Электромагнитная природа света
Световые лучи не похожи на электрическое поле вокруг наэлектризованных предметов или магнитное поле вокруг магнита. Однако, на самом деле, в этих явлениях немало общего. Поговорим кратко об электромагнитной природе света.
Свет и волновые явления
И.Ньютон открыл явление дисперсии света, и установил, что белый свет представляет собой смесь различных оттенков. Еще одним важным открытием в этой области было обнаружение так называемых «колец Ньютона» – появление темных радужных колец вокруг точки соприкосновения зеркала и линзы.
Кроме того, многие исследователи изучали радужные узоры, образующиеся на тонких пленках – в каплях масла на воде или в воздушных пузырях. Однако, объяснить эти явления удалось только лишь в начале XIXв Т. Юнгу. Гениальная догадка этого физика состоит в том, что свет имеет волновой характер. И для него должны выполняться все явления, присущие волнам. В частности, радужная картина – это результат интерференции (результата сложения двух волн, приходящих в разных фазах).
Сам термин «интерференция» был введен Юнгом. Также для света должна наблюдаться дифракция – огибание препятствий. Это явление также было обнаружено. Наконец, Юнг установил, что различие в цветах объясняется разницей длин световых волн, и эти длины также были измерены. Оказалось, что длина световых волн колеблется от ×10^<-7>м$ для фиолетового до ×10^<-7>м$ для красного цветов.-7>
Электромагнитная теория света
К середине XIXв были открыты электромагнитные волны и разработана теория электромагнетизма Дж. Максвелла. Из этой теории следовало, что электромагнитные волны являются поперечными, и распространяются не мгновенно, а с конечной, хотя и очень большой скоростью. Как раз к этому времени стало накапливаться все больше фактов, что свет также является поперечной волной (хотя, сам Т. Юнг считал свет волной продольной). Кроме того, обнаружилось, что электромагнитные волны проявляют все волновые свойства точно так же, как световые, и имеют ту же скорость. Наконец, к концу XIXв было установлено, что световые волны возбуждаются заряженными частицами (переходами электронов на разные энергетические уровни внутри атомов вещества) точно так же, как и другие электромагнитные волны. Была полностью установлена электромагнитная природа света, и создана теория, описывающая световые явления.
Свет, как и любая электромагнитная волна представляет собой распространяющуюся в пространстве структуру электрических и магнитных вихревых полей, поддерживающих друг друга. Живые ткани очень слабо реагируют на магнитное поле. Как показали специальные опыты, ощущение освещенности на сетчатке вызывает только электрическая составляющая световых волн.
Что мы узнали?
Свет проявляет ряд волновых признаков, что позволило доказать его волновую природу, а ряд совпадений с поведением электромагнитных волн позволил описать все световые явления в рамках электромагнитной теории Максвелла к середине XIX в.
Интерференция света. Электромагнитная природа света
Будьте внимательны! У Вас есть 10 минут на прохождение теста. Система оценивания — 5 балльная. Разбалловка теста — 3,4,5 баллов, в зависимости от сложности вопроса. Порядок заданий и вариантов ответов в тесте случайный. С допущенными ошибками и верными ответами можно будет ознакомиться после прохождения теста. Удачи!
Система оценки: 5 балльная
Список вопросов теста
Вопрос 1
Какому из ученых принадлежит открытие интерференции света?
Варианты ответов
- А. Попов
- Т. Юнг
- И. Ньютон
- Г. Герц
Вопрос 2
Какое(-ие) утверждение(-я) верны?
А: явление интерференции доказывает волновую природу света
Б: явление интерференции доказывает, что свет обладает свойствами частиц
Варианты ответов
- Только А
- И А, и Б
- Только Б
- Ни А, ни Б
Вопрос 3
Примером интерференции света может служить
Варианты ответов
- радужная окраска крыльев стрекозы
- появление радуги
- образование тени
- образование полутени
Вопрос 4
Что будет наблюдаться в точке, если волны от двух когерентных источников зеленого свете придут в противофазе?
Варианты ответов
- Яркая зеленая полоса
- Темная полоса
- Яркая белая полоса
- Светлая зеленая полоса
Вопрос 5
Что происходит со световыми волнами, идущими от когерентных источников, если они в изучаемой точке имеют одинаковые фазы?
Варианты ответов
- Волны гасят друг друга
- Волны усиливают друг друга
- Могут усилить, а могут погасить друг друга
- Волны не влияют друг на друга
Вопрос 6
Световая волна, какого цвета имеет максимальную частоту?
Варианты ответов
- Красного
- Фиолетового
- Зеленого
- Желтого
Вопрос 7
Световая волна, какого цвета имеет максимальную длину волны?
Варианты ответов
- Фиолетового
- Красного
- Синего
- Оранжевого
Вопрос 8
Расположите в порядке возрастания частоты пучки света разного цвета.
А: оранжевый
Б: синий
В: желтый
Г: зеленый
Варианты ответов
- Г, В, А, Б
- Б, Г, В, А
- А, В, Г, Б
- Г, А, В, Б
Вопрос 9
Расположите в порядке возрастания дины волны пучки света разного цвета.
А: фиолетовый
Б: синий
В: красный
Г: оранжевый
Варианты ответов
- А, Б, Г, В
- В, Г, Б, А
- А, Г, Б, В
- А, Б, В, Г
Вопрос 10
Каковы современные представления о природе света?
Варианты ответов
- Свет обладает волновыми свойствами
- Свет обладает свойствами частиц (корпускул)
- Свет обладает волновыми и корпускулярными свойствами
- Свет не обладает ни волновыми, ни корпускулярными свойствами
Какие явления Доказывают волновую и корпускулярную природу света? физика 11 класс
Интерференция и дифракция.
Подробности в Интернете по запросу.
Источник: физика
Похожие вопросы
Ваш браузер устарел
Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.
Развитие представлений о природе света
Первые представления о природе света возникли у древних греков и египтян. По мере изобретения и совершенствования различных оптических приборов (параболического зеркала, микроскопа, зрительной трубы) эти представления развивались и трансформировались. В конце XVII века возникли две теории света: корпускулярная (И. Ньютон) и волновая (Р. Гук и Х. Гюйгенс).
Согласно корпускулярной теории, свет представляет собой поток частиц (корпускул), испускаемых светящимися телами. Ньютон считал, что движение световых корпускул подчиняется законам механики. Так, отражение света понималось аналогично отражению упругого шарика от плоскости. Преломление света объяснялось изменением скорости корпускул при переходе из одной среды в другую. Для случая преломления света на границе вакуум–среда корпускулярная теория приводила к следующему виду закона преломления:
Для подробного ознакомления с медицинской и исследовательской техникой основных мировых производителей оптических систем и сопутствующего оборудования посетите наш каталог или свяжитесь с нашими специалистами и получите полную профессиональную консультацию по любым, имеющимся у Вас, вопросам.
где c – скорость света в вакууме, υ – скорость распространения света в среде. Так как n > 1, из корпускулярной теории следовало, что скорость света в средах должна быть больше скорости света в вакууме. Ньютон пытался также объяснить появление интерференционных полос, допуская определенную периодичность световых процессов. Таким образом, корпускулярная теория Ньютона содержала в себе элементы волновых представлений.
Волновая теория, в отличие от корпускулярной, рассматривала свет как волновой процесс, подобный механическим волнам. В основу волновой теории был положен принцип Гюйгенса, согласно которому каждая точка, до которой доходит волна, становится центром вторичных волн, а огибающая этих волн (плоскость A1A2 на рис. 3.6.1) дает положение волнового фронта в следующий момент времени. Под волновым фронтом Гюйгенс понимал геометрическое место точек, до которых одновременно доходит волновое возмущение. С помощью принципа Гюйгенса были объяснены законы отражения и преломления. Рис. 3.6.1 дает представление о построениях Гюйгенса для определения направления распространения волны, преломленной на границе двух прозрачных сред.
Построения Гюйгенса для определения направления преломленной волны
Для случая преломления света на границе вакуум–среда волновая теория приводит к следующему выводу:
Закон преломления, полученный из волновой теории, оказался в противоречии с формулой Ньютона. Волновая теория приводит к выводу: υ < c, тогда как согласно корпускулярной теории υ >c.
Таким образом, к началу XVIII века существовало два противоположных подхода к объяснению природы света: корпускулярная теория Ньютона и волновая теория Гюйгенса. Обе теории объясняли прямолинейное распространение света, законы отражения и преломления. Весь XVIII век стал веком борьбы этих теорий. Однако в начале XIX столетия ситуация коренным образом изменилась. Корпускулярная теория была отвергнута и восторжествовала волновая теория. Большая заслуга в этом принадлежит английскому физику Т. Юнгу и французскому физику О. Френелю, исследовавшим явления интерференции и дифракции. Исчерпывающее объяснение этих явлений могло быть дано только на основе волновой теории. Важное экспериментальное подтверждение справедливости волновой теории было получено в 1851 году, когда Ж. Фуко (и независимо от него А. Физо) измерил скорость распространения света в воде и получил значение υ < c.
Хотя к середине XIX века волновая теория была общепризнана, вопрос о природе световых волн оставался открытым.
В 60-е годы XIX века Максвеллом были установлены общие законы электромагнитного поля, которые привели его к заключению, что свет – это электромагнитные волны. Важным подтверждением такой точки зрения послужило совпадение скорости света в вакууме с электродинамической постоянной Электромагнитная природа света получила признание после опытов Г. Герца по исследованию электромагнитных волн (1887–1888 гг.). В начале XX века после опытов П. Н. Лебедева по измерению светового давления (1901 г.) электромагнитная теория света превратилась в твердо установленный факт.
Важнейшую роль в выяснении природы света сыграло опытное определение его скорости. Начиная с конца XVII века предпринимались неоднократные попытки измерения скорости света различными методами (астрономический метод А. Физо, метод А. Майкельсона). Современная лазерная техника позволяет измерять скорость света с очень высокой точностью на основе независимых измерений длины волны λ и частоты света ν (c = λ · ν). Таким путем было найдено значение
превосходящее по точности все ранее полученные значения более чем на два порядка.
Свет играет чрезвычайно важную роль в нашей жизни. Подавляющее количество информации об окружающем мире человек получает с помощью света. Однако, в оптике как разделе физики под светом понимают не только видимый свет, но и примыкающие к нему широкие диапазоны спектра электромагнитного излучения – инфракрасный (ИК) и ультрафиолетовый (УФ). По своим физическим свойством свет принципиально неотличим от электромагнитного излучения других диапазонов – различные участки спектра отличаются друг от друга только длиной волны λ и частотой ν. Рис. 3.6.2. дает представление о шкале электромагнитных волн.
Шкала электромагнитных волн. Границы между различными диапазонами условны
Для измерения длин волн в оптическом диапазоне используются единицы длины 1 нанометр (нм) и 1 микрометр (мкм):
1 нм = 10–9 м = 10–7 см = 10–3 мкм.
Видимый свет занимает диапазон приблизительно от 400 нм до 780 нм или от 0,40 мкм до 0,78 мкм.
Электромагнитная теория света позволила объяснить многие оптические явления, такие как интерференция, дифракция, поляризация и т. д. Однако, эта теория не завершила понимание природы света. Уже в начале XX века выяснилось, что эта теория недостаточна для истолкования явлений атомного масштаба, возникающих при взаимодействии света с веществом. Для объяснения таких явлений, как излучение черного тела, фотоэффект, эффект Комптона и др. потребовалось введение квантовых представлений. Наука вновь вернулась к идее корпускул – световых квантов. Тот факт, что свет в одних опытах обнаруживает волновые свойства, а в других – корпускулярные, означает, что он имеет сложную двойственную природу, которую принято характеризовать термином корпускулярно-волновой дуализм.
Двойственная природа света
Впервые проблема корпускулярно-волнового дуализма проявила себя при исследовании природы света. В XVII веке Исаак Ньютон предложил считать свет потоком мельчайших корпускул. Это позволяло просто объяснить ряд наиболее характерных свойств света – например, прямолинейность световых лучей и закон отражения, согласно которому угол отражения света равен углу падения. Вообще, вся геометрическая оптика прекрасно согласуется с корпускулярной теорией света. Но явления интерференции и дифракции света никак в эту теорию не вписывались. Объяснить их ученым удалось лишь в XIX веке создателям волновой теории света. А теория электромагнитного поля и знаменитые уравнения Максвелла, казалось бы, вообще поставили точку в этой проблеме. Оказалось, что свет – это просто частный случай электромагнитных волн, то есть процесса распространения в пространстве электромагнитного поля. Мало того, волновая оптика объяснила не только те явления, которые не объяснялись с помощью корпускулярной теории, но и вообще все известные к XIX веку световые эффекты. И все законы геометрической оптики тоже оказалось возможным доказать в рамках волновой оптики.
Однако уже в самом начале XX века опять возродилась корпускулярная теория света, так как были обнаружены явления, которые с помощью волновой теории объяснить не удавалось. Это – давление света, фотоэффект, Комптон-эффект и законы теплового излучения. В рамках корпускулярной теории эти явления прекрасно объяснялись, и корпускулы (частицы) света даже получили специальное название. Макс Планк назвал их световыми квантами (по-русски – порциями), а Альберт Эйнштейн – фотонами. Оба этих названия прижились и употребляются до сих пор.
В итоге сложилась удивительная ситуация – сосуществование двух серьезных научных теорий, каждая из которых объясняла одни свойства света, но не могла объяснить другие. Вместе же эти две теории полностью дополняли друг друга. Только что мы рассмотрели ряд явлений, где свет ведет себя как поток частиц. Но явление интерференции и дифракции могут быть объяснены только с позиции волновой теории. Что же такое свет? В. Брегг писал: «неужели мы должны считать свет состоящим из корпускулов в понедельник, вторник и среду, когда проводим опыты с фотоэффектом и эффектом Комптона, и представлять себе его волнами в четверг, пятницу и субботу, когда работаем с явлениями дифракции и интерференции?» Выход из этой ситуации был найден следующий. Во-первых, электромагнитное излучение и его разновидность свет – это более сложный объект нашего мира, чем волна или корпускула. Во-вторых, нужна синтетезированная теория, объединяющая в себе и волновую, и корпускулярную теории. Она была создана и получила название квантовой физики.
Очень важно, что квантовая физика не отвергает ни корпускулярную, ни волновую теории. Каждая из них имеет свои преимущества и свой, достаточно развитый математический аппарат.
Свет – диалектическое единство противоположных свойств: он одновременно обладает свойствами непрерывных электромагнитных волн и дискретных фотонов.
При уменьшении длины волны все явственнее проявляются корпускулярные свойства. Волновые свойства коротковолнового излучения проявляются слабо (например, рентгеновское излучение). Наоборот, у длинноволнового (инфракрасного) излучения квантовые свойства проявляются слабо.
Взаимосвязь между корпускулярными и волновыми свойствами света находит простое толкование при статистическом подходе к распространению света.
Взаимодействие фотонов с веществом (например, при прохождении света через дифракционную решетку) приводит к перераспределению фотонов в пространстве и возникновению дифракционной картины на экране. Очевидно, что освещенность в различных точках экрана прямо пропорциональна вероятности попадания фотонов в эти точки экрана. Но, с другой стороны, из волновых представлений видно, что освещенность пропорциональна интенсивности света J, а та, в свою очередь, пропорциональна квадрату амплитуды А2. Отсюда вывод: квадрат амплитуды световой волны в какой-либо точке есть мера вероятности попадания фотонов в эту точку.