История развития солнечной энергетики в мире
Перейти к содержимому

История развития солнечной энергетики в мире

  • автор:

Развитие солнечной энергетики в мире

Развитие солнечной энергетики в мире

Энергия солнца используется в качестве источника как электрической, так и тепловой энергии. Она экологически чиста, и в процессе ее преобразования не образуется вредных выбросов. Этот относительно новый способ производства электроэнергии получил бурное развитие в середине 2000-х годов, когда страны ЕС стали внедрять политику снижения зависимости от углеводородов в сфере производства электроэнергии. Еще одной целью было снижение выбросов в атмосферу парниковых газов. Именно в эти годы стоимость производства солнечных панелей стала снижаться, а их эффективность – возрастать.

Наиболее благоприятствуют, по длительности светового дня и поступлению солнечных лучей в течение года, тропические и субтропические климатические пояса. В умеренных широтах наиболее благоприятен летний сезон, а что касается экваториальной зоны, то в ней отрицательным фактором является облачность в середине светового дня.

Преобразование солнечной энергии в электрическую может осуществляться посредством промежуточного теплового процесса или напрямую — посредством фотоэлектрических преобразователей. Фотоэлектрические станции подают электроэнергию прямо в сеть, либо служат источником автономного электроснабжения потребителя. Тепловые же солнечные станции главным образом применяются для получения тепловой энергии путем обогрева различных теплоносителей, таких как вода и воздух.

Солнченая батарея

По состоянию на 2011 год, на всех солнечных электростанциях мира было произведено 61,2 млрд. киловатт-часов электроэнергии, что соответствует 0,28% общего мирового объема произведенной электроэнергии. Этот объем сравним с половиной показателя генерации электроэнергии на ГЭС в России. Главным образом мощности фотоэлектрических станций в мире сосредоточены в небольшом количестве стран: в 2012 году 7 стран-лидеров обладали 80% суммарных мощностей. Самое стремительное развитие отрасль получила в Европе, где было сосредоточено 68% мировых установленных мощностей. На первом месте Германия, на которую приходится (2012 год) около 33% мировых мощностей, далее идут Италия, Испания и Франция.

В 2012 году установленная мощность солнечных фотоэлектрических станций во всем мире составила 100,1 ГВт, что меньше 2% суммарного показателя по мировой электроэнергетике. В период с 2007 по 2012 годы этот объем вырос в 10 раз.

Солнечная электростанция

В Китае, США и Японии располагались мощности солнечной энергетики по 7-10 ГВт. В течение нескольких последних лет особенно быстро солнечная энергетика развивается в Китае, где общая мощность фотоэлектрических станций страны выросла в 10 раз за 2 года — от 0,8 ГВт в 2010 году до 8,3 ГВт в 2012 году. Сейчас на Японию и Китай приходится 50% мирового рынка солнечной энергетики. Намерения Китая — получить в 2015 году 35 ГВт электроэнергии от солнечных установок. Это вызвано все растущими потребностями в энергии, а также необходимостью борьбы за чистоту экологии, которая страдает от сжигания ископаемого топлива.

По прогнозам Японской Ассоциации фотоэлектрической энергии, к 2030 году суммарная мощность солнечных станций Японии достигнет 100 ГВт.

В планах Индии – увеличение, в среднесрочной перспективе, мощности солнечных установок в 10 раз, то есть от 2 ГВт до 20 ГВт. Стоимость солнечной энергии в Индии уже достигла уровня 100 долларов за 1 Мегаватт, что сравнимо с энергией, получаемой в стране из импортного угля или газа.

Лишь 30 процентов территории Африки, расположенной к югу от Сахары, имеют доступ к источникам энергии. Там развиваются автономные солнечные установки и микро-сети. Африка, как регион с мощной добывающей промышленностью, таким путем рассчитывает получить альтернативу дизельным электростанциям, а также надежный резервный источник для ненадежных электросетей.

Солнченая электроэнергетика

В России сейчас идет период становления солнечной энергетики. Первая фотоэлектрическая станция мощностью 100 кВт, расположенная на территории Белгородской области, была запущена в 2010 году. Солнечные поликристаллические панели для нее закупались на Рязанском заводе металлокерамических приборов. В Республике Алтай с 2014 года началось строительство солнечной электростанции мощностью 5МВт. Рассматриваются и другие возможные проекты в этой сфере, в том числе в Приморском и Ставропольском краях, а также в Челябинской области.

Что касается солнечной тепловой энергетики, то по данным Renewable Energy Policy Network for the 21st Century, в 2012 году ее мировые установленные мощности составляли 255 ГВт. Большая часть этих тепловых мощностей приходится на Китай. В структуре таких мощностей основную роль играют станции, нацеленные непосредственно на обогрев воды и воздуха.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

История развития солнечной энергетики

Свое начало история солнечной энергетики берет в 17 веке. Именно в этот период во Франции был изобретен двигатель для подачи воды, принцип действия которого основывался на солнечной энергии. Спустя более 100 лет Эдмоном Беккерелем было сделано научное открытие о том, что под действием светового излучения происходит высвобождение электронов из вещества. И именно он пришел к выводу, что некоторые материалы в таких условиях могут генерировать электрический ток.

Первый солнечный элемент был сконструирован Чарльзом Фриттсом в 1883 году, но модернизировать его удалось только к 50-м годам 20 века, после чего он приобрел широкое распространение. С 1958 года различные технологии, связанные с солнечной энергией, нашли широкое применение в космической сфере (в частности, при работе спутников).

Солнечная энергетика в современном мире

Последние несколько десятилетий ознаменовались интенсивным развитием солнечной энергетики. Причем такая тенденция наблюдается в абсолютном большинстве стран мира. Это связано с тем, что люди начали максимально активно решать вопросы, связанные с получением электричества из возобновляемых источников. Но добиться ощутимых результатов удалось лишь после того, как КПД солнечных панелей поднялся до уровня 18-25% и, как следствие, их строительство стало оправданным с финансовой точки зрения. Также развитию способствует государственная поддержка, которая заключается в ведении специально зеленого тарифа (он присутствует в абсолютном большинстве стран).

Если в 2004 году доля солнечной энергии в мировом солнечном комплексе составляла всего 0,1%, то в 2016 году это показатель достиг 0,43%, а на сегодняшний день прирост находится на уровне 3%. Заметный толчок в развитии должен дать ввод солнечной электростанции в Саудовской Аравии, мощность которой составляет 200 ГВт.

Отталкиваясь от текущей статистики многие профильные специалисты сходятся во мнении, что уже к 2050 году доля солнечных электростанций составит примерно 20-25% от общего количества, потребляемого человечеством электричества. Такие цифры являются весьма обнадеживающими и дают надежду на уменьшение выбросов углекислого газа в атмосферу и снижение парникового эффекта.

Перспективы развития солнечной энергетики в Казахстане

На данном этапе Казахстан не относится к числу мировых лидеров в сфере развития солнечной энергетики, но потенциал у страны невероятный, он оценивается в 1500 — 1600 кВт.ч/год. Это очень оптимистические цифры, особенно с учетом того, что страна не может самостоятельно удовлетворить свои потребности в электроэнергии, экспортируя ее из соседних государств.

Положительным фактором является существенное снижение цен на солнечные панели, а также то, что срок их эксплуатации достигает 25-30 лет. Огромным плюсом Казахстана является географическое расположение страны и, как следствие, высокая инсоляция — облучение поверхности земли солнечным светом. Если в абсолютном большинстве европейских стран этот показатель находится на отметке 1000 — 1100 кВт.ч/год, то в Казахстане он выше на 40-50%. Самыми благоприятными регионами для установки СЭС являются Алматинская, Кызылординская, Жамбылская и Туркестанская области.

Какие преимущества и недостатки солнечной энергетики?

Официальный казахстанский сайт солнечных систем TiSUN www.tisun.kz сообщает, что солнечная энергетика это без преувеличения шанс человечества на то, чтобы уменьшить выбросы вредных веществ в атмосферу и дать возможность планете возобновиться. На сегодняшний день процесс установки СЭС достиг мировых масштабов и имеет ряд неоспоримых преимуществ, среди которых:

  • возобновляемость энергии, так как запасы солнечной энергии считаются неисчерпаемыми;

  • высокий процент отдачи;

  • экологичность;

  • доступность;

  • экономия;

  • бесшумность в работе;

  • простота в уходе.

Отдельно стоит обратить внимание на универсальность солнечной энергии, так как ее можно использовать для разных целей и в различных сферах. Но несмотря на большое количество преимуществ, есть у этого направления и определенные недостатки, суть которых сводится к следующим критериям:

  • Большие стартовые затраты. Несмотря на высокую окупаемость СЭС, на первоначальном этапе необходимо иметь солидный запас финансовом. На государственном уровне это решается путем иностранных инвестиций, а в частных домовладениях – путем выдачи льготных кредитов;

  • Ограниченный доступ к солнечному свету: при плохой погоде, в ночное и утреннее время;

  • Высокая стоимость аккумуляторов для хранения выработанной солнечной энергии.

  • При производстве СЭС возникают определенные риски, связанные с загрязнением окружающей среды;

  • Необходимость выделения внушительного свободного пространства.

Несмотря на наличие минусов, положительные стороны СЭС преобладают и именно этот вид энергетики сейчас рассматривается в качестве основной альтернативы атомным и тепловым электростанциям. В перспективе солнечная энергия должна стать основной деятельности крупных химических и прочих предприятий.

Источник: Компания TiSUN

Помощник посетителя

Текущая страница

Новости PRO: все рубрики

Выше на этой странице, вы можете ознакомиться с новостными материалами от производителей и поставщиков оборудования по различным отраслям и направленям, оставить свои комментарии.

Основная тематика новостного раздела: оборудование для предприятий торговли (магазины, склады); предприятий общественного питания (рестораны, фаст фуд, столовые, пищеблоки); пищевой промышленности и для пищевых производств малых предприятий.

Вопрос-ответ

Вопрос-ответ

Если Вам не удалось найти на страницах сайта искомой информации, или возникли другие вопросы – оформите заявку, укажите вашу потребность и получите бесплатную консультацию специалиста

База данных в справочной службе Oborud.info намного обширней, информация предоставляется ОПЕРАТИВНО и БЕСПЛАТНО.

Быстрые переходы

Популярные рубрики:

XII Международная студенческая научная конференция Студенческий научный форум — 2020

1 Курганский институт железнодорожного транспорта филиал Уральского государственного университета путей сообщения. Г. Курган.

Работа в формате PDF

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Солнце, как известно, является первичным и основным источником энергии для нашей планеты. Оно греет всю Землю, приводит в движение реки и сообщает силу ветру. Под его лучами вырастает 1 квадриллион тонн растений, питающих, в свою очередь, 10 триллионов тонн животных и бактерий. Благодаря тому же солнцу на 3емле накоплены запасы углеводородов, то есть нефти, угля, торфа и пр., которые мы сейчас активно сжигаем. Для того чтобы сегодня человечество смогло удовлетворить свои потребности в энергоресурсах, требуется в год около 10 миллиардов тонн условного топлива.

Если энергию, поставляемую на нашу планету Солнцем за год, перевести в то же условное топливо, то эта цифра составит около 100 триллионов тонн. Это в десять тысяч раз больше, чем нам нужно. Считается, что на 3емле запасено 6 триллионов тонн различных углеводородов. Если это так, то содержащуюся в них энергию Солнце отдает планете всего за три недели. И резервы его настолько велики, что светиться так же ярко оно сможет еще около 5 миллиардов лет. 3емные зеленые растения и морские водоросли утилизируют примерно 34% поступающей от Солнца энергии. Остальное теряется почти впустую, расходуясь на поддержание комфортного для жизни микроклимата в глубинах океана и на поверхности Земли. И если бы человек смог взять для своего внутреннего потребления хотя бы один процент (то есть 1 триллион тонн того самого условного топлива в год), то это бы решило многие проблемы на века вперед. И теоретически вполне понятно, как именно взять этот процент.

Солнце обеспечивает нас в 10 000 раз большим количеством бесплатной энергии, чем фактически используется во всем мире. Только на мировом коммерческом рынке покупается и продается чуть меньше 85 триллионов (8,5 x 10 13 ) кВт·ч энергии в год. Общая энергия, потребляемая человечеством в течение года, составляет только приблизительно одну семитысячную часть солнечной энергии, попадающей на поверхность Земли в тот, же период.

Солнечная энергия преобразуется в полезную энергию и косвенным образом, трансформируясь в другие формы энергии, например, энергию биомассы, ветра или воды. Энергия Солнца «управляет» погодой на Земле.

Ежесекундно солнце излучает 88·1024 кал. или 370·1012 ГДж теплоты. Из этого количества теплоты на Землю попадает в энергетическом эквиваленте только 1,2·1012 Вт, т.е. за год 1018 квт·ч, или в 10000 раз больше той энергии, которая сегодня потребляется в мире. По сравнению с ним все остальные источники энергии дают теплоты пренебрежимо мало. Если, к примеру, потенциал Солнца определять по солнечной энергии, падающей только на свободные необрабатываемые земли, то среднегодовая мощность составит около 10000 Гвт, что примерно в 5000 раз больше, чем мощность всех современных стационарных энергетических установок мира. Практическую целесообразность использования солнечной энергии устанавливают исходя из максимального солнечного излучения, равного 1квт\м 2 . Это так называемая наибольшая плотность потока солнечного излучения, приходящего на Землю. Это излучение в диапазоне длин волн 0,3 -2,5 мкм, называется коротковолновым и включает видимый спектр. Однако оно длится всего 1-2 часа в летние дни на близких к экватору широтах. Для населенных районов в зависимости от места, времени суток и погоды среднее солнечное излучение составляет 200-250 вт\м 2 . Но и это очень много с точки зрения производственной деятельности. К примеру, средняя плотность искусственной энергии, обусловленной хозяйственной деятельностью равна всего 0,02 вт\м 2 , т.е. в 10000 раз меньше средней плотности солнечной энергии. В отдельных местах Земного шара этот показатель значительно выше (в Японии — 2 вт\м 2 , в Русском районе в Германии — 20 вт\м 2 ). Расчеты показали, что для удовлетворения современного энергопотребления достаточно превратить солнечную энергию, падающую на 0,0025% поверхности Земли, в электрическую. [1]

Первые опыты использования солнечной энергии в технике относятся к 17 веку. В частности, в 1600 году во Франции был создан первый солнечный двигатель, работавший на нагретом воздухе и использовавшийся для перекачки воды. В конце 17 века ведущий французский химик А. Лаувазье создал первую солнечную печь, в которой достигалась температура в 1650 ?C и нагревались образцы исследуемых материалов в вакууме и защитной атмосфере, а также были изучены свойства углерода и платины. В 1866 г. француз А. Мушо построил в Алжире несколько крупных солнечных концентраторов и использовал их для дистилляции воды и приводов насосов. На всемирной выставке в Париже в 1878 г. Мушо продемонстрировал солнечную печь для приготовления пищи, в которой 0,5 кг мяса можно было сварить за 20 минут. В 1833 г. в США Дж. Эриксон построил солнечный воздушный двигатель с параболоцилиндрическим концентратором размером 4,8 на 3,3 м. Первый плоский коллектор солнечной энергии был построен французом Ш. А. Тельером. Он имел площадь 20 м и использовался в тепловом двигателе, работавшем на аммиаке. В 1855 г. была предложена схема солнечной установки с плоским коллектором для подачи воды, причем он был смонтирован на крыше пристройки к дому.

В 1890 г. профессор В. К. Церасский в Москве осуществил процесс плавления металлов солнечной энергией, сфокусированной параболоидным зеркалом, в фокусе которого температура превышала 3000 ?C. На башенных СЭС сегодня зеркала (гелиостаты) отражают солнечное излучение на теплоприемник, установленный на высокой башне. Этот принцип англичанин Уильям Адаме использовал для своей энергетической установки в Бомбее ещё в 1878 г. Прототип мощной гелиостанции с параболоцилиндрическими отражателями, подобной той, что используется сегодня в калифорнийской пустыне Мохаве и вырабатывает пар для турбин, также был разработан в конце 19 века. Впервые их начал широко применять американский предприниматель Фрэнк Шуман. Его установки на окраине Каира качали на поля воду Нила. К сожалению, эта действовашая солнечная силовая установка мощностью в 40 кВт была разрушена в первую мировую войну.

Солнечная энергия, как известно, может быть непосредственно превращена в электрическую с помощью фотопреобразователей двух типов — фотоэлектрических, реализующих фотовольватический эффект, и фотоэмиссионных, в которых облученные солнечным светом испускают (эмитируют) электроны, захватываемые проводниками, расположенными под поверхностью эмиттера. Практическое применение нашел лишь первый метод фотопреобразования вследствие его значительно более высокой энергетической эффективности. Решающим фактором для этого направления явилось создание кремниевых фотоэлементов с p-n переходом, имевших КПД около 6 %. Впервые кремниевые солнечные батареи для энергетических целей были применены не на Земле, а в околоземном космическом пространстве. В 1958 г. были запущены искусственные спутники Земли, оснащенные такими батареями, — советский «Спутник -3» и американский «Авангард — 1».

В начале 1960-х гг. были созданы и первые солнечные фотоэлементы с p-n переходом на основе арсенида галлия. Эти фотоэлементы уступали по эффективности кремниевым, но были способны работать даже при незначительном нагреве.

Первое практическое применение усовершенствованных солнечных батарей на основе арсенида галлия для энергетических целей было связано с обеспечением электроснабжения советских космических аппаратов, работающих в окрестностях планеты Венеры, а также самоходных аппаратов «Луноход-1» и «Луноход-2», исследовавших поверхность Луны (1970 и 1972 годы).

Новая страница в истории солнечной энергетики открылась с созданием солнечных элементов на основе гетероструктур AlGaAs-GaAs. Поскольку такие гетерофотоэлементы оказались к тому же и более радиационно-стойкими, они быстро нашли применение в космической технике, несмотря на значительно более высокую стоимость по сравнению с кремниевыми фотоэлементами (советская станция «Мир»).

Широкое развертывание индустрии по производству приборов полупроводниковой электроники обусловили исключительно важное значение кремниевых фотоэлементов в становлении нарождающейся солнечной энергетики. До середины 1980-х гг. совершенствование солнечных элементов на основе как кремния, так и арсенида галлия осуществлялось на базе относительно простых структур и простых технологий. А с середины 1980-х гг. были предложены структуры фотоэлементов, позволяющие снизить в них как оптические, так и рекомбинационные потери. В результате был достигнут резкий скачок в эффективности фотоэлектрического преобразования в кремниевых фотоэлементах. Позже появились различные типы механически состыкованных двухкаскадных солнечных элементов, более эффективные, чем фотоэлементы с одним p-n переходом. Сейчас в стадии практического использования находятся трехкаскадные фотоэлементы, но опыт их использования позволяет надеяться на достижение высоких значений КПД в структурах с четырьмя, пятью, а может быть и более каскадами.

С начала 1990-х гг. в практике создания солнечных концентрационных систем возникло новое направление, базирующееся на концепции малоразмерных модулей.

Идея, лежащая в основе работы СЭС башенного типа, была высказана более 350 лет назад, однако строительство СЭС этого типа началось только в 1965 г., а в 80-х годах был построен ряд мощных солнечных электростанций в США, Западной Европе, СССР и в других странах.

В 1985 г. в п. Щелкино Крымской области была введена в эксплуатацию первая в СССР солнечная электростанция СЭС-5 электрической мощностью 5 МВт; 1600 гелиостатов (плоских зеркал) площадью 25,5 м 2 каждый, имеющих коэффициент отражения 0,71, концентрируют солнечную энергию на центральный приемник в виде открытого цилиндра, установленного на башне высотой 89 м и служащего парогенератором.

В башенных СЭС используется центральный приемник с полем гелиостатов, обеспечивающим степень концентрации в несколько тысяч. Система слежения за Солнцем значительно сложна, так как требуется вращение вокруг двух осей. Управление системой осуществляется с помощью ЭВМ. В качестве рабочего тела в тепловом двигателе обычно используется водяной пар с температурой до 550 ?С, воздух и другие газы — до 1000 ?С, низкокипящие органические жидкости (в том числе фреоны) — до 100 ?С, жидкометаллические теплоносители — до 800 ?С.

Первые попытки использования солнечной энергии на коммерческой основе относятся к 80-м годам ХХ столетия. В Калифорнии в 1994г. введено еще 480 МВт электрической мощности, причем стоимость 1 кВт/ч энергии — 7-8 центов.

Рис.1 Солнечные батареи

Предложен метод использования солнечной энергии без использования системы аккумуляторов, основанный на преобразовании разницы температур на поверхности и в глубине океана в электрическую энергию.

Разработаны многообещающие элементы из тонкопленочных (1-2 мкм) полупроводниковых материалов: хотя их КПД низок (не выше 16% даже в лабораторных условиях), стоимость очень мала (не более 10% стоимости современных солнечных батарей).

Американские эксперты считают многообещающей солнечную термоэнергию, для производства которой используются солнечные рефлекторы, собирающие и концентрирующие тепло и свет, при посредстве которых нагревается вода. Например, в России, на Ковровском механическом заводе (г. Жуковск), выпускают солнечные тепловые коллекторы для подогрева воды производительностью до 100 тыс. м3 в год.

История развития солнечной энергетики

Январь 2018

Лондонский профессор Уильям Гриллс Адамс и его ученик Ричард Эванс Дей наблюдали фотогальванический эффект при воздействии света на селен. Конечно, они не смогли получить количество электроэнергии для работы какого-либо оборудования, но таким образом они доказали возможность выработки электроэнергии твердыми элементами под воздействием солнца. Так возникла идея создания фотогальванической ячейки.

Американский изобретатель Чарльз Фриттс создает первую рабочую фотогальваническую ячейку на основе селена. Он покрыл селеновую основу тонким слоем золота. Этот первый функционирующий солнечный элемент имел КПД всего 1%. Первые в мире солнечные батареи на базе этих элементов были установлены на крыше одного из зданий в Нью-Йорке в 1884 году. Но высокая стоимость таких фотогальванических ячеек препятствовала широкомасштабному внедрению эти солнечных батарей.

Применение концентрации солнечного света использовалось довольно давно и долгое время. Но чисто фотоэлектрическая, солнечная энергетика родилась, только когда ученые из Bell Labs кремниевую фотовольтаическую ячейку. Ученые Bell Labs Дэрил Чапин, Кальвин Фуллер и Джеральд Пирсон добились 6% -ной эффективности с этой первой кремниевой ячейкой, и вскоре ранние солнечные панели были использованы для питания спутников, вращающихся вокруг Земли. В 1958 году Vanguard I был запущен с шестью солнечными батареями мощностью около 1 Вт.

Исследовательские лаборатории по всем миру продолжают улучшать эффективность фотовольтаических ячеек, но коммерциализация идет очень медленно. Однако, в 1963 году Sharp успешно начинает промышленное производство солнечных батарей, что позволяет расширить доступность солнечных батарей для обычных потребителей, а не только для космической области.

Нефтяной кризис 1973 года заставляет людей вкладывать деньги в исследования солнечной энергии. Доктор Эллиот Берман, финансируемый корпорацией Exxon, разрабатывает более дешевую солнечную панель, цена которой снижается со 100 долларов за ватт до 20. Берман обнаружил, что использование в производстве солнечных батарей поликристаллов обходится гораздо дешевле, чем монокристаллов. Однако, при этом страдает и эффективность. Даже сейчас поликристаллические солнечные батареи дешевле, но и менее эффективны, чем монокристаллические.

В 1974 году была создана Ассоциация солнечной энергетики (SEIA), работающая над разработкой, внедрением и продвижением солнечной энергетики с США. Основной задачей организации являлось создание единой, и прибыльной промышленной отрасли.

Министерство энергетики США открывает Исследовательский институт солнечной энергии, который позже становится известным, как Национальная лаборатория возобновляемой энергетики (NREL). Лаборатория получает ежегодное финансирование от конгресса США, используемое в проектах и разработках.

ARCO Solar становится первой компанией, производящей 1 мегаватт солнечных панелей в год. Два года спустя в Калифорнии компания реализовала первый проект солнечной электростанции мощностью 1 мегаватт. В дальнейшем, после серии слияний и поглощений, ARCO становится корпорацией SolarWorld.

ARCO Solar выпускает первый коммерческий тонкопленочный солнечный модуль (из аморфного кремния). Шесть лет спустя Университет Южной Флориды достигает эффективности тонкопленочных солнечных модулей в 15,9%, используя в модулях теллурид кадмия (на сегодняшний день достигнут показатель 22%).

Pacific Gas & Electric становится первой американской компанией, обеспечивающей поддержку централизованной энергосети, за счет солнечной энергии, вырабатываемой на солнечной электростанции 500 кВт в Кермане, Калифорния.

Изобретатель и ученый Субенду Гуха изобретает первый гибкий тонкопленочный фотоэлектрический модуль, который он назвал «дранкой», который можно использовать в строительстве зданий с интегрированными системами солнечной генерации.

Генерация всех солнечных электростанций в мире переваливает за 1 гигаватт. Только США достигают генерации 1ГВт в 2008 году, и превышают показатель в 25 ГВт в 2015 году.
Компания First Solar открывает крупнейшую в мире фабрику по производству солнечных батарей мощностью 100 МВт в год, до 2005 года мощность производства не превышала 25 МВт.

BP и BP Solar открывают первую заправочную станцию BP Connect в Индианаполисе, использующую полупрозрачные гибкие солнечные модули в качестве крыши и навесов.

Компания Powerlight (которая была в 2006 году приобретена SunPower) устанавливает на крыше тюрьмы Санта-Рита в Дублине, Калифорния, солнечную электростанцию мощностью 1,18 МВт, крупнейшую в США, и четвертую в мире. По расчетам, электростанция должна обеспечить до 30% потребностей тюрьмы в электроэнергии.

Североамериканский совет энергетиков (NABCEP) создал некоммерческую организацию для поддержки программ сертификации и сертификации солнечной энергии. Первый экзамен на соответствие «NABCEP Solar PV Installation Professional» был проведен в следующем году.

Первая конференция и выставка по солнечной энергетике (названная позднее Solar Power International) была проведена в Сан-Франциско.

Компания Nanosolar начинает продажу первых коммерческих тонкопленочных модулей CIGS. В то время это была самая дешевая солнечная панель в мире, ее стоимость составляла 99 центов за 1 ватт.

Компания Enphase выпускает первый коммерческий солнечный сетевой микроинвертер.

Популярность солнечных панелей Zep Solar, основанная на особой инновационной системе крепления солнечных батарей, приводит к тому, что SolarCity покупает компанию Zep Solar в 2013 году.

Департамент энергетики, стараясь повысить конкурентоспособность солнечной энергетики к 2020 году, устанавливает «зеленый тариф» на генерируемую и отдаваемую в центральную сеть, энергию. 10 центов за 1 кВтч для домохозяйств, 8 центов за 1 кВтч для коммерческих зданий, и 6 центов для сетевых солнечных электростанций.

Рынок установок «домашних» солнечных электростанций в США достигает 2 ГВт в год. Общий объем рынка солнечных электростанций превышает 20 ГВт.

Google запускает проект Project Sunroof, использующий спутниковые снимки для анализа и принятия решений по размещению солнечных панелей на крышах (в пределах США).

В апреле 2016 года установлен миллионный массив солнечных панелей в США. К 2018 этот объем должен удвоиться.

Генерация солнечных электростанций в США достигла 14,625 МВт в год, что на 95% превысило показатель 2015 года в 7,493 МВт. В 2016 году каждый следующий мегаватт солнечной энергии подключался к сети каждые 36 минут.

В этом году стоимость солнечных панелей падает до рекордно-низкого уровня. Общая стоимость систем для жилых зданий снижается до 2,8 $ за 1 Вт.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *