Трансформатор: подробно простым языком
Трансформатор — электрическое устройство, передающее энергию переменного тока от одного контура к другому способом электромагнитного взаимодействия. Большинство трансформаторов состоят из трёх частей: первичная обмотка, вторичная обмотка и сердечник. Трансформатор используется для того, чтобы преобразовывать переменный ток в электропитание для бытовых и промышленных приборов.
Обратите внимание на основы электричества и на приборы электроники.
Принцип работы трансформатора
Трансформаторы работают по принципу электромагнитного взаимодействия. Чтобы электромагнитное взаимодействие происходило, необходимо присутствие магнитного поля и проводника, между которыми должно происходить относительное движение.
Когда на первичную обмотку трансформатора подаётся переменный ток, вокруг обмотки образуется магнитное поле. Поскольку подаётся переменный ток, меняющий направление каждую половину цикла, ежесекундно происходит многократное расширение и исчезновение магнитного поля. Вторичная обмотка как раз и является тем проводником, который нужен для электромагнитного взаимодействия, а расширение и исчезновение магнитного поля обеспечивает относительное движение. Итак, когда соблюдены все три требования, происходит электромагнитное взаимодействие. В результате, во вторичной обмотке трансформатора индуцируется напряжение.
Читайте также
Повторитель напряжения имеет высокое входное сопротивление, низкое выходное сопротивление и коэффициент усиления равный единице
Как работает трансформатор напряжения
Для преобразования переменного напряжения одной величины в переменное напряжения другой величины, используют трансформатор напряжения. Трансформатор напряжения работает благодаря явлению электромагнитной индукции: изменяющийся во времени магнитный поток порождает ЭДС в пронизываемой им обмотке (или обмотках).
Первичная обмотка трансформатора соединяется своими выводами с источником переменного напряжения, а к выводам вторичной обмотки присоединяется нагрузка, которую необходимо питать напряжением более низким или более высоким, чем напряжение источника, от которого питается данный трансформатор.
Благодаря наличию сердечника (магнитопровода), магнитный поток, создаваемый первичной обмоткой трансформатора, не рассеивается где попало, а сосредоточен главным образом в ограниченном сердечником объеме. Переменный ток, действующий в первичной обмотке, намагничивает сердечник то в одном, то — в противоположном направлении, при этом изменение магнитного потока происходит не рывками, а гармонически, синусоидально (если речь идет о сетевом трансформаторе).
Можно сказать, что железо сердечника увеличивает индуктивность первичной обмотки, то есть повышает ее способность создавать магнитный поток при прохождении тока, и улучшает свойство препятствовать нарастанию тока при приложении к выводам обмотки напряжения. Поэтому на холостом ходу (в не нагруженном режиме) трансформатор потребляет сущие миллиамперы, хотя изменяющееся напряжение на обмотку действует.
Вторичная обмотка является у трансформатора принимающей. Она принимает изменяющийся магнитный поток, порождаемый током первичной обмотки, и посылаемый благодаря магнитопроводу сквозь свои витки. Изменяющийся с определенной скоростью магнитный поток, пронизывающий витки вторичной обмотки, по закону электромагнитной индукции наводит в каждом ее витке определенную ЭДС. Эти индуцированные ЭДС складываются в каждый момент времени от витка к витку, формируя напряжение вторичной обмотки (напряжение холостого хода трансформатора).
Здесь своевременным будет отметить, что чем быстрее изменяется магнитный поток в сердечнике, тем большее напряжение наводится на каждом витке вторичной обмотки трансформатора. А поскольку и первичная и вторичная обмотки пронизываются одним и тем же магнитным потоком (создаваемым переменным током первичной обмотки), то и напряжение на каждом витке как первичной, так и вторичной обмотки, получается одинаковым, исходя из величины магнитного потока и скорости его изменения.
Если копнуть глубже, то изменяющийся магнитный поток в сердечнике создает в пространстве вокруг себя электрическое поле, напряженность которого тем больше, чем выше скорость изменения магнитного потока, и чем больше величина этого изменяющегося магнитного потока. Данное вихревое электрическое поле действует на электроны, расположенные в проводе вторичной обмотке, толкает их в определенную сторону, поэтому на концах вторичной обмотки можно измерить электрическое напряжение.
Если ко вторичной обмотке трансформатора подключить нагрузку, то по ней потечет ток, а значит в сердечнике возникнет магнитный поток, создаваемый этим током вторичной обмотки.
Магнитный поток, порождаемый током вторичной обмотки, то есть током нагрузки, окажется направлен (см. правило Ленца) против магнитного потока первичной обмотки, и значит наведет в первичной обмотке противо-ЭДС, которая приведет к росту тока в первичной обмотке, и соответственно — к увеличению потребляемой трансформатором от сети мощности.
Возникновение противоположного первичному, вторичного магнитного потока внутри сердечника, в качестве эффекта от подключенной нагрузки, эквивалентно уменьшению индуктивности первичной обмотки. Вот почему трансформатор под нагрузкой потребляет значительно больше электрической энергии, чем на холостом ходу.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Что такое трансформатор
Этот видеоролик посвящен ответам на вопросы: что такое трансформатор тока, для чего нужен, как он работает. Также будет наглядно показано, из чего состоит трансформатор, как он устроен. Все понятия объясняются простым, понятным языком, что поможет быстро понять принцип работы устройства и область его применения.
Трансформатор — это статическое электромагнитное устройство, преобразующее переменный ток одной величины в переменный ток иной величины, большей или меньшей. В зависимости от этого трансформаторы делят на понижающие и повышающие. Работа устройства основывается на электромагнитной индукции. Для чего нужен трансформатор тока? Например, для удобного измерения токов больших величин.
Трансформатор включает в себя магнитопровод и две не связанные друг с другом обмотки — первичную и вторичную. К одной подключается источник переменного тока, ко второй — потребитель тока. В видео будет разъяснен такой важный параметр как коэффициент трансформации, который равен отношению напряжения в первичной и вторичной обмотках.
Видео взято с Youtube-канала «Простым языком».
Если вам нужно купить трансформатор тока, вы можете сделать это в нашем интернет-магазине. В каталоге на сайте представлен большой выбор трансформаторов. Сориентироваться в них вам поможет фильтр по характеристикам или консультация с нашими опытными менеджерами. Они помогут вам выбрать подходящую для ваших целей модель или осуществить расчет трансформатора тока
Трансформаторы напряжения: описание, принцип действия
Все трансформаторы тока — это конструкции, которые изменяют переменный ток и стабильно защищают от перепадов высокого напряжения. Он является механизмом только переменного тока, который не может работать с источником постоянного тока, так как при этом в его обмотках не будет электромагнитной индукции. Сейчас трансформаторы напряжения, работающие на маленьких мощностях, практически вытеснены более мощными модификациями.
Описание и составляющие
Трансформатор состоит из трех частей:
- Электро-обмотка может быть первичной подводящей напряжение и вторичной снимающей напряжение. Первичная обвивка подключается по порядку и подсоединяется к ключу переменного тока. Вторичная обвивка должна быть замкнута на нагрузку и ее противодействие не превышает установленного значения, она никак не сопряжена с первичной. На вторичной обмотке вызывается крайне высокое напряжение и вследствие этого она обязана быть заземлена.
- Системы охлаждения: естественное воздушное, масляное (трансформаторное масло циркулирует и отдает запасенное тепло через заднюю стенку бака в окружающую среду, охлаждаясь), по тому же принципу циркуляции происходит охлаждение водой и естественное жидким диэлектриком.
- Сердечник. А еще его называют магнитопровод, чаще всего изготавливается из специальных сплавов штампованных пластин в виде буквы Ш и О. Могут быть броневые (катушки установлены на одной оси) и стержневые (занимают большую часть сердечника и сердечники являются раздельными их стягивают при сборке).
Принцип действия
Отдача мощности из одной обмотки во вторую совершается электромагнитным путем и основана на электромагнитной индукции. Непостоянный ток, идя по первичной обмотке, формирует электромагнитное течение в магнитопроводе и индуцирует во вторичной обмотке, пронизывая ее витки. В результате он становиться замкнутым в магнитопроводе и сцепляется с двумя обмотками. Витки обмотки имеют равное усилие и в случае если повысить количество витков на 2–ой обмотке, объединяя их поочередно между собою, то можно повысить вольтаж на выходе трансформатора. Таким же образом уменьшая количество витков уменьшить выходное напряжение. В сердечнике трансформатора неизбежны потери энергии за счет выделения тепла, но в современных мощных моделях эти потери невелики и не превышают 3%. Однофазные трансформаторы напряжения могут работать, на нагрузку, в режиме холостого хода и короткого замыкания. Как три отдельных однофазных трансформатора можно рассматривать трехфазные, но они работают на больших мощностях.