное, чему можно верить — это опыт проектирования, отраженный в частности в рекомендуемых расстояниях между температурными блоками.

Полезные ссылки

Определение наибольшего расстояния между температурно-усадочными швами. Пособие по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры (к СНиП 2.03.01-84)

п.6.27 СП 27.13330.2011 «Бетонные и железобетонные конструкции, предназначенные для работы в условиях воздействия повышенных и высоких температур»

Деформационные швы в зданиях – какие и зачем

Строим дом Мечты сбываются

В этом выпуске непрошеных советов я поговорю о деформационных швах.

Сразу хочу заметить, что выполняя шов, нужно точно представлять его назначение. Есть температурно-усадочные швы (в кладке, в металле, в железобетоне), которые предназначены для защиты конструкции от разрушений при перепаде температур (даже зима-лето). А есть швы осадочные – те, которые страхуют здание от разрушения вследствие неравномерных осадок основания под фундаментом. Есть швы, совмещающие обе функции.

По первому типу швов все предельно ясно: их нужно делать, если длина конструкции превышает нормируемую. Дело в том, что любой материал при изменении температуры расширяется или сжимается. Величины этих деформаций достигают очень приличных значений, и в итоге могут привести к разрушению, поэтому нормы предусматривают жесткие требования по организации швов в конструкциях. Допустим, для железобетона требования по максимально допустимой длине приведены в Пособии по проектированию бетонных и железобетонных конструкций без предварительного напряжения арматуры.

Таблица 3 - Требования по максимальной длине швов для железобетона

То же самое можно найти в соответствующих нормах для кладки и металлических конструкций.

Если шов делать очень и очень не хочется, можно подтвердить расчетом, что при данной длине конструкции шов не требуется. Вот только обычно этого никто не делает, т.к. проще заложить шов…

Что представляет собой температурный шов? Это может быть просто зазор в конструкции, заполненный легкосжимаемым материалом и позволяющий стене (или другому протяженному элементу) спокойно расширяться-сжиматься при нагревании-охлаждении. Расчетами и опытным путем уже определено, какой длины может быть конструкция, чтобы она могла пережить температурные деформации без разрушения – при большей длине всегда есть риск возникновения трещин. Еще один нюанс: всегда проверяйте в литературе, на сколько расширяется тот или иной материал, чтобы толщины шва было достаточно для деформаций. То есть, алгоритм конструирования шва должен быть следующим:

— сначала определяете, на сколько способен расширяться материал при максимально возможной температуре в месте строительства;

— затем проверяете величину деформации при конкретной длине температурного отсека (чем он длиннее, тем больше деформация);

— после этого задаетесь шириной температурного шва, который должен покрыть температурные расширения материала.

Осадочные швы – с ними не все так однозначно. Проектировщик должен четко представлять, нужен ли такой шов, и зачем он нужен.

Для начала нужно запомнить, что осадочные швы надо делать в следующих случаях:

— если делается пристройка к существующему зданию;

— если есть перепад по высоте более чем в два этажа;

— если есть значительная разница в нагрузках в разных частях здания;

— если есть неравномерные слои грунта (вклинивающиеся и т.д.);

— если присутствуют просадочные или другие неблагоприятные инженерно-геологические условия, а здание – значительных размеров.

Что такое осадочные швы? Если температурные швы могут быть выполнены лишь в части конструкции (например, в кирпичной кладке или в надземной металлической части здания), то осадочные швы всегда выполняются от верха до низа здания – они должны разрезать все, и фундамент, и крышу. Осадочные швы, по сути, делят здание на две и более отдельных частей. Это очень важный момент, о котором не следует забывать. Если вы запроектируете шов в стене, но забудете о нем в перекрытии (или, что еще хуже – в фундаменте), то толку от такого шва будет мало. Просто напряжения перераспределятся, и трещины возникнут в другой части здания – но возникнут.

Еще обратите внимание на следующее: осадочный шов – это не всегда сквозная щель. Иногда к вопросу можно подойти творчески, главное понимать, зачем нам шов-то нужен. А нужен он для того, чтобы при разных осадках конструкции не разрушились. То есть, конструкции должны быть податливыми к деформациям – это главный критерий. Такую податливость можно обеспечить явным шарниром при опирании перекрытия в одном из пролетов здания, как показано на рисунке ниже. Можно себе представить, что при осадке одного из блоков, перекрытия просто слегка повернутся в месте опирания, но целостность здания нарушена не будет.

Конструкция вложенного пролета, облегчающая устройство деформационных швов в конструкции фундаментов

Рисунок взят из очень хорошей книги по швам, советую с ней ознакомиться. Ф. Волдржих «Деформационные швы в конструкциях наземных зданий».

Успешной вам работы!

С уважением, Ирина.

Комментарии
0 #1 Оксана 30.04.2015 14:07

Ирина, скачала хвалённую Вами книгу, бегло просмотрела — там и про работу грунтов много написано, да? На досуге надо почитать! Ирина, и всё таки хочу Вас просить статейку про продавливание, не могу разобраться в СП!

Приложение Д
(рекомендуемое)
Требования по армированию кладки лицевого слоя

на углах каждый из слоев кладки должен быть армирован Г-образными сварными сетками на длину не менее 1 м от угла или до вертикального деформационного шва, если он расположен ближе. На прямолинейных участках допускается укладывать сетки внахлест. Длина перехлеста должна составлять не менее 15 см.

Требования по устройству деформационных швов

Д.4 Горизонтальные швы устраиваются в несущих многослойных стенах со средним слоем из эффективного утеплителя — в облицовочном кирпичном слое, в ненесущих стенах — по всей толщине стены.

Горизонтальные деформационные швы во внутреннем и наружном слоях ненесущих многослойных стен следует выполнять в уровне опорных конструкций (между вышележащей конструкцией и верхним рядом кладки).

Д.5 Горизонтальные швы по высоте здания в облицовке несущих многослойных стен со средним слоем из эффективной теплоизоляции допускается устраивать следующим образом:

первый шов — под перекрытием 2-го этажа;

далее поэтажно, под плитой монолитного железобетонного перекрытия и под консольной балкой, устанавливаемой под сборной железобетонной плитой перекрытия.

Д.6. Вертикальные температурно-деформационные швы устраиваются в лицевом слое многослойных наружных стен, отделенных от основного слоя утеплителя.

Д.7. Рекомендуемые максимальные расстояния между вертикальными температурными швами для прямолинейных участков стен 6 — 7 м. Вертикальные швы на углах здания следует располагать на расстоянии 250 — 500 мм от угла по одной из сторон. При толщине облицовочного слоя 250 мм расстояние между швами может быть увеличено.

При необходимости увеличения расстояния между температурными швами требуется проведение расчетов температурных деформаций с учетом конструктивных особенностей стен, конструкции здания, ориентации его по сторонам света и климатических условий.

СП 14.13330.2018 Строительство в сейсмических районах

6 Жилые, общественные, производственные здания и сооружения

6.1 Общие положения

6.1.1 Требования раздела 6 должны выполняться независимо от результатов расчета в соответствии с разделом 5.
Требования раздела 6 следует применять в зависимости от расчетной сейсмичности, выраженной в целочисленных баллах сейсмической шкалы интенсивности MSK-64. Если в результате геологических изысканий при сейсмическом микрорайонировании получены дробные значения сейсмической интенсивности, расчетные значения сейсмической балльности следует принимать путем математического округления до целого значения.
6.1.2 Здания и сооружения следует разделять антисейсмическими швами в случаях, если:
здание или сооружение имеет сложную форму в плане;
смежные участки здания или сооружения имеют перепады высоты 5 м и более, а также существенные отличия друг от друга по жесткости и (или) массе.
Допускается устройство антисейсмических швов между высокой частью и 1 — 2 этажными пристраиваемыми частями зданий путем шарнирного опирания перекрытия пристройки на консоль высокой части. Глубина опирания должна быть не менее суммы взаимных перемещений плюс минимальная глубина опирания с обязательным устройством аварийных связей.
Для случаев, когда устройство осадочного шва не требуется, допускается не устраивать антисейсмические швы между зданием и стилобатом при расчетном обосновании совместности их работы и выполнении соответствующих конструктивных мероприятий.
Не допускается устройство антисейсмических швов внутри помещений, которые предназначены для постоянного проживания или длительного нахождения маломобильных групп населения.
В одноэтажных зданиях высотой до 10 м при расчетной сейсмичности 7 баллов антисейсмические швы допускается не устраивать.
6.1.3 Антисейсмические швы должны разделять здания или сооружения по всей высоте. Допускается не устраивать шов в фундаменте, за исключением случаев, когда антисейсмический шов совпадает с осадочным.
6.1.4 Расстояния между антисейсмическими швами не должны превышать для зданий и сооружений: из стальных каркасов — по требованиям для несейсмических районов, но не более 150 м; из деревянных конструкций и из мелких ячеистых блоков — 40 м при расчетной сейсмичности 7 — 8 баллов и 30 м — при расчетной сейсмичности 9 баллов. Для зданий остальных конструктивных решений, приведенных в таблице 7, — 80 м при расчетной сейсмичности 7 — 8 баллов и 60 м — при расчетной сейсмичности 9 баллов.

6.1.6 Антисейсмические швы следует выполнять путем возведения парных стен или рам, либо рам и стен.

Ширину антисейсмического шва следует назначать по результатам расчетов в соответствии с 5.5, при этом ширина шва должна быть не менее суммы амплитуд колебаний смежных отсеков здания.
При высоте здания или сооружения до 5 м ширина такого шва должна быть не менее 30 мм. Ширину антисейсмического шва здания или сооружения большей высоты следует увеличивать на 20 мм на каждые 5 м высоты.
6.1.7 Конструкции примыкания отсеков здания или сооружения в зоне антисейсмических швов, в том числе по фасадам и в местах переходов между отсеками, не должны препятствовать их взаимным горизонтальным перемещениям.
6.1.8 Конструкция перехода между отсеками здания может быть выполнена в виде двух консолей из сопрягающихся блоков с устройством расчетного шва между концами консолей или переходов, надежно соединенных с элементами одного из смежных отсеков. Конструкцией их опирания на элементы другого отсека должно быть обеспечено взаимное расчетное смещение элементов, исключена возможность их обрушения и соударения при сейсмическом воздействии.
Переход через антисейсмический шов не должен являться единственным путем эвакуации из зданий или сооружений.

6.4.1 Лестничные клетки устраивают, как правило, закрытыми с естественным освещением через окна в наружных стенах на каждом этаже. Расположение и число лестничных клеток — в соответствии с нормативными документами по противопожарным нормам проектирования зданий и сооружений, но не менее одной между антисейсмическими швами в зданиях высотой более трех этажей.

6.5 Перегородки
6.5.3 Для обеспечения независимого деформирования перегородок следует предусматривать антисейсмические швы между вертикальными торцевыми и верхней горизонтальной гранями перегородок и несущими конструкциями здания. Ширину швов принимают по максимальному значению перекоса этажей здания при действии расчетных нагрузок с учетом прогиба перекрытия в эксплуатационной стадии, но не менее 20 мм. Швы заполняют упругим эластичным материалом.

6.14.13 В сопряжениях стен в кладку должны укладываться арматурные сетки сечением продольной арматуры общей площадью не менее 1 см2, длиной 1,5 м через 700 мм по высоте при расчетной сейсмичности 7 — 8 баллов и через 500 мм — при 9 баллах.
Участки стен и столбы над чердачным перекрытием высотой более 400 мм должны быть армированы или усилены монолитными железобетонными включениями, заанкеренными в антисейсмический пояс. Стены по верху должны иметь обвязочный железобетонный пояс, связанный с вертикальными железобетонными сердечниками.
Кирпичные столбы допускаются только при расчетной сейсмичности 7 баллов. При этом марка раствора должна быть не ниже М50, а высота столбов — не более 4 м. В двух направлениях столбы следует связывать заанкеренными в стены балками.

СП 52-110-2009 Бетонные и железобетонные конструкции, подвергающиеся технологическим повышенным и высоким температурам

6.27 Расстояние между температурно-усадочными швами в бетонных и железобетонных конструкциях из обычного и жаростойкого бетонов должны устанавливаться расчетом. Расчет допускается не выполнять, если принятое расстояние между температурно-усадочными швами не превышает значений, указанных в табл. 6.3, в которой наибольшие расстояния между температурно-усадочными швами даны для бетонных и железобетонных конструкций с ненапрягаемой и с предварительно напряженной арматурой, при расчетной зимней температуре наружного воздуха минус 40 °С, относительной влажности воздуха 60 % и выше и высоте колонн 3 м.

Деформационные швы: для чего они нужны и как используются?

Деформационные швы представляют собой специальные разрезы в конструкции сооружения, призванные разделить его на самостоятельные секции. Таким образом, проектировщики значительно снижают уровень нагрузок, оказываемых на блоки в участках, подверженных деформации при значительных перепадах температур и сейсмической активности. Также деф. швы необходимы для защиты здания от неравномерной усадки грунта. В отношении монтажа швов установлен ряд методических рекомендаций, государственных стандартов и норм, соблюдение которых строго обязательно.

Профили к деформационным швам

Для их заполнения применяются материалы, обладающие достаточной герметичностью, пластичностью, упругостью и изоляционными свойствами. В качестве наполнителей для швов используют специальные замазки, герметик, эластичные ленты, гидрошпонки. Прежде всего, заполнение шва необходимая мера в многоэтажных сооружениях.

Виды профилей классифицируются, исходя из назначения шва. Различают:

  • Температурные;
  • Усадочные;
  • Сейсмические;
  • Осадочные.

В зависимости от задач, поставленных перед деформационным швом, профили могут быть:

  • изоляционными;
  • накладными;
  • подкладными;
  • водонепроницаемыми;
  • терморасширяющимися;
  • парапетными.

Для чего используется деформационный шов?

Рассмотрим ключевые цели его применения:

  1. Деф. шовнеобходим для того, чтобы эффективно отделить облицованные плиткой поверхности от элементов конструкции: стен, колонн, цоколей. Таким образом, деформационные профили для плитки обеспечивает способность поверхности к незначительной подвижности в любых направлениях. Не менее важная функция шва — усиление звуко- и теплоизоляции.
  2. Шов применяется для разделения внушительных площадей, облицованных плиткой, на секции (их количество зависит от места строительства и эксплуатационных условий). Разделительный шов обеспечивает компенсацию и поглощение напряжения, образованного вследствие изменения линейных параметров или других типов деформационных процессов (к примеру, механических или термогигрометрических). Благодаря шву монолитные сооружения надежно защищены от критической напряженности структуры.
  3. Разделительные швы прерывают облицованную плиткой поверхность. В участках гибкого стыка температурные, усадочные и конструкционные швы могут дублироваться. Наличие специальных разрывов, обеспечивающих достаточную подвижность основания, повышают общую надежность и устойчивость конструкции.

Грамотное обустройство разделительных швов — мера, необходимая для эффективного контроля уровня напряжения, образующегося в конструкции облицованных поверхностей. Их наличие служит крепкой гарантией долговечности сооружения. Важнейшее требование, установленное в отношении швов — их протяженность через весь слой облицовки/основания и обязательное соединение со структурными швами.

Разделительные швы в строительстве

При возведении зданий и проектировке конструкций различного назначения разделительные швы играют первостепенную роль. Их главное предназначение — укрепить всю конструкцию и защитить строение от негативных последствий подъема грунтовых вод, сейсмической активности, механических воздействий. Обустройство деф. швов служит дополнительной мерой укрепления конструкции, защиты его от повреждения и усадки, возможной в случае изменения состава и плотности грунта.

Особенности разделительных швов

Каждому виду характерна своя уникальная специфика. Рассмотрим типы разделительных швов и их функциональное назначение:

Температурные

Применяются с целью обезопасить конструкцию от температурных сдвигов и колебаний. Их использование необходимо даже при стабильном, умеренном климате: вследствие перехода температуры от летней к зимней на зданиях появляются трещины, глубина которых зачастую достигает критических отметок. Возникновение трещин способно привести к тотальной деформации как самой “коробки”, так и основания. Чтобы избежать подобного исхода, в процессе строительства здание подвергается шовному разделению. Расстояние между швами определяется, исходя из материалов строительства. Также учитывается температурный максимум, характерный для местности. Температурные разделительные швы могут применяться исключительно на стенных поверхностях, что связано с минимальной подверженностью основания к температурным колебаниям.

Усадочные

Такие швы используются не столь часто, как температурные. Как правило, их применяют в отношении монолитно-бетонных конструкций. Связано это со склонностью бетона к затвердеванию и покрытию трещинами, способными разрастаться и образовываться полости. Если фундамент буквально испещрен трещинами, со временам основание может не справиться с нагрузками и полностью разрушиться.

Усадочный шов может применяться лишь тогда, когда фундамент полностью затвердел. Соблюдать данное правило строго необходимо, так как действие данного шва основано на его разрастании и полном заполнении объема до момента полного затвердевания бетона. После полной усадки фундамента основание надежно защищено от трещин.

Осадочные

Разделительные конструкции, применяемые на стадиях проектирования или возведения зданий различной этажности. К примеру, их использование потребуется при возведении здания, этажность которого варьируется в зависимости от стороны (с одной три этажа, с другой — четыре и т.д.). Особенностью такой конструкции является то, что сторона большей этажности будет оказывать гораздо более значительное давление на почву. В связи с неравномерно распределенным давлением на почву она непременно просядет, что способно привести к постепенному разрушению фундамента и стен. Вследствие перемены давления отдельные участки здания покроются сеткой трещин и полостей, в результате чего постройка может полностью разрушиться.

В целях предотвращения разрушения конструкции строители используют осадочный разделительный шов, укрепляющий стены и фундамент. Его задача — усилить основание, попутно обеспечив защиту стен. Осадочный шов имеет вертикальную форму, благодаря которой надежно фиксирует каждый элемент конструкции, от крыши до фундамента.

Сейсмические

Конструкции, служащие для повышения сейсмической устойчивости сооружения. Укрепления подобного типа активно применяются в районах повышенной сейсмоактивности. В городах, находящихся в зоне риска возникновения землетрясения, цунами и оползней, сейсмические разделительные швы являются обязательным элементом конструкции здания. Сейсмические швы призваны обезопасить дом от деформации вследствие толчков почвы. Их проектирование проводится по строго индивидуальным схемам. В результате проектирования внутри сооружения создается целая сеть самостоятельных сосудов, разделенных по периметру сейсмическими швами. Особенность такой конструкции состоит в ее особой устойчивости к обрушению.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *