Какое действие тока всегда наблюдается в твердых жидких и газообразных проводниках
Перейти к содержимому

Какое действие тока всегда наблюдается в твердых жидких и газообразных проводниках

  • автор:

Какое действие тока всегда наблюдается в твердых жидких и газообразных проводниках

Задание 11. Какое(-ие) действие(-я) электрического тока наблюдается(-ются) для всех проводников с током?

4) тепловое и магнитное

Решение.

Ответ задания: 3.

  • Все задания варианта
  • Наша группа Вконтакте
  • Наш канал

Темы раздела

© 2024 ЕГЭ и ОГЭ для всех

Частичное или полное копирование решений с данного сайта для распространения на других ресурсах,
в том числе и бумажных, строго запрещено. Все решения являются собственностью сайта

Тест по теме «Действия электрического тока»
тест по физике (8 класс) по теме

а) тепловое, б) химическое, в) магнитное, г) физиологическое.

4. Физиологическое действие тока- это

а) нагревание воды электрическим током,

б) хромирование деталей,

в) рефлекторное сокращение мышц,

г) свечение электрической лампы.

5. В устройстве кипятильника используют действие тока

а) химическое, б) магнитное, в) физиологическое, г) тепловое.

6.Тепловое действие тока используют в устройстве

а) телевизора, б) фена, в) пылесоса, г) миксера.

7. В устройстве гальванометра используют действие тока

а) химическое, б) магнитное, в) физиологическое, г) тепловое.

8. Получать чистые металлы можно с помощью действия тока

а) химического, б) магнитного, в) физиологического, г) теплового.

По теме: методические разработки, презентации и конспекты

Тест по физике_Итоговый тест. Законы электрического тока

Тест по физике для учащихся 8 класса, обучающихся по учебнику А. В. Перышкина. Тема: итоговый — Законы электрического тока. Работа выполнена в программе MyTest.

Урок-путешествие в империю электрического тока: «Сила тока. Измерение силы тока. Амперметр»

Урок-путешествие в империю электрического тока: «Сила тока. Измерение силы тока. Амперметр»В форме игры изучить новый материал.

Тест Действия электрического тока.8 класс

Тест составлен в программе Mytest для проверки уровня знаний учащихся 8 класса по теме «Действия электрического тока», соответствует содержанию учебника А.В.Перышкина. Тест составлен по учебно-ме.

Тест «Работа электрического тока.» 8 класс

Тест составлен в программе Mytest для проверки уровня знаний учащихся 8 класса по теме «Работа электрического тока.», соответствует содержанию учебника А.В.Перышкина.Тест составлен по учебно-методичес.

Тест «Электрический ток. Источники электрического тока.» 8 класс

Тест составлен в программе Mytest для проверки уровня знаний учащихся 8 класса по теме «Электрический ток. Источники электрического тока», соответствует содержанию учебника А.В.Перышкина.Тест составле.

«Электрический ток. Источники электрического тока. Электрическая цепь».

Презентация содержит тематические тестовые задания по теме «Электрический ток. Источники электрического тока. Электрическая цепь» и кодификатор ответов.

Тест по теме: «Источники электрического тока»

Тест по теме «Источники электрического тока» урок по физике 8 класс.

Действия электрического тока

формулки.ру

Мы не обладаем возможностью увидеть электроны, бегущие по проводнику. Как же тогда можно обнаружить ток в проводнике? Наличие электрического тока можно обнаружить по косвенным признакам. Так как, ток, протекая по проводнику, оказывает воздействие на него.

Вот некоторые из признаков:

  1. тепловой;
  2. химический;
  3. магнитный.

Тепловое действие тока

Благодаря такому действию тока мы можем освещать помещения с помощью ламп накаливания. А, так же, используем различные нагревательные электроприборы – конвекторы, электроплиты, утюги (рис. 1).

Рис. 1. Эти электроприборы преобразуют электрическую энергию в тепловую

Используя метровый кусок никелиновой проволоки (рис. 2), можно продемонстрировать нагревание проводника при протекании по нему электрического тока. Для заметного провисания нагретой проволоки из-за теплового увеличения длины и наблюдения красноватого ее свечения будет достаточно тока в 2 — 3 Ампера.

Рис. 2. Проводник нагревается под действием тока

Кусок провода нагревается, когда по нему протекает электрический ток. Чем больше ток в проводнике, тем больше он нагреется. Длина нагретого проводника увеличивается.

Подробнее о выделившемся количестве теплоты можно прочитать в статье о законе Джоуля-Ленца (ссылка).

Примечание: Нихром, никелин, константан – сплавы металлов, обладающие большим удельным сопротивлением (ссылка). Проволоки, изготовленные из таких сплавов, используются в различных нагревательных электроприборах.

Химическое действие тока

Электрический ток, проходя через растворы некоторых кислот, щелочей или солей, вызывает выделение из них вещества. Это вещество осаждается на электродах – пластинках, опущенных в раствор и подключенных к источнику тока.

Такое действие тока используют в гальванопластике – покрытии металлом некоторых поверхностей. Применяют никелирование, омеднение, хромирование, а, так же, серебрение и золочение поверхностей.

С помощью раствора медного купороса можно продемонстрировать выделение вещества под действием тока. Водный раствор этой соли имеет голубоватый оттенок. Пропуская электрический ток (ссылка) через раствор, можно обнаружить выделение меди на одном из электродов (рис. 3).

Рис. 3. Из раствора медного купороса при протекании тока выделяется медь, осаждаясь на одном из электродов

На каком электроде будет выделяться медь

Медь в растворе купороса присутствует в виде положительных ионов. Тела, имеющие разноименные заряды, притягиваются. Поэтому, ионы меди будут притягиваться к пластинке, имеющей заряд со знаком «минус». То есть, пластинке, подключенной к отрицательному выводу источника тока. Такую пластинку называют отрицательным электродом, или катодом.

Вторую пластинку, подключенную к положительному выводу батареи, называют анодом.

Примечание: Медный купорос можно найти в хозяйственном магазине. Его химическая формула \(\large CuSO_\). Он используется в сельском хозяйстве для опрыскивания листвы плодовых деревьев, кустарников и овощных культур – к примеру, томатов, картофеля. Входит в составы различных растворов, применяемых в борьбе с болезнями растений и насекомыми-вредителями.

Применение химического действия тока в медицине

Химическое действие тока применяют не только в гальванопластике.

Пропускание электрического тока через растворы вызывает в них движение заряженных частиц вещества – положительных и отрицательных ионов. Человеческое тело содержит жидкости, в которых растворены некоторые вещества. А значит, в таких жидкостях присутствуют ионы.

Прикладывая специальные электроды, смоченные растворами лекарств на отдельные участки тела, и пропуская через них маленькие токи, можно вводить в организм некоторые лекарственные препараты (рис. 4).

Химическое действие тока применяют в медицине

Рис. 4. На химическом действии тока основан электрофорез

Такое введение лекарств называют электрофорезом и используется в физиопроцедурных кабинетах поликлиник и санаториев.

Магнитное действие тока

Медь сама по себе не притягивается к магниту. В этом можно убедиться с помощью небольшого магнита и кусочка медного провода (рис. 5а).

На рисунке 5 кусок медного провода подвешен к двум штативам с помощью тонких нитей, не проводящих электрический ток.

Однако, во время протекания электрического тока, медный проводник начинает взаимодействовать с магнитом — притягиваться, или отталкиваться от него (рис. 5б).

Рис. 5. Вокруг проводника с током возникает магнитное поле, благодаря этому проводник взаимодействует с магнитом

С магнитом взаимодействует не сам медный проводник, а ток, протекающий по этому проводнику.

Почему проводок с током взаимодействует с магнитом

Электрический ток — это большое количество электронов, бегущих по проводку от одного его края к другому краю. Электроны обладают зарядом.

Вокруг движущихся зарядов возникает магнитное поле. Благодаря этому проводок с током превращается в маленький магнитик. И начинает взаимодействовать с магнитом, притягиваясь к нему, или отталкиваясь от него.

При этом, проводок, как более легкий предмет, будет двигаться. А магнит продолжит оставаться на месте. Из-за того, что его масса значительно больше массы кусочка провода.

Направление движения проводка зависит от полярности его подключения к батарейке и, от того, как располагаются полюса магнита.

На магнитном действии тока основано действие электромагнита.

Самодельный электромагнит

Его легко изготовить из куска гибкой изолированной медной проволоки и железного гвоздя.

Гвоздь нужно обернуть кусочком бумаги – гильзой (рис. 6). Затем на гильзу нужно намотать 200 – 300 витков тонкого медного провода в изоляции. К выводам полученной катушки нужно подключить батарейку от карманного электрического фонаря.

Рис. 6. Из подручных материалов можно изготовить самодельный электромагнит

Во время протекания тока, к гвоздю притягиваются различные мелкие железные предметы – скрепки, кнопки, гвоздики, железные стружки, опилки и т. п.

Отсоединив батарейку, увидим, что как только ток прекращается, гвоздь перестает притягивать к себе железные предметы.

Рамка с током и подковообразный магнит

Провод, обладающий достаточной жесткостью, можно изогнуть в виде плоской фигуры – прямоугольника, квадрата, окружности. Эластичные же провода навивают на жесткий каркас, изготовленный из подходящего материала – фанеры, картона, пластмассы и т. д. Такой изогнутый провод образует рамку. Проволочную рамку часто называют контуром.

Проволочная рамка, по которой течет электрический ток, может ориентироваться в магнитном поле.

Чтобы убедиться в этом, проведем такой эксперимент. Используем для него подковообразный магнит и проводник, изогнутый в виде прямоугольной рамки. Подвесим рамку к лапке штатива с помощью нити. Размеры рамки нужно выбрать так, чтобы она поместилась между полюсами магнита.

Сначала используем только подвешенную рамку (рис. 7а), без магнита. Подключим к рамке источник тока. Можно убедиться, что после подключения тока рамка продолжает висеть неподвижно. Отключим источник тока.

Рис. 7. Проволочная рамка с током, помещенная в магнитное поле, поворачивается

Теперь поместим магнит так, чтобы рамка находилась между его полюсами (рис. 7б) и, пропустим по цепи электрический ток. Легко заметить, что во время протекания тока рамка поворачивается и ориентируется по магнитному полю. А когда цепь размыкается, рамка возвращается в первоначальное положение.

Примечание: Если изменить полярность подключения источника к рамке, то она будет поворачиваться в противоположную сторону.

Замечательное свойство рамки с током поворачиваться в магнитном поле, используют в различных измерительных приборах. Один из таких приборов – гальванометр.

Устройство гальванометра

Гальванометром прибор назвали в честь итальянского физика и врача Луиджи Гальвани. Этот прибор способен измерять маленькие электрические токи (постоянные).

На схемах прибор обозначают кружком, внутри которого расположена большая латинская буква G. На некоторых схемах внутри круга находится стрелка, направленная вертикально вверх.

  • подковообразный магнит и
  • находящуюся внутри него рамку, содержащую витки тонкого медного провода (рис. 8).

Рис. 8. Как утроен гальванометр

Подвижная рамка находится на оси и может вокруг нее поворачиваться.

К рамке прикреплена стрелка. Она указывает, на какой угол рамка повернулась во время протекания в ней электрического тока.

Угол поворота отмечают по делениям шкалы.

Рис. 9. Как выглядит прибор для измерения малых токов

Кто такой Луиджи Гальвани

Гальвани был одним из основателей учения об электричестве.

Обнаружил, что в местах контакта различных видов металлов возникает электрическое напряжение.

Проводил опыты с использованием железного ключа и серебряной монеты.

Изучал сокращения мышц под воздействием электричества и пришел к выводу, что мышцы управляются электрическими импульсами, поступающими по нервным волокнам из мозга.

В итальянском городе Болонья неподалеку от здания Болонского университета находится памятник Гальвани. Он находится на площади Piazza Luigi Galvani, носящей имя ученого.

В его честь, так же, назвали один из кратеров на обратной стороне Луны.

А Болонский лицей назван именем Гальвани еще с 1860-го года.

О приборах магнитоэлектрической системы

Такие приборы, содержащие проводящую рамку и небольшой магнит, называют приборами магнитоэлектрической системы. Они получили широкое распространение из-за своего сравнительно простого устройства.

Шкалы приборов можно градуировать в различных единицах измерения, в зависимости от измеряемых физических величин. На основе таких приборов изготавливают вольтметры, амперметры, омметры и т. п.

Выводы

  1. Наличие электрического тока в проводнике можно обнаружить по косвенным признакам: тепловому, химическому, магнитному.
  2. Тепловое и химическое действия тока будут проявляться не всегда.
  3. Магнитное действие электрического тока можно наблюдать каждый раз и в любых проводниках – жидких, газообразных, или твердых. То есть, независимо от их агрегатных состояний (ссылка).

Действия электрического тока

Пожалуйста опишите действия электрического тока (химические, тепловые, магнитные) в металлах, газах, жидкостях т. е. в каких средах что происходит.

Голосование за лучший ответ

Тепловое действие тока.
— электрический ток вызывает разогревание металлических проводников (вплоть до свечения).

Химическое действие тока.
— при прохождении электрического тока через электролит возможно выделение веществ,
содержащихся в растворе, на электродах..
— наблюдается в жидких проводниках.

Магнитное действие тока.
— проводник с током приобретает магнитные свойства.
— наблюдается при наличии электрического тока в любых проводниках (твердых, жидких, газообразных).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *