Устройство и ремонт электрических машин — Устройство электрических машин постоянного тока
УСТРОЙСТВО ЭЛЕКТРИЧЕСКИХ МАШИН ПОСТОЯННОГО ТОКА И КОНСТРУКЦИИ ИХ СБОРОЧНЫХ ЕДИНИЦ И ДЕТАЛЕЙ
Электротехническая промышленность выпускает электрические машины постоянного тока большой номенклатуры по мощности и конструктивному исполнению, поэтому несмотря на некоторые различия в конструкции отдельных сборочных единиц и деталей, их устройство одинаково. Основным типом машины постоянного тока является коллекторная, отличительным признаком которой служит наличие коллектора на валу якоря машины. На статоре машины помимо главных полюсов с обмоткой возбуждения имеются добавочные полюса.
Электрическая машина постоянного тока (рис. 100) состоит из статора, якоря, коллектора, щеточного аппарата и подшипниковых щитов.
Статор состоит из станины б, главных полюсов 4 и добавочных полюсов (на рисунке не показаны) с соответствующими катушками. Станина служит для крепления полюсов и подшипниковых щитов и является часть о магнитной цепи, поскольку через нее замыкается магнитный поток машины. Поэтому станину изготовляют из стали — материала, обладающего достаточной механической прочностью и большой магнитной проницаемостью. По окружности станины расположены отверстия для крепления полюсов.
Главные полюса (рис. 101) выполняют шихтованными из стальных штампованных листов стали толщиной 1 или 2 мм, а добавочные — массивными или также шихторанными. Стальные листы сердечника 2 полюсов спрессованы и скреплены заклепками 4, головки которых утоплены в нажимные щеки 5, установленные на торцах каждого полюса.
Рис. 100. Устройство электрической машины постоянного тока:
1 — коллектор, 2 — щетки, 3 и 9 — сердечник и обмотка якоря, 4 — главный полюс, 5 — катушка обмотки возбуждения, б — станина (корпус) 7 — подшипниковый щит, 8 — вентилятор, 10 — вал —
Рис. 101. Главные полюса электрической машины постоянного тока и способы их крепления:
а — болтом, б — стержнем; 1 — полюсный наконечник, 2 — сердечник полюса, 3 — болт крепления сердечника, 4 — заклепка, 5 — нажимные щеки, б — установочный стержень
. Рис. 102. Катушки полюсов
а — главного, б — добавочного; 1 — катушка обмотки, 2 и 4 — главный и добавочный полюса» 3 — опорный угольник, 5 — обмотка
Шихтованными могут изготовляться только наконечники главных полюсов, так как при вращении зубчатого якоря из-за пульсации магнитного потока в воздушном зазоре в них возникают вихревые токи и потери мощности. Однако исходя из технологического добавочного полюса удобства изготовления полюсов их обычно делают шихтованными.
Полюса крепят к станине болтами: нарезку резьбы для болтов выполняют непосредственно в шихтованном сердечнике 2 полюса (рис. 10 1, а) либо в массивных стальных стержнях б» (рис. 101,6), вставленных в выштампованные отверстия в полюсах.
Магнитное поле в машине создается намагничивающей силой обмотки возбуждения, выполняемой в виде полюсных катушек, надетых на сердечники главных полюсов. Для уменьшения искрения под щетками и предупреждения таким образом подгара пластин коллектора и образования на его поверхности «кругового огня» машина снабжена добавочными полюсами с катушками, установленными на их сердечниках. Добавочные полюса размещают между главными полюсами и крепят к станине болтами.
Катушки главных и добавочных полюсов (рис 102, а, б) изготовляют из изолированного медного провода круглого или прямоугольного сечения.
Рис. 103. Сердечник якоря машины постоянного тока:
1 — вал, 2 — обмоткодержатель, 3 — выточки для наложения, бандажа, 4 — место посадки коллектора на валу
Катушки добавочных полюсов включаются последовательно с обмоткой якоря, поэтому сечение их проводов рассчитано на рабочий ток машины. В некоторых мощных машинах постоянного тока обмотку полюса выполняют из нескольких секций с установкой между ними дистанционных шайб из изоляционных материалов, образующих вентиляционные каналы.
Якорь машины постоянного тока состоит из вала, сердечника, обмотки и коллектора. Сердечник, якоря (рис. 103) собран из штампованных листов электротехнической стали (рис. 104) с выштампованными в них вырезами определенной формы, образующими в собранном сердечнике пазы для укладки в них обмотки якоря. Листы сердечника обычно изолированы с двух сторон тонкой пленкой лака, но могут быть и оксидированы. Собранные в общий пакет листы образуют сердечник, насаженный на вал якоря и закрепленный на нем с помощью нажимных шайб. Такая конструкция позволяет уменьшить потери энергии в сердечнике от действия вихревых токов, возникающих в результате его перемагничивания при вращении якоря в магнитном поле. Для лучшего охлаждения машины в сердечниках якоря обычно имеются вентиляционные каналы для охлаждающего воздуха. Сердечник, в пазы которого уложена секция обмотки якоря, показан на рис. 105.
Обмотка якоря выполняется из медных проводов круглого или прямоугольного сечения и состоит из заранее заготовленных секций, концы которых припаивают к петушкам пластин коллектору. Обмотку делают двухслойной: размещают в каждом пазу две стороны различных якорных катушек,— одну поверх другой. Для прочного закрепления проводов обмотки якоря в пазах используют деревянные, гетинаксовые или текстолитовые клинья. Деревянные клинья, широко применявшиеся в электродвигателях старых конструкций, не обеспечивают надежного крепления обмотки в пазах сердечника, поскольку при высыхании настолько уменьшаются в объеме, что могут выпасть из паза. В некоторых Конструкциях машин пазы не расклинивают, а обмотку крепят бандажом.
Рис. 105. Расположение секций обмотки якоря в пазах сердечника
Рис. 104. Стальной лист сердечника якоря:
1 — зубец листа, 2 — изоляция, 3 — паз
Бандаж выполняют из немагнитной стальной проволоки, наматываемой с предварительным натяжением. Лобовые части обмотки якоря крепят к обмоткодержателю также при помощи бандажа. В современных машинах для бандажирования якорей используют стеклоленту.
Коллектор машины постоянного тока собран из клинообразных пластин холоднокатаной меди, изолированных друг от друга прокладками из коллекторного миканита. Нижние (узкие) края пластин имеют вырезы в форме «ласточкина хвоста», служащие для закрепления медных пластин и миканитовой изоляции.
По способу закрепления комплекта медных и миканитовых пластин различают коллекторы на пластмассе (рис. 106,а) и со Стальными нажимными конусами и втулкой (рис. 106,5). Коллекторы крепятся нажимными конусами двумя способами: при одном их них усилие от зажима передается только на внутреннюю поверхность «ласточкина хвоста», а при другом — на «ласточкин хвост» и конец пластины, при этом пластины закрепляются враспор.
Коллекторы первым способом крепления называют арочными, а вторым способом — клиновыми. Чаще всего применяют арочные коллекторы, поскольку при ослаблении давления между их пластинами из-за усадки межпластинной миканитовой изоляций эти коллекторы можно предпрессовывать, восстанавливая таким образом необходимое сжатие пластин и прочность коллекторов.
Рис. 106. Коллекторы электрических машин:
а — на пластмассе, б — с нажимными конусами; / и 7 — пластины коллектора, 2 — пластмасса, 3 и 11 — втулки, 4 — нажимной конус, 5 — гайка, 6 и 10 — манжеты, 8 — изолирующий цилиндр, 9 — шнур, /2— балансировочный груз
Щеточный аппарат (рис. 107) состоит из траверсы, щеточных пальцев и щеткодержателей. Траверса (рис. 107, а) служит для крепления на ее щеточных пальцах щеткодержателей (рис. 107, б, в, г), создающих необходимую электрическую цепь. Щеткодержатель состоит из обоймы и нажимного устройства, обеспечивающего прилегание щетки к коллектору с необходимым усилием. Давление (0,02 — 0,04 МПа) на щетку должно быть отрегулировано так, чтобы был плотный и надежный контакт между щеткой и коллектором.
В машинах постоянного тока применяют щеткодержатели двух типов: радиальные, у которых ось щетки совпадает с продолжением радиуса коллектора, (см. рис. 107,5, в), и реактивные, у которых ось щетки расположена под углом к продолжению радиуса коллектора в сторону его вращения (см. рис. 107, г).
Щетка (рис. 108) представляет собой прямоугольный брусок из композиций, выполненных на основе графита. Она снабжена гибким медным канатиком 7, один конец которого заармирован в щетку, а другой свободный — снабжен наконечником 2 для присоединения к щеточному аппарату. Все щеткодержатели одной полярности соединены между собой сборными шинами, подключенными к выводам машины.
Рис. 107. Щеточный аппарат электрических машин постоянного тока:
а — траверса, б и в — радиальные щеткодержатели, г — реактивный щеткодержатель; 1 — пальцы (бракеты), 2 — рычаг, 5, 8 и 15 — пружины, 4 — корпус, 5 и 11 — щетки, б — обойма, 7 — фарфоровый наконечник, 9 — хомутик, 10 — штифт, 12 — стенка обоймы, 13 — храповик, 14 — колечко пружины
Применяемые в машинах постоянного тока щетки имеют маркировку, характеризующую их состав и физические свойства. Щетки, используемые в машинах общепромышленного назначения, подразделяются на три основные группы: графитные, угольно-графитные и медно-графитные. В целях нормальной работы и продления срока службы коллектора следует применять для каждой машины щетки только той марки, которая определена заводом-изготовителем с учетом мощности, конструкции, условий работы и электрической характеристики машины.
Подшипниковые щиты электрических машин служат в качестве соединительных деталей между станиной и якорем, а также — опорной конструкцией для якоря, вал которого вращается в подшипниках, установленных в щитах.
Рис. 108. Щетки:
а — машин малой и средней мощности, б — машин большой мощности; 1 — щеточный канатик, 2 — наконечник
В электрических машинах постоянного тока применяют различные подшипниковые щиты, отличающиеся друг от друга формой, размером и материалом, из которого они изготовлены. Однако несмотря на большое разнообразие конструкций подшипников щиты можно разделить по назначению на два основных вида: обычные и фланцевые для установки и крепления непосредственно на исполнительном механизме.
В ряде случаев электрические машины постоянного тока могут иметь комбинированную систему крепления (рис. 109), т. е. станину с лапами для установки и крепления на Опорной конструкции и одновременно фланцевый подшипниковый щит для крепления на исполнительном механизме.
Рис. 109. Электрическая машина со станиной для крепления на опорной конструкции и подшипниковым щитом для крепления на исполнительном механизме:
1 — возбудитель, 2 и 4 г- передний и задний подшипниковые щиты, 3 — станина, 5 — зубчатая шестеренка
Подшипниковые щиты электрических машин постоянного тока изготовляют методом литья (преимущественно из стали, реже из чугуна и сплавов алюминия), а также сварки или штамповки. В центре щита имеется расточка под подшипник, в которой устанавливают шариковый или роликовый подшипник качения. В мощных машинах постоянного тока в ряде случаев используют подшипники скольжения.
Какими основными показателями характеризуются электрические машины?
Какие исполнения электрических машин вы знаете?
Каково устройство синхронной машины?
Чем отличается короткозамкнутый ротор от фазного?
Названы основные части машины постоянного тока и укажите их назначение:
Перечислены механические причины искрения щеток машины постоянного тока.
Расскажите об устройстве коллектора машины постоянного тока и его роли.
§27. Основные части электрических машин и их назначение
Основными частями машины постоянного тока являются: остов (станина), полюсы, якорь, щеточный аппарат и некоторые вспомогательные детали, служащие для конструктивного оформления машины.
Электрические машины общего применения (рис. 74) обычно имеют цилиндрическую форму и снабжены приливами для установки на фундамент или фланцами для крепления.
Рис. 74. Устройство машины постоянного тока: 1 — коллектор; 2 — щетки; 3 — сердечник якоря; 4 — главный полюс; 5 — катушка обмотки возбуждения; 6 — остов; 7 — подшипниковый щит; 8 — вентилятор; 9 — обмотка якоря
Тяговые электрические машины имеют те же основные части, но их конструкция приспособлена к особенностям установки этих машин на локомотивах.
Например, тяговые двигатели электровозов (рис. 75), тепловозов и электропоездов устанавливают на тележках экипажной части локомотива, поэтому в их конструкции предусматривают специальные элементы для монтажа двигателя на тележке и передачи его вращающего момента на движущую колесную пару.
Рис. 75. Устройство тягового двигателя постоянного тока: 1 — вал якоря; 2 — остов; 3 — подшипниковый щит; 4 — обмотка главного полюса; .5 — главный полюс; 6 — роликовый подшипник; 7 — сердечник якоря; 8 — обмотка добавочною полюса; 9 — добавочный полюс; 10—щеткодержатель; 11 — коллектор
В тяговых генераторах тепловозов (рис. 76) вал якоря имеет только один подшипник; второй опорой якоря является подшипник дизеля, вал которого жестко соединен с валом якоря генератора фланцем.
Рис. 76. Продольный разрез тягового генератора тепловоза: 1 — остов; 2 — главный полюс; 3 — добавочный полюс; 4 — барабан; 5 — сердечник якоря; 6 — обмоткодержатель; 7—сварной кожух; 8— фланец; 9 — вал; 10 — подшипник; 11 — коллекторная пластина; 12— обмотка якоря; 13— подшипниковый щит; 14— щеткодержатель
В современных электрических машинах остов отливают из стали. Он составляет часть магнитной системы машины и служит для укрепления полюсов с катушками и выводных зажимов, а также для поддержания боковых щитов, несущих подшипники якоря.
Остовы тяговых генераторов тепловозов имеют цилиндрическую форму и снабжены двумя приливами для установки генератора на общую с дизелем раму. Остовы тяговых двигателей (рис. 77) обычно выполняют восьмигранными или цилиндрическими.
Рис. 77. Остовы тяговых двигателей с установленными полюсами при опорно-осевом подвешивании (а) и при рамном подвешивании (б): 1—остов; 2 — главный полюс; 3 — добавочный полюс; 4 — люк для осмотра коллектора; 5 — приливы для моторно-осевых подшипников; 6,8 — кронштейны для подвешивания двигателя на раме тележки; 7 — прилив для крепления коробки с выводными зажимами; 9 — выступы для установки двигателя
В них имеются приспособления для монтажа двигателя на тележке, люки для осмотра коллектора и щеток, отверстия для подвода и выхода наружу охлаждающего воздуха и пр. Внутри остова предусмотрены обработанные приливы для установки полюсов, обеспечивающие строго симметричное расположение их на машине. В торцовых стенках остова имеются горловины для установки и крепления подшипниковых щитов.
Полюсы.
В современных стационарных и тяговых машинах постоянного тока устанавливают главные и добавочные полюсы.
Главные полюсы (рис. 78, а), на которых расположены катушки обмотки возбуждения, служат для создания в машине магнитного потока возбуждения. Часть сердечника главного полюса со стороны, обращенной к якорю, выполнена более широкой и называется полюсным наконечником. Эта часть служит для поддержания катушки, а также для лучшего распределения магнитного потока по поверхности якоря.
Сердечники главных полюсов для уменьшения вихревых теков изготовляют шихтованными — из отдельных стальных листов толщиной 0,5—1,5 мм. По краям полюсов устанавливают более толстые торцовые боковины, которые посредством заклепок удерживают полюсные листы в спрессованном состоянии.
Возникновение вихревых токов в сердечниках главных полюсов объясняется изменением (пульсацией) магнитного поля в полюсных наконечниках, прилегающих к якорю при его вращении. Вследствие
Рис. 78. Главный (а) и добавочный (б) полюсы: 1 – сердечник главного полюса; 2 – катушка главного полюса; 3 – корпусная изоляция катушки; 4 – установочные болты; 5 – опорный угольник; 6 – сердечник добавочного полюса; 7 – катушка добавочного полюса
зубчатости якоря магнитное поле в местах, расположенных против зубов, усиливается (индукция возрастает), а в местах, расположенных против пазов, ослабляется (индукция уменьшается).
При вращении якоря против каждой точки поверхности полюсного наконечника оказывается попеременно то зубец, то паз, вследствие чего индукция магнитного поля в отдельных точках наконечника непрерывно изменяется. Это и вызывает появление вихревых токов в стали наконечника.
Электрические машины могут иметь два, четыре, шесть и в общем случае 2р главных полюсов. Главные полюсы укрепляют на остове болтами. В машинах небольшой и средней мощности резьбу под болты нарезают непосредственно в сердечнике полюса (рис. 79, а).
Рис. 79. Сердечники главных полюсов: 1 — заклепки; 2 — установочный болт; 3 — сердечник полюса; 4 отверстие под установочные болты; 5— полюсный наконечник; 6— установочный стержень; 7 – боковина
В более мощных машинах (тяговых двигателях и тяговых генераторах) болты ввертывают в специальные установочные стержни (один или два на полюс), закладываемые в сердечник при его сборке (рис. 79, б).
Остов, полюсы и якорь составляют магнитную систему машины, через которую замыкается магнитный поток, созданный обмоткой возбуждения. Воздушный зазор между якорем и полюсами является также одним из участков магнитной цепи.
Расположение главных полюсов и распределение магнитного потока в четырехполюсной машине поясняются рис. 80, а и б.
Рис. 80. Магнитная система машины постоянного тока: 1 — полюсы; 2 — остов; 3 — якорь; 4 — обмотка возбуждения; 5 — воздушный зазор
Соседние (разноименные) полюсы в четырехполюсной машине расположены под углом 90°, а двухполюсной — под углом 180°. Линия, делящая эти углы пополам, называется геометрической нейтралью.
Магнитный поток Ф, проходящий через полюсы и поступающий в якорь и остов, разделяется по оси симметрии полюсов на две симметричные и равные части. У всех современных машин с симметричными магнитными системами число полюсов 2р всегда четное, все полюсы совершенно одинаковы и углы между осями соседних полюсов равны.
Добавочные полюсы (см. рис. 78, б) обеспечивают уменьшение искрения, возникающего при работе машины (см. § 30). По своим размерам они меньше главных. Число добавочных полюсов обычно равно числу главных.
В машинах постоянного тока сердечники добавочных полюсов изготовляют из стали. Они имеют монолитную конструкцию, так как значение индукции под добавочными полюсами выбирается обычно небольшим и при вращении якоря индуцирования вихревых токов в их наконечниках практически не происходит.
Однако в тяговых двигателях электровозов переменного тока, работающих при пульсирующем напряжении, сердечники добавочных полюсов выполняют шихтованными — из изолированных листов электротехнической стали толщиной 0,5 мм. Этим обеспечивается существенное уменьшение вихревых токов, возникающих при прохождении по обмотке добавочных полюсов пульсирующего тока.
Катушки полюсов изготовляют из изолированного медного провода круглого или прямоугольного сечения или из шинной меди.
Площадь поперечного сечения проводников и число витков катушек зависят от типа, мощности и напряжения машины. Отдельные витки катушек изолируют друг от друга (межвитковая изоляция), кроме того, на катушку еще накладывают общую корпусную изоляцию 3 (см. рис. 78). Катушки всех главных полюсов обычно соединяются последовательно и составляют обмотку возбуждения машины. Катушки добавочных полюсов также соединяют последовательно.
В современных тяговых электрических машинах постоянного и пульсирующего тока часто применяют компенсационную обмотку, улучшающую условия работы коллектора и щеток (см. § 29).
Ее располагают в пазах, проштампованных в полюсных наконечниках, и выполняют в виде отдельных катушек из прямоугольной меди (рис. 81). Катушки крепят в пазах текстолитовыми клиньями.
Рис. 81. Главный полюс в машинах с компенсационной обмоткой (а) и общий вид этой обмотки (б): 1 – паз для катушки компенсационной обмотки; 2 – полюсный наконечник; 3 — корпусная изоляция катушки возбуждения; 4 – проводники катушки возбуждения; 5 – немагнитная прокладка; 6 — остов; 7, 8 — катушка и вывод компенсационной обмотки
Машина постоянного тока имеет якорь, состоящий из сердечника, обмотки, коллектора и вала.
Сердечник якоря (рис. 82) собран из штампованных листов электротехнической стали толщиной 0,5 мм. Для уменьшения потерь от вихревых токов, возникающих при пересечении якорем магнитного поля, листы изолируют один от другого.
Листы собирают в общий пакет, который насаживают на вал якоря. Пакет удерживается в сжатом состоянии нажимными шайбами. В теле якоря делают вентиляционные каналы для прохода охлаждающего воздуха.
В машинах постоянного тока большой мощности с якорями большого диаметра листы, из которых собирают сердечник якоря, имеют форму сегментов 8.
Рис. 82. Сердечник якоря машины постоянного тока без обмотки (а); сборка якоря (б); стальные листы якоря (в): 1 – вал якоря; 2 – место для установки коллектора; 3, 5 – нажимные шайбы (обмотко-держатели); 4 – сердечник якоря; 6 – лаковая пленка; 7 – стальной лист; 8 – сегмент сердечника.
Сегменты собирают на шпильках, образуя полную окружность якоря, и сжимают нажимными шайбами; при сборке пакета якоря стыки между сегментами одного слоя располагаются против середины сегментов предыдущего слоя, благодаря чему уменьшается магнитное сопротивление сердечника якоря.
Якорные листы имеют зубчатую форму, поэтому при сборке их в пакеты образуются пазы (впадины), в которые укладывают обмотку якоря. Пазы бывают открытые и полузакрытые. Тяговые электрические машины имеют открытые пазы.
Для улучшения коммутации и снижения магнитного шума в некоторых машинах применяют якоря со скошенными пазами, т. е. пазы по длине сердечника смещаются на одно зубцовое деление.
В тяговых двигателях сердечник якоря, нажимные шайбы и коллектор обычно насаживают не на вал, а на промежуточную втулку, которую затем запрессовывают под давлением на вал. Применение промежуточной втулки дает возможность сменить неисправный вал без полной разборки якоря.
Обмотку якоря (рис. 83) выполняют из медной изолированной проволоки, в машинах большой мощности — из медных стержней. Обычно обмотка якоря состоит из отдельных якорных катушек, которые обматывают изоляционными лентами из миканита, асбеста, стеклоткани или хлопчатобумажной ткани и укладывают в пазы якоря.
В каждом пазу укладывают обычно две стороны различных якорных катушек, одна поверх другой. Каждая якорная катушка включает в себя несколько секций, концы которых припаивают к соответствующим коллекторным пластинам.
Рис. 83. Устройство обмотки якоря: а, б- укладка якорных катушек; в – изоляция; 1 – якорные катушки; 2 – коллектор 3 — сердечник якоря; 4,5- верхняя и нижняя стороны катушки; 6,7,9 – покровная корпусная и витковая изоляция; 8 – медные проводники
Различают следующие виды изоляции катушек: витковая — изоляция каждого из проводников; корпусная — изоляция всей катушки относительно сердечника якоря и покровная — наружная изоляция, защищающая корпусную изоляцию от механических повреждений. После наложения обмотки якорь пропитывают изоляционными лаками (асфальтовым, бакелитовым и др.), благодаря чему повышается качество изоляции машины.
В тяговых электрических машинах для изоляции обмотки якоря применяют монолитную изоляцию из материалов высокой нагревостойкости (стекло-слюдинистовое полотно), залитых эпоксидным компаундом горячего отвердения. Такая изоляция повышает надежность и долговечность электрических машин.
При вращении якоря обмотка может выпасть из пазов под действием возникающих центробежных сил. Чтобы предупредить выпадание обмотки, ее закрепляют изоляционными клиньями, а также проволочными бандажами или бандажами из стеклоленты (стекло-бандажами) (рис. 84).
Рис. 84. Крепление обмотки якоря изоляционными клиньями (а) и проволочными бандажами (б); 1 – текстолитовый клин; 2 – сердечник якоря; 3 – якорная катушка; 4 – проволочный бандаж; 5 – бандажная проволока
Якорные катушки изготовляют на специальных приспособлениях, позволяющих придавать им правильную и одинаковую форму (рис. 85).
Рис. 85. Общий вид якорных катушек: а, б – при многовитковых и одновитковых секциях; в – при обмотке с разрезными секциями
Коллектор (рис. 86, а) выполнен из отдельных пластин 2 толщиной до 5—8 мм, изготовленных из твердотянутой меди или кадмиевой
Рис. 86. Общий вид коллектора машины постоянного тока (а); расположение коллекторных пластин и изоляционных прокладок (б) и коллектор в пластмассовом корпусе (в).
бронзы клинообразного сечения. Пластины изолируют одну от другой миканитовыми прокладками 4. К выступающей части коллекторной пластины припаивают провода от обмотки якоря. Для этого в ней имеется соответствующая прорезь.
Узкие края пластины имеют форму ласточкина хвоста, после сборки коллектора эти края зажимаются между двумя нажимными шайбами. Пластины изолируют от нажимных шайб 3 и вала якоря миканитовыми манжетами 1 и цилиндрами. Когда коллектор окончательно собран, его поверхность обтачивают на токарном станке и тщательно шлифуют.
Чтобы миканитовые прокладки при износе коллектора не выступали над пластинами и не вызывали вибрации щеток, их профрезеровывают на 0,8—1,5 мм ниже поверхности коллектора (рис. 86,б). Эту операцию называют продороживанием коллектора.
В машинах с большим диаметром якоря (в тяговых генераторах тепловозов) для соединения проводников обмотки якоря с пластинами коллектора предусматривают промежуточные звенья — гибкие медные пластины, называемые петушками. Петушки нижними концами прикрепляют к коллекторным пластинам, а в верхние их части впаивают проводники обмотки якоря.
Вращаясь, коллектор соприкасается со щетками и постепенно изнашивается. Кроме того, при работе коллектор нагревается, и возникающие при этом механические напряжения могут вызвать его деформацию, следствием которой будет вибрация щеток, плохой их контакт с коллектором и значительное искрение. Поэтому в эксплуатации периодически выполняют обточку коллекторов.
В машинах малой и средней мощности, например в тяговых двигателях электропоездов и во вспомогательных машинах, широко применяют коллекторы с пластмассовым корпусом (рис. 86, в).
В этих коллекторах медные пластины 2 и миканитовые прокладки опрессованы пластмассой 5, обладающей большой механической и электрической прочностью. Для посадки коллектора на вал служит стальная втулка б, которую вставляют в пресс-форму перед запрессовкой пластин в пластмассу.
Щеточный аппарат.
Щетки предназначены для соединения коллектора с внешней цепью. Они представляют собой прямоугольные призмы шириной 4—32 мм (рис. 87, а).
Рис. 87. Неразрезные (а) и разрезные (б) щетки электрических машин: 1 – кабельный наконечник; 2 щеточный канатик; 3 — щетка; 4 — резиновый гаситель; 5 — нажимной палец; 6 — разрезная щетка; 7— обойма
Рабочую поверхность щеток пришлифовывают к коллектору, чтобы обеспечить надежный контакт. Каждая щетка имеет определенную марку. Щетки различных марок различаются составом, способом изготовления и физическими свойствами.
Щетки, применяемые для электрических машин, подразделяются на четыре основные группы: угольно-графитные, графитные, электро-графитированные и металлографитные. Для каждой машины, работающей в определенных условиях, нужно применять щетки только соответствующих марок.
Эти марки подбираются заводом — изготовителем машин; при замене изношенных щеток нужно брать щетки той же марки. В тяговых электрических машинах применяют исключительно электрографитированные щетки, которые обладают хорошими коммутирующими свойствами, значительной механической прочностью и способностью выдерживать большие перегрузки.
Щетки устанавливают в специальные обоймы, называемые щеткодержателями (рис. 88, а).
Рис. 88. Щеткодержатели вспомогательных машин (а) и тяговых двигателей (б): 1 — изолятор; 2 — пружина; натяжное устройство; 4 — обойма; 5 — щетка; 6 — щеточный палец; 7 — нажимной малец; 8 — щеточный канатик; 9 – кронштейн
Для отвода тока от щетки к ней прикрепляют медный гибкий проводник (щеточный канатик), который присоединяют к щеткодержателю. Одним из основных условий хорошей работы щеток является плотный, надежный контакт между щеткой и коллектором.
Он достигается при помощи нажимного устройства, смонтированного на щеткодержателе. Нажим на щетку осуществляется пружиной (спиральной, цилиндрической или пластинчатой), упирающейся одним концом в щетку, а другим — в щеткодержатель.
В тяговых двигателях нажимная пружина воздействует на специальный палец, прижимаемый к верхней торцовой поверхности щетки (рис. 88,б).
Нажатие на щетку должно быть отрегулировано в строго определенных пределах, так как чрезмерный нажим вызывает быстрый износ щетки и нагрев коллектора, а недостаточный нажим не дает надежного контакта между щеткой и коллектором, вследствие чего возникает искрение под щеткой.
Нажатие принимают из расчета 1,5—3,5 Н на 1 см 2 опорной поверхности щетки. Для улучшения щеточного контакта и предотвращения искрения щеток в некоторых случаях применяют разрезные щетки (рис. 87,б). Такая щетка состоит из двух частей, установленных в общую обойму
Равномерное нажатие на отдельные части щетки обеспечивается резиновым гасителем 4.
Щеткодержатели укрепляют на кронштейнах и щеточных пальцах непосредственно к остову машины (в четырехполюсных тяговых двигателях) или к боковым подшипниковым щитам и изолируют от них специальными изоляторами 1 (см. рис. 88).
В некоторых тяговых и стационарных машинах щеткодержатели устанавливают на поворотных траверсах (рис. 89, а и б), прикрепляемых к боковым щитам.
Рис. 89. Установка щеткодержателей на поворотной щеточной траверсе: 1 – траверса; 2 – стопорный болт; 3 – щеткодержатели; 4 – палец щеткодержателя; 5 – зубчатый венец
Поворотом траверсы обеспечивается возможность некоторого перемещения щеток по окружности коллектора. Благодаря этому можно подобрать наивыгоднейшее положение щеток, при котором искрение под щетками при данном режиме работы будет минимальным. Применение поворотной траверсы облегчает также осмотр щеткодержателей и замену в них щеток.
Кроме описанных выше частей, в электрических машинах имеется ряд конструктивных деталей: подшипники, подшипниковые щиты (крышки), смазочные и маслозащитные устройства и т. п.
Подшипники.
В тяговых двигателях, тепловозных генераторах и вспомогательных машинах обычно устанавливают шариковые и роликовые подшипники (рис. 90), очень надежные и требующие небольшого ухода.
Рис. 90. Установка роликовых подшипников в тяговых двигателях: 1 — подшипник; 2 — подшипниковый щит; 3 — лабиринтовое уплотнение; 4 — смазка
Подшипники помещают в специальных подшипниковых щитах, которые прикрепляют к обеим сторонам остова.
Для смазки подшипников применяют в большинстве случаев густую консистентную смазку. Эта смазка не требует большого объема смазочных камер, и запас ее, закладываемый в подшипник, при периодических ревизиях двигателя оказывается вполне достаточным для работы машины без замены смазки до следующей ревизии.
Для предотвращения выхода смазки из смазочных камер в тяговых машинах применяют гидравлические (лабиринтовые) уплотнения.
Действие этих уплотнений основано на вязкости смазки, попавшей в небольшой зазор между вращающейся и неподвижной деталями, а также на создании самой смазкой гидравлических перегородок вследствие отбрасывания ее к стенкам лабиринта под действием центробежной силы, возникающей при вращении якоря.
Устройство для охлаждения электрических машин.
В большинстве электрических машин для охлаждения нагретых частей (сердечника и обмотки якоря, коллектора и полюсов) на валу якоря устанавливают вентилятор. Такой способ охлаждения электрических машин называется самовентиляцией, а машины этого типа — машинами с самовентиляцией.
Тяговые двигатели электропоездов и вспомогательные машины, установленные на электровозах и тепловозах, являются машинами с самовентиляцией. В этих машинах засасываемый воздух поступает внутрь машины обычно со стороны коллектора и распределяется на два параллельных потока (рис. 91, а).
Рис. 91. Схемы прохождения охлаждающего воздуха в машинах с самовентиляцией (а) и независимой вентиляцией (б): 1 — вход воздуха; 2 — выход воздуха; 3 — вентилятор; 4 — сердечник якоря; 5 — полюсы; 6 — коллектор; 7 — внешний вентилятор; 8 — воздухопровод; 9 — тяговый двигатель
Один из таких потоков омывает поверхность коллектора, катушки полюсов и пространство между полюсами и якорем. Другой поток проходит под коллектором и по вентиляционным каналам внутри сердечника якоря.
Нагретый воздух выбрасывается через отверстия, имеющиеся в остове и подшипниковом щите со стороны, противоположной коллектору, или же через специальный патрубок, прикрепленный к остову машины.
В тяговых двигателях электровозов и тепловозов для улучшения охлаждения воздух в машину нагнетают извне вентилятором (рис. 91, б), приводимым во вращение отдельным электродвигателем (мотор-вентилятором). Такие машины называются машинами с независимой вентиляцией.
При такой вентиляции воздух распределяется внутрь машины двумя параллельными потоками, как и при самовентиляции.
Охлаждение оказывает большое влияние на работу электрических машин. Мощность, которую можно получить от электрической машины, ограничена предельной температурой, которую может выдержать изоляция ее обмоток.
Поэтому при интенсивном охлаждении значительно снижается нагрев обмотки, что позволяет повысить мощность, которую может отдать машина.
Электрические машины постоянного тока: виды и принцип их работы
Машины постоянного тока представляют собой возвратную электрическую машину, в которых происходит процесс преобразования энергии. В машинах, где механическая энергия преобразуется в электрическую, называются генераторами. Они предназначены для выработки электроэнергии. Для работы необходимо наличие какого-либо двигателя (дизеля, паровой или водяной турбины), который будет вращать вал генератора.
Обратное преобразование энергий происходит в электродвигателях. Они приводят в движение колесные пары локомотивов, вращают валы вентиляторов и т.д. Для работы необходимо подсоединение электродвигателя с источником электроэнергии посредством проводов.
Принцип работы электрических машин постоянного тока основан на использовании явления электромагнитной индукции, а также законов, которые определяют взаимодействие электрических токов и магнитных полей.
Эти машины включают в себя неподвижную и вращающуюся части. В конструкцию неподвижной части, или статора входят станина, главные и дополнительные полюса, подшипниковые щиты и щеточная траверса с графитовыми или медно-графитовыми щетками.
Вращающаяся часть, или ротор, в электрических машинах постоянного тока именуются якорем. Якорь, снабженный коллектором, в электродвигателях играет роль преобразователя частоты, а в генераторах – выпрямителя.
При вращении машины происходит перемещение якоря и статора относительно друг друга. Статор создает магнитное поле, а в обмотке якоря индуцируется э. д. с. Возникает ток, который при воздействии с магнитным полем создает электромагнитные силы, отвечающие за процесс преобразования энергии.
Электрические машины постоянного тока в зависимости от наличия или отсутствия коммутации бывают обычными и униполярными, а по расположению вала – вертикальными и горизонтальными.
По типу переключателей тока их можно подразделить на машины с щеточно-коллекторным и электронным переключателем. Последние называются еще вентильными электродвигателями.
По мощности они делятся на микромашины мощностью до 0,5 кВт, а также, машины малой, средней и большой мощности – 0,5-10 кВт, 10-200 кВт и более 200 кВт соответственно.
По частоте вращения различают тихоходные (до 300 об/мин), средней быстроходности (300-500 об/мин), быстроходные (1500-6000 об/мин) и сверхбыстроходные (более 6000 об/мин) электрические машины постоянного тока.
Электрические машины
Электрическая машина — электромеханический преобразователь, который преобразует механическую энергию в электрическую (генератор), либо электрическую энергию в механическую (электродвигатель), либо электрическую энергию с одними параметрами (напряжением, частотой и т.д.) в электрическую с другими параметрами.
В качестве энергоносителя в электрической машине может быть использовано как магнитное, так и электрическое поле. Машины, в которых для преобразования энергии используется магнитное поле, называются индуктивными, а те, в которых используется электрическое поле, — емкостными. Возможно также совместное использование магнитного и электрического полей. Такие машины называются индуктивно-емкостными.
На практике наибольшее распространение получили индуктивные машины.
Принято различать электромеханические преобразователи в зависимости от цели преобразования энергии на:
- генераторы — источники электрической энергии;
- электродвигатели — источники механической энергии;
- специальные электрические машины — электромеханические преобразователи с более сложным целевым назначением
Области применения электрических машин
Современные электрические машины имеют самое разнообразное конструктивное исполнение и могут реализовывать различные роды напряжения и тока, а также различные виды движения — вращательное, колебательное, линейное и т.д. Диапазон мощностей современных электрических машин составляет 10 -17 — 10 9 Вт. На рисунке 1 показаны области распространения и зоны использования емкостных (график 1), индуктивно-емкостных (график 2) и индуктивных (график 3) электрических машин. Электрическая машина является весьма экономичным преобразователем энергии.
Рисунок 1 – Области распространения электрических машин
Для управления современными электрическими машинами используются сложные электронные системы, которые конструктивно объединяются с электромеханическим преобразователем и образуют так называемую электромеханотронную систему, выступающую как единый технический комплекс. Все это существенно расширяет функциональные возможности электрических машин и обеспечивает их широкое внедрение во все сферы производственной и бытовой деятельности человечества [1].
Основополагающие законы электромеханического преобразования энергии в индуктивных машинах
Закон Ампера
Согласно закону, установленному Ампером, на проводник с током в магнитном поле действует сила
- где F – сила, Н,
- I – сила тока, А,
– длина проводника, м,
- B — магнитная индукция, Тл,
— угол между направлением тока и вектором магнитной индукции, град.
Направление этой силы определяется по правилу «левой руки».
Закон электромагнитной индукции Фарадея
Открытие электромагнитной индукции в 1831 году Фарадеем — одно из фундаментальных открытий в электродинамики. Максвеллу принадлежит следующая углубленная формулировка закона электромагнитной индукции:
Всякое изменение магнитного поля во времени возбуждает в окружающем пространстве электрическое поле. Циркуляция вектора напряженности E этого поля по любому неподвижному замкнутому контуру s определяется выражением [3] [4]
- где E – напряженность электрического поля, В/м,
- ds – элемент контура, м,
- Ф — магнитный поток, Вб,
- t — время, с
Электродвижущая сила индукции возникающая в замкнутом контуре, равна скорости изменения во времени потока магнитной индукции
- где – электродвижущая сила индукции, В
Знак «-» показывает, что индукционный ток, возникающий в замкнутом проводящем контуре имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.
Вращающиеся электрические машины
Вращающаяся электрическая машина — электротехническое устройство, предназначенное для преобразования энергии на основе электромагнитной индукции и взаимодействия магнитного поля с электрическим током, содержащее, по крайней мере, две части, участвующие в основном процессе преобразования и имеющие возможность вращаться или поворачиваться относительно друг друга [2].
Вращающаяся машина постоянного тока, или машина постоянного тока — вращающаяся электрическая машина, основной процесс преобразования энергии в которой обусловлен потреблением или генерированием только постоянного электрического тока.
Вращающаяся машина переменного тока — вращающаяся электрическая машина, основной процесс преобразования энергии в которой обусловлен потреблением или генерированием переменного электрического тока.
Виды вращающихся электрических машин
По характеру магнитного поля в основном воздушном зазоре
Одноименнополюсная машина — вращающаяся электрическая машина, у которой нормальная составляющая магнитной индукции во всех точках основного воздушного зазора имеет один и тот же знак.
Разноименнополюсная машина — вращающаяся электрическая машина, у которой нормальная составляющая магнитной индукции в различных участках основного воздушного зазора имеет разные знаки.
Явнополюсная машина — разноименнополюсная машина, в которой полюса выступают в сторону основного воздушного зазора.
Неявнополюсная машина — разноименнополюсная машина с равномерным основным воздушным зазором.