Носители электрического тока
Носители электрического тока — это заряженные частицы или квазичастицы, которые могут свободно перемещаться внутри проводников и создавать электрический ток. Носителями электрического заряда могут являться:
- в металлах — электроны,
- в электролитах — ионы (катионы и анионы),
- в газах — ионы и электроны,
- в вакууме при определённых условиях — электроны,
- в полупроводниках — электроны или дырки (электронно-дырочная проводимость).
Электричество в наши дни принято определять как «электрические заряды и связанные с ними электромагнитные поля». Само существование электрических зарядов обнаруживается через их силовое воздействие на другие заряды. Пространство вокруг всякого заряда обладает особыми свойствами: в нем действуют электрические силы, проявляющиеся при внесении в это пространство других зарядов. Такое пространство является силовым электрическим полем.
Пока заряды неподвижны, пространство между ними обладает свойствами электрического (электростатического) поля. Но когда заряды движутся, то вокруг них возникает также магнитное поле. Мы рассматриваем порознь свойства электрического и магнитного полей, но в действительности электрические процессы всегда связаны с существованием электромагнитного поля.
Мельчайшие электрические заряды входят как составные части в атом. Атом есть наименьшая часть химического элемента, являющаяся носителем его химических свойств. Атом является весьма сложной системой. Его масса в большей своей части сосредоточена в ядре. Вокруг последнего по определенным орбитам обращаются электрически заряженные элементарные частицы — электроны.
Силы тяготения удерживают на орбитах планеты, обращающиеся вокруг солнца, а электроны притягиваются к ядру атома электрическими силами. Из опыта известно, что взаимно притягиваются лишь разноименные заряды. Следовательно, заряды ядра атома и электронов должны быть различными по знаку. По историческим причинам принято считать заряд ядра положительным, а заряды электронов — отрицательными.
Многочисленные опыты показали, что электроны атомов любых элементов обладают одинаковым электрическим зарядом и одинаковой массой. Вместе с тем заряд электрона является элементарным, т. е. наименьшим возможным электрическим зарядом.
Принято различать электроны, находящиеся на внутренних орбитах атома и на внешних орбитах. Внутренние электроны относительно прочно удерживаются на своих орбитах внутриатомными силами. Но внешние электроны относительно легко могут отделяться от атома и оставаться некоторое время свободными или присоединяться к другому атому. Химические и электрические свойства атома определяются электронами его внешних орбит.
Открытие электрона — это одно из величайших достижений физики XIX века. Электрон был открыт английским физиком Джозефом Джоном Томсоном в 1897 году, когда он изучал катодные лучи в вакуумной трубке.
Он показал, что катодные лучи состоят из отрицательно заряженных частиц, которые он назвал “корпускулами”, а позже они получили название “электроны”. Он также измерил отношение заряда к массе электрона и предложил модель атома, в которой электроны распределены в положительно заряженной сфере.
Томсон объявил о своем открытии на заседании Лондонского королевского общества 29 апреля 1897 года. За свои исследования он получил Нобелевскую премию по физике в 1906 году.
Открытие электрона стало первым шагом к пониманию структуры атома и субатомных частиц. Электрон является одной из основных элементарных частиц, которые составляют материю, и имеет многочисленные приложения в науке и технике.
Величина положительного заряда ядра атома определяет принадлежность атома к определенному химическому элементу. Атом (или молекула) электрически нейтральны, пока сумма отрицательных зарядов электронов равна положительному заряду ядра. Но атом, потерявший один или несколько электронов, оказывается заряженным положительно вследствие избытка положительного заряда ядра. Он может перемещаться под действием электрических сил (притягиваться или отталкиваться). Такой атом является положительным ионом. Атом, захвативший излишние электроны, становится отрицательным ионом.
Носителем положительного заряда в ядре атома является протон. Это элементарная частица, служащая ядром атома водорода. Положительный заряд протона численно равен отрицательному заряду электрона, но масса протона в 1836 раз больше массы электрона. Ядра атомов, кроме протонов, содержат также нейтроны — частицы, не обладающие электрическим зарядом. Масса нейтрона в 1838 раз больше массы электрона.
Таким образом, из трех элементарных частиц, образующих атомы, электрическими зарядами обладают только электрон и протон. Но из них лишь заряженные отрицательно электроны могут легко перемещаться внутри вещества, а положительные заряды в обычных условиях могут перемещаться лишь в виде тяжелых ионов, т. е. перенося атомы вещества.
Упорядоченное движение электрических зарядов, т. е движение, имеющее преобладающее направление в пространстве, образует электрический ток. Частицами, движение которых создает электрический ток, — носителями тока в большинстве случаев являются электроны и значительно реже — ионы.
Допуская некоторую неточность, можно определять ток как направленное движение электрических зарядов. Носители тока могут более или менее свободно перемещаться в веществе.
Проводниками называются вещества, относительно хорошо проводящие ток. К числу проводников принадлежат все металлы, в особенности хорошими проводниками являются серебро, медь и алюминий.
Проводимость металлов объясняется тем, что в них часть внешних электронов отщепляется от атомов. Положительные опыты, образовавшиеся вследствие потери этих электронов, связаны в кристаллическую решетку — твердый (ионный) скелет, в промежутках которого находятся свободные электроны в форме своего рода электронного газа.
Малейшее внешнее электрическое поле создает в металле ток, т. е. вынуждает свободные электроны перемешаться в направлении действующих на них электрических сил. Для металлов характерно уменьшение проводимости с увеличением температуры.
Полупроводники проводят электрический ток значительно хуже, чем проводники. К числу полупроводников принадлежит очень большое число веществ, и свойства их весьма разнообразны. Характерным для полупроводников является электронная проводимость (т, е. ток в них создается, как и в металлах, направленным перемещением свободных электронов — не ионов) и, в отличие от металлов, увеличение проводимости при повышении температуры. Вообще для полупроводников характерна также сильная зависимость их проводимости от внешних воздействий — облучения, давления и т. п.
Диэлектрики (изоляторы) практически не проводят ток. Внешнее электрическое поле вызывает поляризацию атомов, молекул или ионов диэлектриков, т. е. смещение под действием внешнего поля упруго связанных зарядок, входящих в состав атома или молекулы диэлектрика. Количество свободных электронов в диэлектриках очень мало.
Нельзя указать жесткие границы между проводниками, полупроводниками и диэлектриками. В электротехнических устройствах проводники служат путем для перемещения электрических зарядов, а диэлектрики нужны, чтобы направить должным образом это движение.
Электрический ток создается вследствие воздействия на заряды сил неэлектростатического происхождения, называемых сторонними силами. Они создают в проводнике электрическое поле, которое вынуждает положительные заряды перемещаться по направлению действия сил поля, а отрицательные заряды — электроны — в противоположном направлении.
Полезно уточнить представление о поступательном движении электронов в металлах. Свободные электроны находятся в состоянии беспорядочного движения в пространстве между атомами, под обратном тепловому движению молекул. Тепловое состояние тела обусловливается столкновениями молекул друг с другом и столкновениями электронов с молекулами.
Электрон сталкивается с молекулами и меняет направление своего движения, но постепенно все же продвигается вперед, описывая очень сложную кривую. Длительное перемещение заряженных частиц в одном определенном направлении, налагающееся на их беспорядочное движение в разных направлениях, называется их дрейфом. Таким образом, электрический ток в металлах, по современным воззрениям, является дрейфом заряженных частиц.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
10 Постоянный ток в металлах.
Под электрическим током понимают направленное движение носителей тока.
В металлах носителями тока являются свободные электроны.
Введем понятие величины тока (сила тока). По определению величина тока численно равна заряду протекающую через поперечное сечение проводника в 1с.: I= (1).
Можно измерять ток за большое время, за малое, бесконечно малое время, если ток постоянен:
I= = = . Если ток слабо переменный, то применяется формула I= = , если сильно переменная: I= .(1а). . (2).
Введем понятие плотности тока. Под плотностью тока понимают величину тока, протекающего через поперечное сечение проводника(сечение нормальное к направлению тока) площадью в 1 м 2 и обозначается j-плотность тока. (3). [q]=Кл; [I]= ; [j]= . Возможны такие случаи, когда в пределах поперечного сечения плотность тока оказывается различной. Поэтому формула (3) дает усредненное значение плотности тока j. В общем случае (3а). В случае однородной плотности тока , в случае частично неоднородной: , в случае неоднородной .
Рассмотрим проводник. Свяжем величину тока и плотности тока с концентрацией носителей. Под концентрацией понимают число носителей в единице объема.
n0–концентрация носителей тока. [n0]= .
Рассмотрим объем проводника разделенные сечениями I и II. , . Рассмотрим прохождение от сечения I до II за промежуток времени которое соответствует прохождению расстояния , за это время через сечение I пройдут все носители, которые в данный момент находятся в объеме проводника между сечениями I и II. (e=q1); ;
2).ЭДС. R–резистор.
Для того, чтобы через R протекал ток, необходимо, чтобы электрическая цепь была замкнутой. На участке 1-2 ток течет в направлении убывания потенциала и здесь действует электростатическая сила. Чтобы цепь оказалась замкнутой, ток должен течь в направлении более высокого потенциала. Здесь должны действовать силы не электростатической природы: механическое, тепловое, химические…. Значит на участке 1-2 действует электростатические силы, под влиянием которых формируется ток через резистор R. Потенциал – это мера силы электростатического поля. И при разности φ возникает электростатические силы, которые гонят заряды из 1-й точки во 2-ю.
На участке 2–1 рассматриваемой замкнутой цепи 1–2–1 заряды двигаются от т.2 имеющий меньший потенциал к т.1 с большим потенциалом. Электростатические силы направлены в сторону убывающего потенциала, поэтому в цепи существуют силы не электростатической происхождения. Эти силы называются сторонними. Работа сторонних сил по пермещению единичного положительного заряда получила название ЭДС.
(7), где А12 сторон –работа сторонних сил на участке 1-2; q–перемещаемый заряд; ξ–ЭДС
Введем определение разности потенциалов и напряжении на участке цепи. (φ1-φ2)–разность потенциалов на участке 1-2. (8). По (8) разность потенциалов на концах участка 1-2 равна работе электростатических сил по перемещению единичного заряда из т.1 в т. 2. Введем понятие напряжения–U. (9). (9а). По (9) напряжение на участке 1-2 равно работе всех сил по перемещению единичного «+» заряда на 1-2. Участок на котором не действует ЭДС называют однородным участком, для него из (9а) . Для участка на котором действует ЭДС называют неоднородным, т.е.соответствует (9а).
3).закон Ома. В 1826 немецкий ученый Ом сформулировал закон, связывающий величину напряжения и силу тока на участке цепи: – Закон Ома. Он же установил связь между сопротивлением проволочного проводника цилиндрической формы и длиной проводника: , ρ- удельное сопротивление-это сопротивление цилиндрического проводника длинной 1 м при площади поперечного сечения 1 м 2 (это малая величина).
4) закон Дж-Ленца ; ;
P -мощность. ; ;
Рассмотрим тепловое свойство тока. При протекании тока по проводнику, работа тока переходит в тепло. ; (10); Обычно тепло выражается формулой: ; (10а).–закон Дж.-Ленца. Запишем в дифференциальной форме: ; ; , где γ–удельная электропроводность. (11).Формуле можно предать векторный вид: –закон Ома в диф. форме.
–закон Ома для замкнутой цепи, где R-внеш. Сопротивление, r-внутреннее сопр., I-сила тока, ξ-ЭДС.
Теперь запишем закон Дж.-Ленца: = , V- объем проводника.
–з-н Дж.-Ленца в диф. форме, Q1-количество тепла выделяемое током в единице объема проводника в ед. времени.
5) правила Кирхгофа. Он рассматривал разветвляющиеся цепи.
ABCA–замкнутый контур;A,B,C– т. разветвления; дугообразная стрелка на верху рисунка–это направление обхода. Под т. разветвления понимают точку, в которой сходятся не менее 3 проводников. В т. разветвления скопления зарядов не происходит.
Будем считать, что подтекающим токам соответствует знак «+», а одтекающим «-». (12)–первое правило Кирхгофа. (алгебраическая сумма токов в т. разветвления равна 0.). n–число токов в т.разветвления.
Если m– число точек разветвления, то по (12) независимых уравнении будет m-1. Рассмотрим контуры ABCA. Направление тока произвольно. Введем направление обхода контура ABCA. Будем учитывать токи со знаком «+», если они совпадают с направлением обхода и со знаком «-» –если не совпадают. Будем учитывать ЭДС со знаком «+», если она повышает потенциал в направлении обхода, и со знаком «-» в противном случае. Тогда 2 правило Кирхгофа принимает вид (13)–алгебраическая сумма падении напряжения на участках замкнутого контура = алгебраической сумме ЭДС действующий на участках этого контура.
6) опыт Рикке. В 1901 он осуществил след. опыт.
По цепи пропускался ток в течении длительного времени(1 год).
I=0.5A. q=It=0,5*365*24*3600=1,5*10 6 Кл. Проблема являлась выявить носители тока. Если носителями тока являлись бы ионизированные атомы, то должно было наблюдаться взаимопроникновение атомов в сечение 1-2. После завершения опыта цилиндры разделялись и торцы цилиндров тщательно исследовались. Взаимопроникновение не обнаружилось. Вывод: носителями тока не являются ионизированные атомы, а какие-то частицы, которые начиняют металлы и они оказываются одинаковыми для разных металлов. К тому времени уже были открыты электроны, можно было предположить, что носителями тока являются они.
Свободные носители электрического заряда в металлах, жидкостях и газах — Постоянный ток — ЭЛЕКТРОДИНАМИКА
Электрический ток в металлах обусловлен упорядоченным движением свободных электронов (электронов проводимости).
Положительные ионы участия в переносе заряда не принимают.
Электронная природа носителей тока в металлах объясняется следующим образом (рис. 3.24). Кристаллическая решетка металла состоит из положительно заряженных ионов, расположенных в узлах решетки, и электронов, свободно передвигающихся между узлами. Эти электроны — валентные электроны атомов металла, покинувшие свои атомы. Свободные электроны совершают беспорядочное движение по кристаллу, «не помня» уже, какому атому они принадлежали. Их называют также электронным газом. Конечно, при этом сумма всех положительных зарядов ионов решетки равна суммарному отрицательному заряду всех свободных электронов, так что металл остается незаряженным, или электронейтральным.
Не следует думать, что под действием электрического тока все электроны в проводнике устремляются в одном направлении. У них просто появляется преимущественное направление движения (вдоль поля), которое накладывается на хаотическое движение в отсутствие поля (рис. 3.25).
При этом средняя скорость их движения составляет несколько миллиметров в секунду. А вот скорость распространения самого электрического поля — порядка 3 ·108 м/с. С этой же скоростью распространяется электрический ток.
Здесь можно провести аналогию электрического тока с течением воды в водопроводе, а распространение электрического поля — с распространением давления воды. Вода в кране находится под давлением всего столба воды в водонапорной башне. Но из крана течет та вода, которая в нем была, а вода из башни дойдет до крана гораздо позднее, т. к. движение воды происходит с гораздо меньшей скоростью, чем распространение давления.
Существование свободных электронов в металлах было доказано опытами Л. И. Мандельштама и Н. Д. Папалекси (качественно), Б. Стюартом и Р. Томсоном — с получением количественных результатов (1916 г.).
Схема опыта изображена на рис. 3.26. Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки через специальные контакты замыкались на чувствительный гальванометр. После раскручивания катушки она резко тормозилась специальным приспособлением. При этом гальванометр регистрировал кратковременный ток, направление которого указывало на отрицательный знак носителей заряда. В опыте были использованы инерционные свойства электронов: при резком торможении проводника они продолжали некоторое время двигаться (подобно пассажирам резко тормозящего вагона). Из этих опытов было определено отношение заряда к массе носителя тока, которое совпало с соответствующим значением для электрона (1,8 · 1011 Кл/кг.)
Объяснение многих свойств металлов, в частности, его электрических свойств (закон Ома), дает электронная теория металлов. Классическая электронная теория металлов основывается на представлении об электронах проводимости как об электронном газе, подобном идеальному атомарному газу молекулярной физики. В этой теории считается, что движение электронов подчиняется законам Ньютона, взаимодействием электронов между собой пренебрегают, а взаимодействие с положительными ионами решетки сводят только к соударениям.
Для объяснения закона Ома на основе классической электронной теории металлов необходимо найти выражение для средней скорости и направленного упорядоченного движения электронов в электрическом поле напряженностью Е и подставить в известную формулу для силы тока I:
где qQ = е — заряд электрона, n — концентрация электронов, S — площадь поперечного сечения проводника.
Электроны в металле, участвуя в тепловом движении, постоянно сталкиваются с ионами решетки. Так как масса электрона во много раз меньше массы иона, то после очередного столкновения все направления скорости равновероятны. Это означает, что начальная скорость после очередного столкновения может иметь любое направление и, значит, среднее значение вектора начальной скорости равно нулю, и начальная скорость не оказывает влияния на среднюю скорость направленного движения электронов. Это позволяет считать, что средняя скорость упорядоченного движения электронов v равна произведению ускорения на среднее время движения электрона между двумя соударениями с ионами: . Используя второй закон Ньютона и выражение для напряженности электрического поля, получим:
где F — сила, действующая на электрон со стороны поля, U — напряжение на концах проводника длиной L.
Далее, подставляя полученное уравнение в выражение 1= q0nvS, получим:
Как видно из полученного выражения, сила тока пропорциональна напряжению, как это и следует из закона Ома. Это является следствием того, что средняя скорость направленного движения электронов прямо пропорциональна напряженности электрического поля в металле.
Однако классическая электронная теория не в состоянии объяснить многие экспериментальные зависимости, например, зависимость сопротивления от температуры. Связано это с тем, что движение электронов в металле подчиняется законам квантовой механики, а не классической механики Ньютона.
Электрический ток в газах
Процесс протекания электрического тока через газ называется газовым разрядом.
При комнатных температурах газы практически не проводят электрический ток, так как состоят из нейтральных атомов, т. е. являются диэлектриками.
При нагреве или облучении ультрафиолетовым светом, рентгеновскими лучами либо другим видом излучения атомы газа получают дополнительную энергию, которая может привести к ионизации. Так, например, при нагреве за счет увеличения скорости молекул часть из них при столкновениях друг с другом распадается на положительно заряженные ионы и электроны.
Проводимость газов обеспечивается как электронами, так и положительно заряженными ионами.
Рекомбинация — процесс воссоединения электрона с положительным ионом — наблюдается, если прекратить действие ионизатора. Если внешнее поле отсутствует, то при действии ионизатора устанавливается динамическое равновесие между количеством исчезающих и вновь образующихся пар заряженных частиц.
Несамостоятельный разряд в газе, ионизованном каким-либо ионизатором, возникает в постоянном поле и существует до тех пор, пока существует ионизирующий агент. ВАХ несамостоятельного разряда представляет собой кривую, выходящую на насыщение.
Самостоятельный разряд. При некотором напряжении, зависящем от рода газа, давления и расстояния между электродами, происходит пробой и зажигаетсясамостоятельный разряд, который не нуждается больше во внешнем ионизаторе. Ток через трубку при этом резко возрастает.
Причиной возникновения самостоятельного разряда является ионизация электронным ударом. При соударении атома с электроном, который разгоняется электрическим полем Е до энергии, достаточной для ионизации атома, образуются два электрона, которые при своем движении к аноду также разгоняются и, сталкиваясь на своем пути с другими атомами, ионизуют их, в результате возникает электронная лавина.
Для обеспечения длительного самостоятельного разряда, кроме ионизации электронным ударом, необходима еще эмиссия (испускание) электронов с катода. Такая эмиссия может быть обеспечена либо за счет термоэлектронной эмиссии из катода (испускания электронов из металла при нагреве), либо за счет выбивания электронов из катода положительными ионами с большой кинетической энергией.
Электрический ток в электролитах
Электролиз. Электролитами, или проводниками второго рода, называются вещества, в которых прохождение электрического тока сопровождается электролизом. Электролиз— это выделение на электродах составных частей растворенных веществ или продуктов вторичной реакции.
В электролитах, являющихся водными растворами (или расплавами) кислот, щелочей, солей, перенос заряда осуществляется ионами. Такая проводимость называется ионной.
Закон электролиза установлен опытным путем М. Фарадеем.
Масса вещества, выделившегося на электроде за время Δt при прохождении электрического тока, пропорциональна силе тока и времени:
Величину k называют электрохимическим эквивалентом данного вещества и выражают в кг/Кл. Электрохимический эквивалент численно равен массе вещества, выделившегося на электродах при переносе ионами заряда
Можно показать, что
где е — заряд электрона, NA — число Авогадро, М — молярная (или атомная) масса вещества, n — валентность иона, т. е. k = — электрохимический эквивалент равен отношению массы иона к его заряду.
Таким образом, измеряя величины m и Δq, можно определить электрохимические эквиваленты различных веществ.
Формулы могут быть использованы для определения заряда электрона:
Все входящие в эту формулу величины либо известны (М, n, NA), либо измеряются (m, I, Δt). Именно таким образом в 1874 г. было определено значение е = 1,6 · 10-19 Кл.
Библиотека образовательных материалов для студентов, учителей, учеников и их родителей.
Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы из сети Интернет, которые находятся в открытом доступе и присланные нашими посетителями.
Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.
Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.
© 2014-2024 Все права на дизайн сайта принадлежат С.Є.А.
Электроника как искусство: электрический ток
Среднестатистическая грамотность населения в области электроники и электротехники оставляет желать лучшего. Максимум, спаять схемку, а как она работает — темный лес. К сожалению, все русскоязычные учебники пестрят формулами и интегралами, от них любого человека потянет в сон. В англоязычной литературе дела обстоят несколько лучше. Попадаются довольно интересные издания, но камнем преткновения здесь уже выступает английский язык. Постараюсь изложить основные понятия по электротехнике максимально доступно, в вольном стиле, не от инженера инженеру, а от человека человеку. Сведущий читатель, возможно, тоже найдет для себя несколько интересных моментов.
Электрический ток
Пути электрического тока неисповедимы. (с) мысли из интернета
На самом деле, нет. Все так или иначе можно описать с помощью математической модели, моделирования, да даже прикинув по-быстренькому на бумажке, а некоторые уникумы делают это в голове. Кому как удобнее. На самом деле, эпиграф этой главы родился от незнания, что же такое электрический ток.
Электрический ток характеризуется несколькими параметрами. Напряжением U и током I. Конечно, все мы помним определения по физике, но мало кто понимает их значения. Начну с напряжения. Разность потенциалов или работа по перемещению заряда, как сухо и неинтересно пишут в учебниках. На самом деле, напряжение всегда измеряется между двумя точками. Оно характеризует способность создавать электрический ток между этими двумя точками. Назовем эти точки источником напряжения. Чем больше напряжение, тем больше ток. Меньше напряжения – меньше ток. Но об этом чуть позже.
Что же такое ток? Представьте аналогию русло реки – это провода, электрический ток – это скорость потока воды в реке. Тогда напряжение здесь – перепад высоты между начальной точкой реки и конечной точкой. Или напряжение – это насос гоняющий воду, если река течет в одной плоскости. Такие аналогии на начальных этапах очень помогают понять, что же происходит в электрической схеме. Но, в конечном итоге, лучше от них отказаться. Лучше представить ток как некий поток электронов. Количество заряда, перемещаемое в единицу времени. Конечно, в учебниках говорится, что де электроны движутся со скоростью несколько сантиметров в минуту и значение имеет лишь электромагнитное поле, но пока забудем про это. Итак, под током можно понимать движение электрического тока, т.е. заряда. Носители заряда, электроны, отрицательно заряжены и двигаются от отрицательного потенциала к положительному, электрический ток же имеет направление от положительного потенциала к отрицательному, от плюса к минусу, так принято для удобства и так мы будем пользоваться в дальнейшем, забыв про заряд электрона.
Конечно, сам по себе ток не появится, нужно создать напряжение между двумя точками и нужна какая-либо нагрузка для протекания тока через нее, подключенная к этим двум точками. Очень полезно знать свойство, что для протекания тока нужно два проводника: прямой, до нагрузки, и обратный, от нагрузки до источника. Например, если не замкнуты проводники источника напряжения, то тока не будет.
Что же такое источник напряжения? Представим его в виде черного ящика, имеющего как минимум два вывода для подключения. Самые простые примеры из реальной жизни: электрическая розетка, батарейка, аккумулятор и т.п.
Идеальный источник напряжения обладает неизменным напряжением при протекании через него любого значения тока. Что же будет, если замкнуть зажимы идеального источника напряжения? Потечет бесконечно большой ток. В реальности источники напряжения не могут отдать бесконечно большой ток, потому что обладают некоторым сопротивлением. Например, провода в сетевой розетке 220в от самой розетки до подстанции имеют сопротивление, пусть и малое, но довольно ощутимое. Провода от подстанций до электростанций тоже имеют сопротивление. Нельзя забывать про полное сопротивление трансформаторов и генераторов. Батарейки имеют внутреннее сопротивление, обусловленное внутренней химической реакцией, которая имеет конечную скорость протекания.
Что же такое сопротивление? Вообще, это тема довольно обширная. Возможно, опишу в одной из следующих глав. Если кратко – это параметр, связывающий ток и напряжение. Оно характеризует, какой ток потечет при приложенном напряжении к этому сопротивлению. Если говорить «водной» аналогией, то сопротивление – это дамба на пути реки. Чем меньше отверстие в дамбе – тем больше сопротивление. Эту связь описывает закон Ома: . Как говорится: «Не знаешь закон Ома, сиди дома!».
Зная закон Ома, не сидя дома, имея какой-либо источник тока с заданным напряжением и сопротивление в виде нагрузки, мы очень точно можем предсказать какой потечет ток.
Реальные источники напряжения имеют какое-то свое внутреннее напряжение и отдают некий конечный ток, называемый током короткого замыкания. При этом батареи и аккумуляторы еще и разряжаются со временем и имеют нелинейное внутреннее сопротивление. Но пока тоже забудем об этом, и вот почему. В реальных схемах удобнее проводить анализ с использованием сиюминутных мгновенных значений напряжения и тока, поэтому будем считать источники напряжения идеальными. За исключением того факта, когда потребуется посчитать максимальны ток, который способен отдать источник.
Насчет «водной» аналогии электрического тока. Как я уже писал, она не очень правдива, поскольку скорость движения реки до дамбы и после дамбы будет разным, также разным будет кол-во воды до и после дамбы. В реальных схемах электрический ток втекающий в резистор и вытекающий из него будет равен между собой. Ток по прямому проводу, к нагрузке, и по обратному проводу, от нагрузки до источника, тоже равен между собой. Ток ни откуда не берется и никуда не девается, сколько «втекло» в узел схемы, столько и «вытечет», даже если путей несколько. Например, если есть два пути протекания тока от источника, то он потечет по этим путям, при этом полный ток источника будет равен сумме двух токов. И так далее. Это и есть иллюстрация закона Кирхгофа. Это очень просто.
Также есть еще два важных правила. При параллельном соединении элементов, напряжение в каждом из элементов одинаково. Например, напряжение на резисторе R2 и R3, на рисунке выше, одинаковы, но токи могут быть разными, если резисторы имеют разные сопротивления, по закону Ома. Ток через батарейку равен току на резисторе R1 и равен сумме токов на резисторах R2 и R3. При последовательном соединении напряжения элементов складываются. Например, напряжение которое выдает батарея, т.е. ее ЭДС, равно напряжению на резисторе R1 + напряжение на резисторе R2 или R3.
Как я уже писал, напряжение измеряется всегда между двумя точками. Иногда, в литературе можно встретить: «Напряжение в точке такой-то». Это означает напряжение между этой точкой и точкой нулевого потенциала. Создать точку нулевого потенциала можно, например, заземлив схему. Обычно «землят» схему в месте самого отрицательно потенциала около источника питания, например, как на рисунке выше. Правда это бывает не всегда, да и применение нуля довольно условно, например, если нам нужно двухполярное питание +15 и -15 вольт, то «землить» надо уже не -15в, а потенциал посредине. Если же заземлить -15в, то мы получим 0, +15, +30в. См. рисунки ниже.
Заземление также применяется в качестве защитного или рабочего. Защитное заземление называют зануление. Если нарушится изоляция схемы в каком-нибудь другом участке, отличном от земли, то по нулевому проводу потечет большой ток и сработает защита, которая отключит часть схемы. Защиту мы должны предусмотреть заранее, поставив автоматический выключатель или иное устройство на пути протекания тока.
Иногда «землить» схему нельзя или невозможно. Вместо земли применяют термин общая точка или ноль. Напряжения в таких схемах указываются относительно общей точки. При этом вся схема относительно земли, т.е. нулевого потенциала может располагаться где угодно. См. рисунок.
Обычно, Xv близко к 0 вольт. Такие незаземленные схемы с одной стороны более безопасны, поскольку если человек прикоснется одновременно к схеме и земле ток не потечет, т.к. нет обратного пути протекания тока. Т.е. схема станет «заземлена» через человека. Но с другой стороны такие схемы каверзны. Если вдруг нарушится изоляция схемы от земли в какой-либо ее точке, то мы этого не узнаем. Что может быть опасно, при больших напряжениях Xv.
Вообще земля — это термин довольно обширный и расплывчатый. Есть очень много терминов и названий земли, смотря где «землить» схему. Под землей может пониматься как защитная земля, так и рабочая земля (по протеканию тока через нее при нормальной работе), как сигнальная земля, так и силовая земля (по роду тока), как аналоговая земля, так и цифровая земля (по роду сигнала). Под землей может пониматься общая точка или наоборот, под общей точкой пониматься земля или и быть ей. Также в схеме могут присутствовать все земли одновременно. Так что надо смотреть по контексту. Есть даже такая забавная картиночка в иностранной литературе, см. ниже. Но обычно земля – это схемные 0 вольт и это точка от которой измеряют потенциал схемы.
До сих пор, упоминая источник напряжения, я не касался рода этого самого напряжения. Напряжение есть меняющееся со временем и есть не меняющееся. Т.е. переменное и постоянное. Например, напряжение, меняющееся по синусоидальному закону всем хорошо знакомо, это напряжение сети 220в в бытовых розетках. С постоянным напряжением работать очень просто, мы это уже делали выше, когда рассматривали закон Кирхгофа. А что же делать с переменным напряжением и как его рассматривать?
На рисунке приведены несколько периодов переменного напряжения 220в 50Гц (синяя линия). Красная линия – постоянное напряжение 220в, для сравнения.
Определимся, сначала что такое напряжение 220в, кстати, по новому стандарту положено считать 230в. Это действующее значение напряжения. Амплитудное значение будет в корень из 2х раз выше и составит примерно 308в. Действующее значение – это такое значение напряжения, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при постоянном токе такого же напряжения. Выражаясь математическим языком – это среднеквадратичное значение напряжения. В английской литературе используется термин RMS, а приборы, которые измеряют истинное действующее значение имеют знак «true RMS».
На первый взгляд это может показаться неудобным, какое-то действующее значение, но это удобно для расчетов мощности без необходимости конвертации напряжения.
Переменное напряжение еще удобно рассматривать как постоянное напряжение, взятое в какой-либо точке времени. После чего проводить анализ схемы несколько раз, изменяя знак постоянного напряжение на обратный. Сначала рассмотреть работу схемы с постоянным положительным напряжением, потом, изменить знак, с положительного на отрицательный.
Для переменного напряжения также необходимо два провода. Они называются фаза и ноль. Иногда ноль заземляют. Такая система называется однофазной. Напряжение фазы измеряется относительно нуля и меняется со временем, как показано на рисунке выше. При положительной полуволне напряжения ток протекает от фазы к активной нагрузке и от нагрузки возвращается обратно по нулевому проводу. При отрицательной полуволне ток течет по нулевому проводу и возвращается по фазному.
В промышленности широко применяют трехфазную сеть. Это частный случай многофазных систем. По сути все тоже самое, что и однофазная система, только умноженная на 3, т.е. применение одновременно трех фаз и трех земель. Впервые изобретено Н. Тесла, впоследствии усовершенствовано М. О. Доливо-Добровольским. Усовершенствование состояло в том, что для передачи трехфазного электрического тока можно было выкинуть лишние провода, достаточно четырех: три фазы ABC и нулевой провод или же вовсе три фазы, отказавшись от нуля. Нулевой провод очень часто заземляют. На рисунке ниже ноль общий.
Почему же 3 фазы, и не больше, не меньше? С одной стороны, 3 фазы гарантированно создают вращающееся магнитное поле, так необходимое электрическим двигателям для вращения или получаемое от генераторов электростанций, с другой стороны это экономически выгодно с материальной точки зрения. Меньше нельзя, а больше и не нужно.
Чтобы гарантировано создавать вращающееся поле в трехфазной сети нужно чтобы фазы напряжения были сдвинуты друг относительно друга. Если принять полный период напряжения за 360 градусов, то 360/3 = 120 градусов. Т.е. напряжение каждой фазы сдвинуто относительно друг друга на 120 градусов. См. рисунок ниже.
Здесь показан график напряжения 3-х фазной сети 380в по времени. Как видно из рисунка, все тоже самое, что и с однофазной сетью, только напряжений стало больше. 380в – это так называемое линейное напряжение сети Uл, т.е. напряжение, измеряемое между двумя фазами. На рисунке показан пример нахождения мгновенного значения Uл. Оно также изменяется по синусоидальному закону. Также наряду с линейным напряжением различают фазное Uф. Оно измеряется между фазой и нулем. Фазное напряжение в данной трехфазной сети равно 220в. Под фазным и линейным напряжение, конечно же подразумевается действующее напряжение. Соотносятся линейное к фазному напряжению, как корень из трех.
Нагрузку к трехфазной сети можно подключать как угодно – к фазному напряжению: между какой-либо фазой и нулем, либо к линейному напряжению: между двумя фазами. Если нагрузка подключена к фазному напряжению, то такая схема соединения называется звездой. Она и показана выше. Если к линейному напряжения – то соединение треугольником. Если одинаковая нагрузка подключается к линейным напряжениям между всеми тремя фазами, то такие сети симметричные. Ток через нулевой провод в симметричных сетях не течет. См рис. ниже. Промышленные сети также считаются условно симметричными. Как правило ноль в таких сетях присутствует, но лишь в защитных целях. Иногда может и отсутствовать вообще. Веселая картиночка из вики наглядно иллюстрирует как протекает ток в таких сетях.
На этом кратенький обзор по электросетям и электричеству завершен. Возможно в будущем объясню на пальцах как работает диод и транзистор, что такое стабилитрон, тиристор и другие элементы. Пишите, про что вам интересно почитать.
Библиографический список
- Искусство схемотехники, П. Хоровиц. 2003.
- GROUNDS FOR GROUNDING. A Circuit-to-System Handbook, Elya B. Joffe, Kai-Sang Lock.
- Wiki и интернет ресурсы.