Действительная часть комплексного тока это
Перейти к содержимому

Действительная часть комплексного тока это

  • автор:

Почему для расчетов в цепях переменного тока используются комплексные числа

Как известно, для решения некоторых типичных задач электротехники применяют комплексные числа. Но для чего их используют и почему это делают именно так? В этом мы и постараемся разобраться по ходу данной статьи. Дело в том, что комплексный метод, или метод комплексных амплитуд, удобен при расчетах сложных цепей переменного тока. И для начала вспомним немного математических основ:

Комплексное число

Как видите, комплексное число z включает в себя мнимую и действительную части, которые между собой различаются и обозначаются в тексте по-разному. Само же комплексное число z может быть записано в алгебраической, тригонометрической или показательной форме:

Комплексное число может быть записано в алгебраической, тригонометрической или показательной форме

Комплексные числа появились в результате решения уравнений, в которых под корнем получалось отрицательное число. Такие уравнения не имели решений в множестве действительных чисел, поэтому было введено понятие мнимой единицы i, которая является корнем из -1. С помощью комплексных чисел можно решать любые алгебраические уравнения, а также изучать различные функции и преобразования комплексного аргумента.

Считается, что представление о мнимых числах начало зарождаться в 1545 году, когда итальянский математик, инженер, философ, медик и астролог Джироламо Кардано в своем трактате «Великое искусство» опубликовал данный метод решения уравнений, где, кстати, признался, что идею ему передал Никколо Тарталья (итальянский математик) за 6 лет до публикации этой работы. В работе Крадано решал уравнения вида:

Уравнение Кардано

В процессе решения данных уравнений ученый вынужден был допустить существование некого «нереального» числа, квадрат которого был бы равен минус единице «-1», то есть будто бы существует квадратный корень из отрицательного числа, и если его теперь возвести в квадрат, то получится, соответственно, отрицательное число, стоящее под корнем. Кардано указал правило умножения, согласно которому:

Правило умножения Кардано

На протяжении трех веков математическое сообщество пребывало в процессе привыкания к новому подходу, предложенному Кардано. Мнимые числа постепенно приживались, однако принимались математиками неохотно. И лишь с публикациями работ Карла Фридриха Гаусса по алгебре, где он доказывал основную теорему алгебры, комплексные числа наконец-то основательно приняли, на дворе был 19 век.

Мнимые числа стали настоящей палочкой — выручалочкой для математиков, ведь сложнейшие задачи стали решаться гораздо проще с приятием существования мнимых чисел.

Так вскоре дело дошло и до электротехники. Электрические цепи переменного тока порой оказывались очень сложными, и для их расчета приходилось вычислять множество интегралов, что зачастую весьма неудобно.

Наконец, в 1893 году гениальный электротехник Карл Август (Чарлз Протеус) Штейнмец выступает в Чикаго на Международном электротехническом конгрессе с докладом «Комплексные числа и их применение в электротехнике», чем фактически знаменует начало практического применения инженерами комплексного метода расчетов электрических цепей переменного тока.

В своем докладе Штейнмец ввел понятие комплексной мощности, которая состоит из активной и реактивной составляющих, и показал, как можно вычислять их с помощью комплексных чисел. Он также разработал методы для анализа и синтеза полифазных систем, которые широко используются в электроэнергетике.

Доклад Штейнмеца произвел большое впечатление на электротехническое сообщество и стал поворотным моментом в развитии теории и практики переменного тока.

Благодаря комплексным числам, инженеры получили мощный инструмент для решения сложных задач, связанных с переменным током. Комплексные числа стали неотъемлемой частью электротехники и электроэнергетики.

Переменный ток

Почему при расчетах переменных токов нельзя использовать те же формулы, что и при расчетах постоянных токов?

При расчетах переменных токов нельзя использовать те же формулы, что и при расчетах постоянных токов, потому что в цепях переменного тока возникают дополнительные эффекты, связанные с индуктивностью и ёмкостью элементов цепи. Эти эффекты приводят к тому, что сопротивление цепи зависит не только от ее активного сопротивления, но и от частоты переменного тока. Кроме того, в цепях переменного тока могут быть фазовые сдвиги между напряжением и током, которые также влияют на характеристики цепи.

Комплексные числа в расчетах переменных токов

Комплексные числа в электротехнике и электронике используются для упрощения расчетов переменных токов и напряжений, а также для анализа фазовых сдвигов, импедансов, резонансов и других явлений в электрических цепях.

Комплексные числа позволяют заменить графические методы решения задач на алгебраические, а также применять общие законы и формулы, которые справедливы для постоянного тока, к переменному току. Они также помогают моделировать различные физические процессы, такие как колебания и волны.

Для расчетов в цепях переменного тока комплексные числа используются, потому что они позволяют учесть фазовые сдвиги между напряжением и током в различных элементах цепи, таких как резисторы, конденсаторы и катушки индуктивности.

Для работы с комплексными числами в электротехнике нужно знать, как выполнять основные алгебраические операции над ними, такие, как сложение, вычитание, умножение и деление, а также как переводить их из алгебраической формы в тригонометрическую или показательную форму и обратно. Также полезно знать, как находить модуль и аргумент комплексного числа, которые соответствуют амплитуде и фазе переменной величины.

Из курса физики нам известно, что переменный ток — это такой ток, который изменяется во времени как по величине, так и по направлению.

В технике встречаются различные формы переменного тока, однако наиболее распространен сегодня ток переменный синусоидальный, именно такой используется всюду, при помощи его электроэнергия передается, в виде переменного тока она генерируется, преобразуется трансформаторами и потребляется нагрузками. Синусоидальный ток периодически изменяется по синусоидальному (гармоническому) закону.

Синусоидальный ток

Действующие значения тока и напряжения меньше амплитудных значений в корень из двух раз:

Действующие значения тока и напряжения меньше амплитудных значений в корень из двух раз

В комплексном методе действующие значения токов и напряжений записывают так:

Действующие значения токов и напряжений в комплексном виде

Обратите внимание, что в электротехнике мнимая единица обозначается буквой «j», поскольку буква «i» уже занята здесь для обозначения тока.

Из закона Ома определяют комплексное значение сопротивления:

Комплексное значение сопротивления

Сложение и вычитание комплексных значений осуществляется в алгебраической форме, а умножение и деление — в показательной форме.

Давайте разберем метод комплексных амплитуд на примере конкретной схемы с определенными значениями основных параметров.

Пример решения задачи с применением комплексных чисел

  • напряжение на катушке 50 В,
  • сопротивление резистора 25 Ом,
  • индуктивность катушки 500 мГн,
  • электроемкость конденсатора 30 мкф,
  • сопротивление провода катушки 10 Ом,
  • частота сети 50 Гц.

Найти: показания амперметра и вольтметра, а также ваттметра.

Для начала запишем комплексное сопротивление последовательно соединенных элементов, которое состоит из действительной и мнимой частей, затем найдем комплексное сопротивление активно-индуктивного элемента.

Вспоминаем! Для получения показательной формы находят модуль z, равный корню квадратному из суммы квадратов действительной и мнимой частей, а также фи, равное арктангенсу частного от деления мнимой части на действительную.

Пример решения задачи с применением комплексных чисел

Далее найдем ток и соответственно показания амперметра:

Ток

Итак, амперметр показывает ток 0,317 А — это ток через всю последовательную цепь.

Теперь найдем емкостное сопротивление конденсатора, затем определим его комплексное сопротивление:

Комплексное сопротивление

Далее вычислим полное комплексное сопротивление данной цепи:

Полное комплексное сопротивление данной цепи

Теперь найдем действующее напряжение, приложенное к цепи:

Действующее напряжение, приложенное к цепи

Вольтметр покажет действующее напряжение 19,5 вольт.

Наконец, найдем мощность, которую покажет ваттметр с учетом разности фаз между током и напряжением

Расчет мощности

Ваттметр покажет 3,51 Ватт.

Теперь вы понимаете, какое важное место комплексные числа занимают в электротехнике. Они применяются для удобного расчета электрических цепей. На этой же основе работают и многие электронные измерительные приборы.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Приложение комплексных чисел в электротехнике

Шмидт, Н. М. Приложение комплексных чисел в электротехнике / Н. М. Шмидт. — Текст : непосредственный // Молодой ученый. — 2012. — № 2 (37). — С. 320-323. — URL: https://moluch.ru/archive/37/4252/ (дата обращения: 05.04.2024).

Первое упоминание о «мнимых» числах как о квадратных корнях из отрицательных чисел относится еще к XVI веку. Итальянский ученый Джироламо Кардано (1501-1576) в 1545 году опубликовал работу, в которой, пытаясь решить уравнение , он пришел к выражению . Через это выражение представлялись действительные корни уравнения: Таким образом, в работе Кардано мнимые числа появились как промежуточные члены в вычислениях. Заслуга Кардано состояла в том, что он допустил существование «несуществующего» числа , введя правило умножения: все остальное стало делом техники.

Однако еще три столетия математики привыкали к этим новым «мнимым» числам, время от времени пытаясь от них избавиться. Только с XIX века, после выхода в свет работ Карла Фридриха Гаусса (1777-1855), посвященных доказательству основной теоремы алгебры, комплексные числа прижились в науке.

Комплексные числа – один из наиболее подходящих разделов курса математического анализа для реализации профессиональной направленности бакалавров по направлению подготовки Информатика и вычислительная техника. При изучении комплексных чисел необходимо учитывать применение математических знаний в общетехнических и специальных дисциплинах, в частности электротехнике. Применение комплексных чисел дает возможность использовать законы, формулы и методы расчетов, применяющиеся в цепях постоянного тока, для расчета цепей переменного тока, упростить некоторые расчеты, заменив графическое решение с использованием векторов алгебраическим решением, рассчитывать сложные цепи, которые другим путем решить нельзя, упростить расчеты цепей постоянного и переменного токов.

При расчетах цепей приходится проводить математические операции с комплексными числами, поэтому студенты должны уметь выполнять следующие операции: 1) находить модуль и аргумент комплексного числа и комплексное число по модулю и аргументу; 2) переводить комплексное число из одной формы в другую; 3) производить сложение и вычитание, умножение и деление комплексных чисел.

Помимо этого, очень важно научить строить кривую и вектор по уравнению синусоиды, вектор по комплексному числу, определять комплексное число по вектору и уравнению, уравнение по комплексному числу.

В электротехнике тема «Переменный ток» занимает значительное место. Это объясняется тем, что большинство электротехнических установок работает на переменном токе, который изменяется синусоидально.

Уравнение переменного напряжения имеет вид , где u – мгновенное значение напряжения; – максимальное значение (амплитуда) напряжения; w – угловая частота ; t – время ; – начальный фазовый угол ; – электрический угол . Это уравнение связывает две переменные величины: напряжение u и время t . С течением времени напряжение изменяется синусоидально.

Аналогичный вид имеют уравнения и других синусоидально изменяющихся величин: тока , э.д.с. и т.д.

При расчете цепей переменного тока приходится использовать синусоидально изменяющиеся величины, т.е. производить сложение, вычитание, умножение и деление уравнений указанного выше типа.

Сложение синусоидальных величин трудоемко, особенно если приходится складывать большое число уравнений. Синусоидальная величина однозначно представлена вращающимся вектором, длина которого равна амплитуде, а начальное положение определяется углом , вращение вектора происходит с угловой скоростью w . Операции производятся с уравнениями, имеющими одинаковую угловую частоту, то есть все векторы, заменяющие уравнения, вращаются с одинаковой угловой скоростью. Следовательно, их взаимное расположение не меняется, отпадает необходимость вращения векторов. Так как векторы заменяют синусоидальные величины, то сложение или вычитание, возможно, заменить сложением или вычитанием векторов.

Переменная синусоидальная величина обладает свойствами:

1. Переменная синусоидальная величина может быть однозначно представлена вектором. Длина вектора равна амплитуде; угол наклона равен начальному фазовому углу.

2. Сложение (и вычитание) синусоидальных величин можно заменить сложением (и вычитанием) векторов.

Кроме сложения и вычитания синусоидальные величины приходится умножать и делить. И здесь на помощь приходят комплексные числа.

Комплексное число может быть изображено на плоскости вектором, длина которого равна модулю комплексного числа, а угол наклона – аргументу. В электротехнике в отличие от математики мнимая единица обозначается буквой j . Если имеется комплексное число A = a + jb , то его можно представить вектором, где – модуль комплексного числа; – аргумент комплексного числа.

Комплексное число имеет три формы: алгебраическую – A = a + jb ; тригонометрическую – ; показательную – .

Комплексное число однозначно представлено вектором, а определенному вектору соответствует определенное комплексное число.

Таким образом, если переменная синусоидальная величина может быть представлена вектором, а определенному вектору соответствует определенное комплексное число, то переменная синусоидальная величина может быть представлена комплексным числом. Такие величины как: напряжение и ток, сопротивление и проводимость, мощность выражаются комплексными числами.

Напряжение и ток. Имеется уравнение . В электротехнике за длину вектора берется не максимальное, а действующее значение. Оно обозначается большой буквой U без индекса и вычисляется путем деления максимального значения на .

Синусоидальная величина, выраженная комплексным числом, называется комплексом и обозначается прописной буквой с точкой наверху . Комплекс напряжения можно написать в трех формах алгебраической – , тригонометрической – и показательной – .

Таким образом, в комплексе напряжения модуль равен действующему значению, аргумент – начальному фазовому углу, активная составляющая – вещественной части комплекса напряжения, реактивная – мнимой части.

Аналогично для тока: , , , , .

Пример. Дано: ток в комплексной форме Написать уравнение тока.

Решение. Для того чтобы написать уравнение, надо знать амплитуду и начальный фазовый угол. Поэтому надо найти модуль – действующее значение и аргумент – начальный фазовый угол заданного комплекса тока:

Сопротивление и проводимость. Имеется цепь (рис. 1): r – активное сопротивление (лампа накаливания); – индуктивное сопротивление (катушка); z – общее сопротивление цепи, называемое полным.

Сопротивления r , , z образуют прямоугольный треугольник сопротивления
(рис. 2). Угол – угол сдвига фаз. Сопротивления не являются синусоидальными величинами, однако отрезок z может быть выражен комплексным числом, считая, что отрезок r откладывается по оси вещественных чисел, а отрезок – по оси мнимых чисел.

Сопротивление в комплексной форме обозначается буквой Z . Для цепи на рис.2 комплекс сопротивления записывается: – алгебраическая форма; – тригонометрическая форма; – показательная форма.

Модуль ; аргумент . Таким образом, в комплексе сопротивления модуль равен полному сопротивлению, а аргумент – сдвигу фаз.

Мощность. Комплекс мощности получится, если комплекс напряжения умножить на сопряженный комплекс тока: , где – комплекс мощности, – сопряженный комплекс тока.

После умножения получим комплексное число, у которого вещественная часть равна активной мощности, а мнимая часть – реактивной мощности:

, где P – активная мощность, Q – реактивная мощность.

Пример. ,6; . Определить активную P и реактивную Q мощность.

Решение. Переведем комплексы напряжения и тока в показательную форму, для этого найдем модуль и аргумент тока и напряжения:

Определим сопряженный комплекс тока: ,

Найдем активную и реактивную мощности: P =975Вт, Q =171 вар.

Алгебраическая форма комплексного числа удобна при сложении и вычитании, показательная – при умножении и делении; тригонометрическая служит для перевода показательной формы в алгебраическую.

  1. Дано: а) ; б) ; в) ; г)

  1. Дано: а) ; б) ; в) .

  1. Дано: а) ; б) ; в) ;г) ;
    д) ; е) ; ж) .

  1. Выполнить сложение, умножение, деление комплексных чисел.

  1. Теоретические основы электротехники: Теория электрических цепей и электромагнитного поля: учеб. пособие для студ. высш. учеб. заведений / под ред. С.А. Башарина, В.В. Федорова. – М.: Издательский центр «Академия», 2004. – 304 с.

Основные термины (генерируются автоматически): комплексное число, число, начальный фазовый угол, алгебраическая форма, вектор, комплекс напряжения, переменная синусоидальная величина, переменный ток, расчет цепей, показательная форма.

Похожие статьи

Пространственные векторы в асинхронном двигателе

Баланс фазных напряжений статорных и роторных цепей В векторной форме баланс напряжений для статора: Аналогично, произведем преобразование баланса напряжений для роторных фазных переменных

Расчет переходного процесса при включении электропривода.

Результатом их являются искажения и скачки напряжений и токов в электрических сетях, которые приводят к В результате получаем СДУ в матричной форме Исследование несинусоидальных периодических цепей переменного тока в различных программных средах.

Пространственные векторы в асинхронном двигателе.

Баланс фазных напряжений статорных и роторных цепей В векторной форме баланс напряжений для статора: Аналогично, произведем преобразование баланса напряжений для роторных фазных переменных

Преобразования переменных в системах координат a, b, c и α, β

В матричной форме система уравнений (3) примет следующий вид Графики напряжений uα и uβ. Б) Обратный перевод переменных из двухфазной системы в трехфазную: α, β → a, b, c. Шрейнер Р.Т. Математическое моделирование электроприводов переменного тока с.

Исследование системы векторного управления.

Алгоритм управления в векторной форме имеет следующий вид после чего также определяются мгновенные значения косинуса и синуса угла γ для Расчет переходного процесса при включении электропривода в однофазной электрической цепи переменного тока.

Методики расчёта составляющих мощности при синусоидальных.

Методы определения реактивной мощности при синусоидальных режимах можно разделить на две группы: методы, использующие мгновенные значения токов и напряжений и методы, использующие Одна выражалась в сдвиге по фазе, а другая в искажении формы.

К расчёту переходных процессов в линейных электрических цепях.

Выбираются: а) переменные состояния цепи, в качестве которых оптимально брать токи в индуктивностях и напряжения на Ниже показаны графовые модели в переменных состояния для экспоненциальной e(t)=Eeat, постоянной e(t)=E и синусоидальной э. д.с. e(t)=Emsin(ωt+ψe)

Расчет несимметричных трехфазных цепей | Статья в журнале.

Рис. 1. Исходная схема цепи. Расчет токов методом симметричных составляющих. Раскладываем напряжения и токи, на напряжения и токи Похожие статьи. Исследование несинусоидальных периодических цепей переменного тока в различных программных средах.

Анализ четырехфазных линий электропередач | Статья в сборнике.

Напряжения и токи в одной линии ДПЗ соответственно равны по величине и противоположны по направлению напряжениям и токам в другой. Существенным отличием четырехфазной линии от линии ДПЗ является отсутствие тока в земле.

  • Как издать спецвыпуск?
  • Правила оформления статей
  • Оплата и скидки

Комплексные числа в электротехнике

Господа, в сегодняшней статье я хотел бы вам немного рассказать про комплексные числа и сигналы. Данная статья будет в основном теоретической. Ее задача – подготовить некоторый фундамент для возможности понимания дальнейших статей. Просто когда речь заходит про фазу или, допустим, про поведение конденсатора в цепи переменного тока, так сразу и начинаю лезть все эти комплексности. А про фазу все-таки хочется поговорить, штука важная. Нет, эта статья ни в коем случае не будет кратким курсом ТФКП, мы рассмотрим только лишь очень узкую область из этой вне всякого сомнения интересной и обширной темы. Итак, поехали!

Но прежде чем начать говорить непосредственно про комплексные числа, я бы хотел еще рассказать про такую любопытную штуку, как тригонометрический круг. Господа, вот мы с вами уже на протяжении аж трех ( раз , два , три ) статей говорим про синусоидальный ток. Но как вообще формируется функция синуса? Да и косинуса тоже? Можно по-разному ответить на этот вопрос, но в контексте данной статьи я выбрал следующее объяснение. Взгляните, пожалуйста, на рисунок 1. На нем изображен так называемый тригонометрический круг.

Рисунок 1 – Тригонометрический круг

Там много всего намалевано, поэтому давайте разбираться постепенно что там есть что. Во-первых, там есть, собственно, некоторая окружность, центр которой совпадает с центром системы координат с осями Х и Y. Радиус этой окружности равен единице. Просто единице, без всяких вольт, ампер и прочего. Далее из центра этой окружности проведены два радиус-вектора ОА и ОЕ. Очевидно, длина этих векторов равна единице, потому что у нас окружность единичного радиуса. Угол между вектором ОА и осью Х равен φ1, угол между вектором ОЕ и осью Х равен φ2

А теперь самое интересное, господа. Давайте рассмотрим, чему равны проекции этих векторов на оси Х и Y. Проекция вектора ОА на ось Х – это отрезок ОВ, а на ось Y – это отрезок ОС. И все вместе (сам вектор ОА и его проекции ОВ и ОС) образует прямоугольный треугольник ОАВ. По правилам работы с прямоугольным треугольником мы можем найти его стороны ОВ и ОС, то есть проекции радиус вектора ОА на оси Х и Y:

Абсолютно аналогично можно найти соотношения для вектора OE:

Если не понятно почему так, советую погуглить про соотношения сторон в прямоугольном треугольнике. Ну а мы для себя сейчас выносим один немаловажный вывод – проекция единичного вектора на ось Х равна косинусу угла между вектором и осью Х, а проекция на ось Y – синусу этого угла.

А теперь давайте начнем вращать радиус-вектор против часовой стрелки с некоторой частотой. Ну, так, чтобы он своим концом вычерчивал окружность. И, как вы уже, вероятно, догадались, при таком вращении проекция вектора на ось Х будет вырисовывать функцию косинуса, а проекция на ось Y – функцию синуса. То есть, если этот наш радиус-вектор делает за секунду, например, 50 оборотов (то есть вращается с частотой 50 Гц), то это значит, что его проекция на ось Х формирует функцию

а его проекция на ось Y – вырисовывает функцию

Довольно интересный факт на мой взгляд. И вообще тригонометрический круг – любопытная штука. Рекомендую познакомиться с ним поближе, погуглив на эту тему. Он позволяет многое лучше понять. Мы же сейчас рассмотрели только немногие из фич, которые нам будут нужны. Сейчас давайте пока временно оставим этот факт и поговорим непосредственно про комплексные числа.

Итак, господа, комплексное число – это выражение вида

a – это действительная часть комплексного числа z.

b – это мнимая часть комплексного числа z.

На самом деле в серьезных книжках по математике комплексное число определяют несколько по-другому, однако нас вполне устроит и такой вариант.

По-научному – это алгебраическая форма записи комплексного числа. Есть еще и другие, с ними познакомимся чуть позже.

а и b – это обычные числа, к которым мы с вами все привыкли. Например, 42, 18, -94, 100500, 1.87 ну и так далее. То есть абсолютно любые. Например, могут иметь место вот такие записи

А число j – это так называемая мнимая единица. Часто ее обозначают не j, а i, но i – это обычно ток в электротехнике, поэтому мы будем использовать буковку j. Что это такое? Формально, это можно записать так

Немного не понятно, как это может быть корень из отрицательного числа . Все мы с детства привыкли, что под корнем у нас только лишь положительные числа. Но математики ввели вот такую вот абстракцию, которая позволяет извлечь корень и из отрицательных чисел. И, как ни странно, подобная абстракция неплохо помогает описывать вполне себе реальные, а вовсе никакие не абстрактные процессы в электротехнике.

То есть мы видим, что комплексное число само по себе как бы просто состоит из двух самых обычных чисел. Да, перед втором стоит некоторое мифическое j, но сути дела это не меняет.

Давайте теперь познакомимся с графическим представление комплексных чисел.

Господа, взгляните на рисунок 2. Там как раз-таки это представление и изображено.

Рисунок 2 – Комплексная плоскость

Итак, в чем здесь, собственно, фишка? А фишка в том, что мы берем и рисуем систему координат. В ней мы ось Х обзываем Re, а ось Y – Im. Re – это ось действительных чисел, а Im – это ось мнимых чисел. Теперь на оси Re мы откладываем величину a, а на оси Im – величину b нашего комплексного числа z. В итоге мы получаем точку на комплексной плоскости с координатами (а, b). И теперь можно провести радиус вектор из начала координат в эту точку. Собственно, этот вектор и можно считать комплексным числом.

Интересный факт: давайте представим, что b равно 0. Тогда получается, что комплексное число вырождается в самое обыкновенно, «одномерное»: мнимая часть просто обнуляется. И, естественно, вектор в этом случае будет лежать на оси Re. То есть, можно сказать, что все числа, которые нас окружают в обычной жизни, находятся на оси Re, а комплексное число – это выход за пределы этой оси, в некотором роде расширение границ. Ну да не будем углубляться в это .

Давайте лучше углубимся в другое. А именно в то, как еще можно представить комплексные числа. Только что мы пришли к выводу, что комплексное число – по сути это вектор. А вектор можно характеризовать длинной и углом наклона, например, к оси Х. Действительно, эти два параметра полностью определяют любой вектор при условии, что у нас двумерное пространство, само собой. Для объема или какого-нибудь многомерного пространства (ужас какой) это не верно, а для двумерного – это так. Давайте теперь выразим сказанное математически. Итак, давайте теперь исходить из того, что нам известна длина вектора (обзовем ее |z|) и угол φ1.

Что мы можем найти, исходя из этих знаний? Да вообще говоря, довольно много. По сути нам известна гипотенуза прямоугольного треугольника и один из его углов, то есть, согласно каким-то там теоремам геометрии, прямоугольный треугольник полностью определен. Поэтому давайте найдем его катеты а и b:

А теперь, господа, можно сделать небольшой финт ушами? Помните алгебраическую запись комплексного числа? Ну, вот эту

Давайте-ка подставим сюда a и b, представленные через синусы с косинусами. Получим

Мы получили интересное выражение. Выражение вида

называется тригонометрической формой записи комплексного числа. Она хороша, если нам известна длина нашего вектора |z| и угол его наклона φ1. Когда речь пойдет об электротехнике, длина вектора внезапно превратится в амлитуду сиганала, а угол наклона – в фазу сигнала. Кстати, обратите внимание, что тригонометрическая форма записи комплексного числа чем-то близка к тригонометрическому кругу, который мы нарисовали в начале статьи. Но к этому сходству мы вернемся чуть позже.

Господа, теперь нам осталось познакомиться с последней формой записи комплексного числа – показательной. Для этого необходимо знать так называемую формулу Эйлера. С вашего позволения я не буду затрагивать вывод этой формулы и рассматривать, откуда она взялась. Это немного выходит за рамки статьи и, к тому же, есть много источников, где, вне всякого сомнения, вам расскажут про вывод этой формулы гораздо более профессионально, чем это смогу сделать я. Мы же просто приведем готовый результат. Итак, формула Эйлера имеет вид

где е – это экспонента или, как ее еще называют, показательная функция. Для математиков это некоторый предел при стремлении чего-то там к бесконечности, а если по-простому – обычное число

Да, просто две целых и семь десятых .

А теперь сравните формулу Эйлера и тригонометрической записью комплексного числа. Не замечаете интереснейшего сходства? Скрестив эти два выражения, можно получить как раз-таки показательную форму записи комплексного числа:

Как ни странно, эта мудреная запись используется в электротехнике не так уж и редко.

Итак, мы познакомились с основными вариантами записи комплексных числе. Теперь давайте постепенно продвигаться к нашей любимой электротехнике. Запишем закон изменения косинусоидального напряжения.

Мы уже записывали этот закон неоднократно, например, в самой первой статье , посвященной переменному току. Правда, там был синус, а здесь косинус, но это абсолютно ничего не меняет по сути, просто тут косинус немного удобнее для объяснения.

А сейчас внимание, господа. Очень хитрая последовательность действий.

Во-первых, никто нам не мешает рассмотреть косинус, который стоит в этом выражении, на тригонометрическом круге, который мы чертили на рисунке 1 в самом начале статьи. А что? Почему нет? Будем представлять себе, что некоторый вектор Ám, равный амплитуде нашего косинусоидального напряжения, вращается в прямоугольной системе координат с круговой частотой ω. И тогда в силу выше изложенных обстоятельств его проекция на оси Х будет вырисовывать как раз наш закон v(t). Вроде бы никакого подвоха пока нет.

Смотрим дальше. На оси Х проекция рисует нашу функцию времени, а ось Y пока что вообще не при делах. А что б она просто так не простаивала – давайте-ка считать, что это не просто абы какая ось Y, а ось мнимых чисел. То есть мы сейчас вводим то самое комплексное пространство. В этом пространстве при вращении вектора Ám (вектора обычно обозначаются буквой с точкой или стрелочкой сверху) в то время как его проекция на оси Х рисует косинус, на оси Y у нас будет рисоваться функция синуса. Вся фишка в том, что мы сейчас как бы скрещиваем тригонометрический круг с комплексной плоскостью. И в результате получаем что-то типа того, что показано на рисунке 3 (картинка кликабельна).

Рисунок 3 – Представление напряжения на комплексной плоскости

Что мы на нем видим? Собственно, то, о чем только что говорили. Вектор, равный по длине амплитуде нашего напряжения, вращается в системе координат, на оси Х (которая Re) вырисовывается закон косинуса (он полностью совпадает нашим сигналом v(t)). А на оси Y (которая Im) вырисовывается закон синуса. Итого на основе вышесказанного наш исходный сигнал

мы можем представить в тригонометрической форме вот так

или в показательной форме вот так

Давайте представим теперь, что у нас не косинусоидальный сигнал, а синусоидальный. К нему мы как-то больше привыкли. То есть, пусть напряжение изменяется вот по такому закону

Проведем все рассуждения аналогичным образом. Единственное отличие будет в том, что теперь наш сигнал «рисуется» на мнимой оси Im, а ось Re как бы не при делах. Но вводя комплексное пространство, мы внезапно получаем, что комплексная запись сигнала для данного случая точно такая же, как и для случая косинуса. То есть и для сигнала

мы можем записать комплексное представление в тригонометрической форме вот так

или в показательной форме вот так

Выходит, что комплексное представление для случая синусоидального и косинусоидального сигнала имеет один и тот же вид. Кстати, это довольно очевидно, если вспомнить, что при вращении вектора по окружности и синус и косинус вырисовываются одновременно на разных осях. А само комплексное число описывает именно этот вращающийся вектор и, таким образом, содержит в себе инфу как про ось Х, так и про ось Y.

Давайте теперь пойдем от обратного и представим, что у нас есть запись некоторого комплексного сигнала в виде

Или, например, в таком виде

Как понять – что он описывает: синус или косинус? Ответ – да никак. Он описывает и то, и то одновременно. И если мы имеем косинусоидальный сигнал, то мы должны взять действительную часть этого комплексного сигнала, а если синусоидальныймнимую. То есть для случая косинуса это выглядит как-то так:

А для случая синуса это выглядит вот так

Здесь Re() и Im() – функции взятия действительной или мнимой части комплексного числа. Кстати, они определены во многих математических САПРах и их можно прям вот в таком виде использовать. То есть передавать им комплексное число, а на выходе получать дейтсвительную или мнимую часть.

Возможно, вы спросите: а зачем так все усложнять? Какая с этого выгода? В чем профит? Профит, безусловно, есть, но о нем мы поговорим чуть позже, в следующих статьях. На сегодня пока все, господа. Спсибо что прочитали и пока!

Вступайте в нашу группу Вконтакте

Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.

Действительная часть комплексного тока это

Комплексным числом называется выражение вида , где – любые действительные числа, – специальное число, которое называется мнимой единицей . Для таких выражений понятия равенства и операции сложения и умножения вводятся следующим образом:


    Два комплексных числа и называются равными тогда и только тогда, когда

Комплексные числа часто обозначают одной буквой, например, . Действительное число называется действительной частью комплексного числа , действительная часть обозначается = Re . Действительное число называется мнимой частью комплексного числа , мнимая часть обозначается = Im . Такие названия выбраны в связи со следующими особыми свойствами комплексных чисел.

Заметим, что арифметические операции над комплексными числами вида осуществляются точно так же, как и над действительными числами. Действительно,

Следовательно, комплексные числа вида естественно отождествляются с действительными числами. Из-за этого комплексные числа такого вида и называют просто действительными. Итак, множество действительных чисел содержится в множестве комплексных чисел. Множество комплексных чисел обозначается . Мы установили, что , а именно

В отличие от действительных чисел, числа вида называются чисто мнимыми . Часто просто пишут , например, . Чисто мнимое число обладает удивительным свойством:

Таким образом,

С учётом этого замечательного соотношения легко получаются формулы сложения и умножения для комплексных чисел. Нет нужды запоминать сложную формулу для произведения комплексных чисел – если на комплексные числа смотреть как на многочлены с учётом равенства то и перемножать эти числа можно как многочлены. В самом деле,

то есть как раз получается нужная формула.
Пример 1

Вычислить и , где и .

1
Рисунок 1.4.1.1

Мы хорошо помним, что геометрической интерпретацией действительных чисел является действительная прямая. Кроме того, как было установлено выше, на действительной прямой «нет места для новых точек», то есть любой точке на действительной оси отвечает действительное число. Следовательно, комплексные числа на этой прямой расположить уже нельзя, однако можно попытаться рассмотреть наряду с действительной осью , на которой мы будем откладывать действительную часть комплексного числа, ещё одну ось, ей перпендикулярную; будем называть её мнимой осью . Тогда любому комплексному числу можно поставить в соответствие точку координатной плоскости. На оси абсцисс будем откладывать действительную часть комплексного числа, а на оси ординат – мнимую часть. Таким образом мы построим взаимнооднозначное соответствие между всеми комплексными числами и всеми точками плоскости. Если такое соответствие построено, то координатная плоскость называется комплексной плоскостью .

Очень важной является интерпретация комплексного числа как вектора с координатами на комплексной плоскости с началом в точке (0; 0) и концом в точке с координатами . Ясно, что это соответствие является взаимнооднозначным. В самом деле, как было только что отмечено, любому комплексному числу соответствует вектор и наоборот, каждому вектору соответствует, и притом единственное, число .

Рассмотренные интерпретации комплексного числа позволяют называть комплексное число вектором или точкой на комплексной плоскости.

Модель 1.14. Комплексные числа на плоскости

Модулем комплексного числа называется длина вектора, соответствующего этому числу:

Модуль комплексного числа обычно обозначается или . Указанная в определении формула легко выводится при помощи теоремы Пифагора (см. рис.).

2
Рисунок 1.4.1.2

Если то то есть для действительного числа модуль совпадает с абсолютной величиной. Ясно, что для всех При этом тогда и только тогда, когда

Аргументом комплексного числа ( ≠ 0) называется величина угла между положительным направлением действительной оси и вектором величина угла считается положительной, если угол отсчитывается против часовой стрелки, и отрицательным в противном случае.

Угол φ, аргумент комплексного числа, обозначается φ = arg . Для числа = 0 аргумент не определён.

Отметим следующий важный факт: заданием своего модуля и аргумента комплексное число фиксируется однозначно. Обратное, вообще говоря, неверно: если задано комплексное число ≠ 0, то его модуль определяется однозначно, а аргумент – нет. Действительно, если φ = arg – аргумент этого комплексного числа, то все числа вида φ + 2π также будут аргументами этого комплексного числа. Например, аргументами комплексного числа являются углы и т. д. Поэтому в качестве аргумента комплексного числа обычно выбирают значение arg .

Заданием только лишь своего модуля определяется только комплексное число = 0.

Из определения тригонометрических функций следует, что φ = arg тогда и только тогда, когда для этого φ выполняется система

Пример 2

Найти модуль и аргумент комплексного числа .

Так как Re = –1 и Im = –1, то точка лежит в третьей координатной четверти.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *